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a b s t r a c t

Machine scheduling is a critical problem in industries where products are custom-designed. The wide
range of products, the lack of previous experiences in manufacturing, and the several conflicting criteria
used to evaluate the quality of the schedules define a huge search space. Furthermore, production com-
plexity and human influence in each manufacturing step make time estimations difficult to obtain thus
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reducing accuracy of schedules. The solution described in this paper combines evolutionary computing
and neural networks to reduce the impact of (i) the huge search space that the multi-objective optimiza-
tion must deal with and (ii) the inherent problem of computing the processing times in a domain like
custom manufacturing. Our hybrid approach obtains near optimal schedules through the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) combined with time estimations based on multilayer perceptron
eural networks
ybrid approach

neural networks.

. Introduction

Machine scheduling is a difficult problem in industrial envi-
onments such as custom furniture industry. This problem can
e defined as finding an optimal sequence of operations for a set
f resources and constraints. Machine scheduling is classified as
P-hard [1] because it has a combinatorial search space caused
y the resources that must be allocated to maximize the utiliza-
ion of machines and to minimize the time required to complete
he scheduled process. Therefore, this problem is not feasible with
xact methods such as branch and bound, dynamic programming
r constraint logic programming. For this reason, solutions near
he optimal are considered good solutions in this context and non-
erivative methods, such as evolutionary algorithms, simulated
nnealing, tabu search or simplex method, are better suited [2].

Machine scheduling problem is characterized by the presence
f many conflicting objectives. Therefore, it is natural to look at
cheduling as a multi-objective optimization problem that raises
he issue about how different objectives should be combined to

ield a final solution. Unfortunately, the processing times that con-
titute the essence of some scheduling process are difficult to obtain
n custom manufacturing. The computation of these times depends
n several factors such as machine, material and piece characteris-
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tics. The latter is the key point because materials, dimensions and
shape of custom-designed pieces may take a wide range of different
values. Since these times consist of a mixture of numerical simu-
lations, analytical calculations and catalogue selections, there is no
precise way for calculating the basic information for scheduling.

Selection of the multi-objective optimization algorithm is
closely related to the particular problem to be solved. This paper
deals with a real-world scheduling problem that is close to job-shop
scheduling problems family. However, the scheduling constraints
in the furniture industry define a huge search space which may
be even huger if the scheduling faced events such as machines
breaking down, workers getting sick or new jobs appearing. In our
approach we deal with these events through a new scheduling and
not through rescheduling. That is, these events will only modify
the conditions under which the new scheduling is performed. For
this reason, our approach requires to be reliable but also time effi-
cient since time is critical to have a faster response to customer
orders. In this context, evolutionary algorithms are known to be a
fast and robust solution in optimization problems such as schedul-
ing [3,4] because they facilitate finding a global optima, and do not
get trapped on local optima as gradient methods might do.

The machine scheduling solution described in this paper com-
bines evolutionary computing and neural networks to reduce
the impact of (i) the huge search space that our multi-objective

scheduling process must deal with and (ii) the inherent problem
of computing the processing times in a domain like custom manu-
facturing. Our approach is based on the use of a Multi-Objective
Evolutionary Algorithm (MOEA) where schedule evaluation is
based on processing times modeled by neural networks. In essence,
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ig. 1. Schedules representation and hierarchy. (a) Gantt chart of a schedule. Oi,j stan

e apply the Non-dominated Sorting Genetic Algorithm II (NSGA-
I) [5] for producing new schedules in each iteration, and a

ultilayer perceptron neural network [6] to estimate their pro-
essing times.

The paper is structured as follows: Section 3 introduces the
roblem of scheduling in custom wood-based furniture manufac-
uring industry. Then, Section 4 describes the NSGA-II algorithm
hat solves the scheduling problem, how the problem has been
ncoded and which objective functions evaluate the fitness of the
olutions. Section 5 presents the neural network model we defined
o compute the processing times of machines, while Section 6
hows some results and comparisons for experiments in a real-
orld production environment. Finally, Section 7 points out the

onclusions.

. Related work for machine scheduling problems

The scheduling problem consists of finding a schedule satisfying
set of restrictions. A schedule is the allocation of time intervals

or the m machines M = {M1, M2, . . . , Mm} that perform the n jobs
= {J1, J2, . . . , Jn} of the problem. Each job Ji ∈ J consists of a set of
i operations Oi = {Oi,1, Oi,2, . . . , Oi,ni

} with a processing time pk,i,j

n a machine Mk. For example, a schedule may be represented as
antt charts as shown in Fig. 1(a). Each row represents a machine
nd each box an operation with a time interval.

A schedule represents the final allocation of resources to jobs
ver time. The schedules that satisfy all constraints are denom-
nated feasible schedules. Feasible schedules can be classified as
ollows:

Semi-active schedules: No operation can be started earlier without
changing the processing order or violating some constraint.
Active schedules: No operation can be started earlier without
delaying at least another operation or violating some constraint.
Non-delay schedules: No machine is ever idle if an operation is
ready to be processed.

The relationship between these classes of schedules and opti-
al schedules is illustrated in Fig. 1(b). Usually, the corresponding

cheduling problem only searches for the set of active (or some-
imes semi-active) schedules, since this brings a huge reduction of
he search-space while still guaranteeing that an optimal schedule
an be found.

.1. Machine scheduling problem
The scheduling literature is characterized by an unlimited
umber of problem types. Scheduling problems can be classified
ccording to job characteristics, machine environment and opti-
ality criteria [7]. Job characteristics may have:
r the jth operation for job Ji and (b) Venn diagram of the different types of schedules.

• Preemption: A job may be interrupted and resumed at a latter
time, even on another machine.

• Precedence relations: The precedence between jobs may be rep-
resented by acyclic graphs or rooted trees.

• Release dates: Each machine Mk has a start time sk,i,j before which
no processing can be done on the machine for the operation Oi,j .

• Processing times restrictions: For example, setting a unit processing
time restriction, pi,j = 1, to all the operations Oi,j .

• Due dates: A job Ji must be achieved before a due date di.
• Batch modes: A set of operations may be grouped in batches. A

batch must be processed jointly on a machine.

Machine environment defines the type of scheduling problem.
The first four scheduling problems of the following list apply to one-
operation models (jobs with only one operation) while the latter
five to multi-operation models:

• Dedicated machines: Each job must be processed on a dedicated
machine.

• Identical parallel machines: All the machines that process a job are
identical. Thus, they have the same processing time, pk,i,1 = pi.

• Uniform parallel machines: The processing time of the machine
Mk is pk,i,1 = pi/sk where sk is the speed of the machine.

• Unrelated parallel machines: The processing time of the machine
Mk depends on the job, pk,i,1 = pi/si,k.

• General-shop: The machines are dedicated and there are prece-
dence relations between the operations.

• Open-shop: Equivalent to general-shop except that there are no
precedence relations. The operations of a job may not be pro-
cessed in any particular order.

• Job-shop: Special case of the general-shop where the precedence
relation states that the operation Oi,j is the j-th operation of job i
and cannot start until the operation Oi,j−1 has finished, 1 < j < n.

• Flow-shop: Special case of the job-shop where the machine pro-
cessing orders Oi are the same for all the jobs. This does not mean
that jobs are identical, since their processing times may vary.

• Mixed-shop: A combination of job-shop and open shop.

Many optimality criteria exists for scheduling problems. Fre-
quently used performance measures are:

• Makespan: The maximum completion time (length of the sched-
ule).

• Total flow-time: The total time spent on all the jobs.
• Total lateness: The summed lateness of all the jobs, that is, how
much later than the deadline each job finishes.
• Total tardiness: The summed tardiness of all the jobs, that is, the

sum of the lateness of the jobs.
• Total earliness: The summed earliness of all the jobs, that is, the

sum of the negative lateness of the jobs.
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Maximum lateness: The lateness of the latest job.
Maximum tardiness: The tardiness of the tardiest job.

In this work, we address a job-shop scheduling problem (JSSP).
mong the various types of scheduling problems, the JSSP problem

s one of the most challenging. Problems of size n × m and m ≥ 2
re NP-hard and are considered the worst among combinatorial
roblems [1]. The size of the search space for the traditional JSSP is
n!)m.

.2. Traditional approaches

Many approaches have been proposed to solve JSSP. In Refs.
8,9], sophisticated branch and bound (BB) methods are used to

inimize the makespan in classical JSSP. Although these methods
ave proved to be very useful for small to medium sized problems,
heir excessive computing time makes their application to large
roblems difficult [10]. Many other exact approaches of operational
esearch, such as mixed integer programming [11] or dynamic
rogramming [12], have been used. However, the number of con-
traints and/or variables becomes very large even for small sized
roblems, and therefore those attempts are not very effective for

arge sized problems.
Many non-optimal heuristic approaches can deal with JSSP in

easonable computational time. Knowledge-based systems [13],
ispatching rules [14] or neural networks [15] have been used

n real JSSP. Nevertheless, meta-heuristic algorithms have proved
better performance for solving job-shop problems. Tabu search

TS) has proved to be very effective algorithm for the JSSP [16,17].
lthough, when it is applied to hard optimization problems, such
s real scheduling problems, the performance depends on the
nitial solution used. Another technique that has been applied
o JSSP is simulated annealing (SA) [18,19]. SA can avoid local

axima/minima, but is unable to achieve good solutions quickly.
erformance can be increased by combining SA with TS. The main
rinciple of this approach is that SA is used to find the elite solu-
ions so that TS can re-intensify search from the promising solutions
20]. Shifting bottleneck (SB) heuristic works by relaxing the prob-
em into a number of one machine subproblems that are solved
ne at a time. This heuristic was among the first really efficient
pproximation methods [21,12]. SB search requires a high comput-
ng effort due to the re-optimizations that are necessary to achieve
he results. Best solutions are achieved by tuning its several param-
ters.

Evolutionary algorithms (EA) have become a popular approach
o solve JSSP since they usually achieve better performance than

any traditional and heuristic approaches applied in JSSP [22].
ost of these EA aimed to solve the classical JSSP or small variations

f the classical problem. They differ from one another mainly in the
epresentation schemes, in the operators, in the hybridization level
ith other heuristics (to improve previous generated solutions),

nd in the performance measure adopted.
Many chromosome representation schemes for solving JSSP

re reported in the literature [23]. Chromosomes can use a direct
r an indirect representation. Direct representations encode the
chedule in the chromosome. For example, an operation-based chro-
osome encodes the schedule as a sequence of operations, and

ach gene stands for one operation. However, complex crossover
nd mutation operators are required to create new solutions. In
ndirect representations, simple operators are allowed but the
hromosome encodes a feasible schedule. For example, dispatching

ules for job assignment can be encoded in each gene.

Multi-objective criteria have also been incorporated into EA
odels [24,25]. Most of the approaches are based on the combi-

ation of multiple objectives into a single scalar objective using
eighted coefficients [26,27]. However, few MOEAs have been
uting 11 (2011) 1600–1613

applied to scheduling in terms of Pareto dominance among indi-
viduals. For example, in [28] a MOEA is applied to the scheduling
of drilling operations in printed circuit board industry with the
objectives of minimizing makespan and total flow time. In [29]
to the classical JSSP with the makespan and total tardiness as
objectives. In [30] to cellular manufacturing systems with three
objectives, makespan, total flow time and machine idleness. In Ref.
[31] a MOEA is proposed to derive the optimal dispatching rules
in the Giffer and Thompson algorithm and in [32] to flexible JSSP.
Contemporary MOEA use selection and replacement based on a
multi-objective domination criterion. Examples of this approach
are MOGA [33], NPGA [34], PESA [35], SPEA [36] and NSGA-II [5].
Many other meta-heuristics strategies, such as Greedy Randomized
Adaptive Search Procedure (GRASP) [37], Ant/Bee Colonies [38,39],
and Jumping Genes Genetic Algorithm [40] have been applied to
solve JSSP. However, limited results are available and have yet
to prove their performance compared to current state-of-the-art
algorithms [22].

2.3. Processing time estimation

In order to obtain a good solution for a JSSP, it is necessary to
have an accurate time estimation of each of the operations involved
in the scheduling. Processing time estimation is a regression prob-
lem. Therefore, given a dataset in which each example contains
the values of several input variables and their corresponding out-
put (processing time), any regression technique could be applied
to obtain a time estimation. A number of soft computing-based
techniques, such as fuzzy rule based systems, decision trees, sup-
port vector machines for regression, Bayesian regression, have been
described for this work.

In particular, the most widely used methodology for process-
ing time estimations in scheduling problems is neural networks.
For example, in [41] a neural network has been used for ship-
building scheduling. The system tries to accurately estimate the
required welding man-hours of each one-of-a-kind block of the
scheduling. They considered four groups of variables: ship type,
block type, block’s physical characteristics and shop type. Also, in
[42] the processing time estimations for metal furniture assembly,
welding and painting is done with a neural network. The process-
ing times required to complete these operations vary significantly
with the specific product variation and contain non-linearities and
unspecified interactions.

Whenever accuracy is important, but also a certain degree of
interpretability of the proposed regression system is required,
fuzzy rule based systems are a good choice [43]. Rules have a vari-
able structure in the consequent, as the regression functions can
be completely distinct for different machines or, even, for different
classes of inputs to the same machine. The TSK knowledge base was
learned with genetic programming together with a context-free
grammar to restrict the valid structures of the regression functions.

3. Machine scheduling problem in custom wood-based
furniture manufacturing

The time interval for completing all of the operations of a work
order is defined as throughput time. Its accurate estimation is hard
in industries such as the furniture industry where custom-designed
products are dominan. The lack of previous manufacturing experi-
ences and the complexity in the production makes time estimations

difficult.

The reduction of throughput time has many benefits: lower
inventory, reduced costs, improved product quality (problems in
the process can be detected more quickly), faster response to
customer orders, and increased flexibility. Much effort is there-
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ig. 2. Conceptual design of a hall office table from which furniture parts, manufac-
uring steps and finishings can be extracted.

ore spent to reduce throughput time by improving manufacturing
lanning, control systems, and developing more sophisticated
cheduling procedures [44,45]. The objective is to define work
lans that minimize the resources queuing and maximize resources
apacity, constrained to the material availability and product
equirements. In this context, the feasibility, time, and cost of the
ost promising plans is analyzed [46,47]. Note that the through-

ut time has many components, including move, queue, setup, and
rocessing times [48–50]. In this work we will address all these
omponents by improving the machine scheduling task to produce
easible work plans.

The real-world scheduling problem described in this work is
lose to the job-shop scheduling problem (JSSP) family:

Each job Ji defines a precedence relation with its operations Oi,j .
Each job Ji must be achieved before a due date di.
No processing restrictions on the operations are defined.
No batch mode is defined. Some of the operations of our domain
can be considered batch modes. However, we abstract them as
simple operations.
Each machine has a start time sk,i,j before which no processing
can be done on the machine for the operation Oi,j .
Each machine can process only one operation at a time.
No machine can free an operation until it is finished, that is, no
preemption is allowed.
The total number of machines of each type is fixed and greater
than one.
No job can start before the processing of its parts is available.

However, some of the constraints of our problem modify the
lassical JSSP, and make it closer to flexible JSSP:

Two operations of the same job may be processed simultaneously.
In our scheduling problem precedence relations are represented
as acyclic graphs, while in classical JSSP these relations are repre-
sented as a sequence of operations. Furniture industry, like many
others, manufacture products made up of many different types of
raw material. For example, the table depicted in Fig. 2 is made of
plywood, steel and glass. Therefore, the processing of the different
materials until they are assembled can be performed simultane-
ously. Although the way in which the precedence relations are
defined is out of the scope of this paper, just mention that this
selection is based on a set of rules based on woodworking knowl-
edge. These rules take into account the constructive decisions,
joints used to assemble the furniture, and finishing or quality

standards.
Each job can be scheduled on the same machine more than
once. In classical JSSP, it is usually required that for each job
Ji, the sequence of operations Oi,j contains exactly one opera-
tion to be processed on each of the machines. However, in our
uting 11 (2011) 1600–1613 1603

machine environment, the same machine can perform several
manufacturing steps. For example, edge banding machines can
be used or edge banding, trimming and sanding. Therefore the
same machine may be used more than once for a job.

• Jobs do not have to visit every machine in M. Although in classical
JSSP each machine must be visited in the schedule of a job Ji,
this restriction does not apply to our real scheduling problem.
Two products may have very different manufacturing steps. For
example, a solid wood table and the table depicted in Fig. 2 do
not share many operations.

Another difficulty our scheduling problem must deal with is
the processing times estimation, which is a critical piece in each
manufacturing step. The estimation of the processing time is one
of the most important tasks in the product design life cycle. For
example, time estimations are taken into account to redesign the
product if the predicted time is longer than expected. There are
many models and techniques for estimating the processing times
of a manufacturing step based on the product design [51]. For a
detailed design, highly detailed process planning, manufacturing
process simulation, or time estimation models can be employed
[51,47]. For a conceptual design, however, less detailed models
must depend on a more limited set of critical design information
[51]. Both approaches are applied in the furniture industry since
the definition of a detailed design is cost and time expensive. There-
fore, there are several ways of computing the processing time of a
machine depending on the available input variables. For instance,
several manufacturing processes can be extracted from the concep-
tual designs depicted in Fig. 2. The hall office table has a round top
leaf with three tripod legs. The base material is phenolic plywood,
the structure is bright stainless steel and the table top is transparent
glass. Taking into account that the round glass material is purchased
to an external provider, two different classes of operations can be
inferred for (i) wood and (ii) steel pieces processing. For example,
wood pieces must be cut from large wood boards, planned and cal-
ibrated to have a uniform surface and thickness, cut again at a 45◦

angle, and so on.
The processing time of an operation for a machine can depend

on several input variables, like the dimensions of the product, the
material, the speed of the machine for that kind of product, and
so on. For example, the calibrating of wood pieces depends on the
sanding machine that will perform the operation, apart from the
piece variables. Calibrating machinery specifies feed speed, abra-
sive belt speed, abrasive belt size, working thickness, maximum
and minimum workpiece dimensions and so on. Nevertheless, the
processing time for a given operation may not always be influenced
by all of these variables. Thus, a machine can have several regres-
sion functions for a class of operation and product characteristics.
Therefore, a good estimation of the throughput time demands an
accurate regression function as well as the selection of the appro-
priate function among all the regression functions of the machine.
In this context, processing times estimation is difficult to obtain
by standard methods or manufacturing experts and is a source of
errors and uncertainty for the scheduling process.

4. NSGA-II multi-objective approach for machine
scheduling

A multi-objective scheduling problem can be described as a
multi-objective optimization problem:
minF(x) = {f1(x), f2(x), . . . , fk(x)}s.t. x ∈ S (1)

where x is a solution, S is the set of feasible solutions, k is the number
of objectives in the problem, F(x) is the image of x in the k-objective
space and each fi(x) for i = 1, . . . , k represents one objective. In
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Fig. 3. NSGA-II algorithm [5].
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ustom furniture manufacturing, like in many other real-world
roblems, there are conflicting fi(x) objectives. For example, objec-
ives like minimize the cost of furniture and minimize the completion
ime may be in conflict since it is usual that faster machines have a
igher recovery cost. So, in contrast to a single-objective optimiza-
ion problem, there is not one best solution, but several solutions
o choose from (non-dominated set of solutions).

Our approach to this problem uses the multi-objective schedul-
ng optimization through the NSGA-II algorithm [5]. NSGA-II is one
f the most efficient MOEAs using elitist approach: its computa-
ional complexity is in O(MN2), where M is the number of objectives
nd N the population size. The algorithm structure is described in
ig. 3. NSGA-II has a fitness assignment scheme that consists in
orting the population in different fronts using the non-domination
rder relation. Therefore, it has two objectives: (i) to find a set of
on-dominated solutions as close as possible to the Pareto-optimal

ront in each iteration but (ii) maintaining the set of solutions as
iverse as possible covering or nearby the Pareto-optimal front.

The main loop of the algorithm begins with the combination
f the current and previous populations, and the calculation of
he non-dominated fronts of Rt . This is done with the fast-non-
ominated-sort function. In the first step of this function, for each
ndividual p of the population P, two calculations are done: the set of
ndividuals dominated by p (Sp), and the number of individuals that
ominate p (np). All those individuals (p) that are non-dominated
ill have a rank of prank = 1 and will belong to the first Pareto front

non-dominated front) (V1). In order to calculate the other Pareto
ronts (step 3), for each individual (p) of the previous Pareto front,
ach element (q) of set Sp decreases its domination counter in 1
nq). Therefore, all those individuals q with nq = 0 will belong to
he i th-Pareto front.

Once all the Pareto fronts have been determined, the main loop
f the algorithm adds (step 1.d) to the new population (Pt+1) all
he individuals in the i-th Pareto front (Vi), starting with i = 1 and
ncreasing i while the size of the population is under N. Moreover,
or each individual belonging to Vi, a measure of the crowding
istance (crowding-distance-assignment) is calculated taking into
ccount all the individuals in Vi. This crowding distance is the sum of
he crowding distances for each objective and gives and estimation
f the density of solutions surrounding a particular solution.

Steps 1.e and 1.f of the main loop are used when not all the indi-
iduals of the ith Pareto front can be added to the new population
Pt+1) (as the total size of the population would exceed N). All the
ndividuals of Vi are sorted in descending order using the crowded-
omparison operator (≺n). This operator is used in all the selection
rocesses of the algorithm (reduction of the population and tour-
ament selection), thus it is necessary to calculate the crowding
istance for all the individuals of Pt+1 (step 1.d.i), and not only for
he individuals in Vi (step 1.e). As defined in Fig. 3, solution i has
etter rank than solution j if it belongs to a lower order Pareto front
irank < jrank), or if the Pareto front is the same and the crowding
istance of i is higher than that of j (idistance > jdistance).

Finally (step 1.g), and using population Pt+1, individuals are
elected (tournament selection using ≺n), crossed and mutated to
reate the new population Qt+1.

.1. Problem encoding

Choosing a good representation is a vital component for solving
earch problems. In this paper, a composite representation of the
hromosome is proposed. Part of this encoding is used to reduce

he flexible JSSP to a classical JSSP and the remainder to define the
riority dispatching rules used to create the schedule. Specifically,
achine assignment is achieved through the parallel job encoding

52]. Fig. 4 represents this encoding for a scheduling problem of
our jobs and four machines. Each row of the matrix is an ordered

Fig. 4. Parallel job encoding of the 4 × 4 schedule example (first part of the chro-
mosome).
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Table 1
Priority dispatching rules for operation assignment.

Code Rule Description

0 SOT Shortest Operation
Time

Operation with shortest
processing time on the
considered machine

1 LOT Longest Operation
Time

Operation with longest
processing time on the
considered machine

2 SPT Shortest Processing
Time

Operation which job has
the shortest total
processing time

3 LPT Longest Processing
Time

Operation which job has
the longest total processing
time

4 SRO Smallest Remaining
Operations

Operation with smallest
number of remaining job
operations

5 LRO Largest Remaining
Operations

Operation with largest
number of remaining job
operations

6 SRT Shortest Remaining
Time

Operation with shortest
remaining job processing
time

in parallel. The A, S and Q sets are also represented in this figure.
For instance, operations in A are marked by dashed circles, oper-
ations in Q are marked by squares and scheduled operations are
gray colored.
ig. 5. Due dates, operations order and processing times of operations on machines.

equence of operations Oi,j , i = 1, . . . , 4, j = 1, . . . , 3 (j is the oper-
tion index). Each element in a row contains two terms: (i) the
achine Mk, k = 1, . . . , 4, which performs the operation and (ii)

he starting time tk,i,j of operation Oi,j in machine Mk. For example,
he operation O1 in job J2 is performed on machine M1 at time 2.

This encoding directly produces a feasible solution. It contains
he machines that will execute each operation and at which time.
ime is set to zero when the machine cannot perform the opera-
ion and the gene is in blank when the operation does not apply in
he job. Therefore, a schedule is easily created knowing the oper-
tions routing and the processing times. Fig. 5 complements the
× 4 scheduling example and provides (i) the due date of each job

i, (ii) the operations order in the job and (iii) the time (the sum
f the setup and processing time) of each operation Oi,j on each
achine of the production plant. For example, job J2 has a due date

f 7 time units and defines the O2,2, O2,1, O2,3 operations order. The
antt chart depicted in Fig. 1(a) represents the schedule that can
e inferred from the chromosome depicted in Fig. 4 and the data of
ig. 5.

Fig. 6 depicts the priority dispatching rules assigned to the 4
obs and 4 machines scheduling problem. In this encoding the gene
represents the priority rule that must be applied to process the ith
peration of the schedule. From these assignments, the schedule
s constructed with the Giffler and Thompson algorithm [53] but
sing this priority dispatching rules heuristic.

The codes and priority rules considered [23] are given in Table 1.
or example, the first two jobs will prioritize the operations with a
hortest processing time (SOT).

.2. Schedule generation

Schedules are generated with a modified version of the
iffer–Thompson algorithm [53]. The algorithm depicted in Fig. 7
enerates active schedules from the chromosomes previously
escribed. Firstly, the algorithm inserts in A all the operations that
re initially ready to be scheduled, that is, the first operations of
ach job. Since the precedence relation of our scheduling is an

cyclic graph, A may contain several operations of the same job.
hen, in each iteration it takes the operation Oi,j in A with the
arliest potential completion time, and then selects an operation
x,y from the set of operations to be processed by the machine

ig. 6. Priority dispatching rules encoding of the 4 × 4 schedule example (second
art of the chromosome).
7 LRT Longest Remaining
Time

Operation with longest
remaining job processing
time

assigned to Oi,j . The latter selection is based on the priority dis-
patching rule assigned to this iteration in the chromosome. Finally,
it adds this operation to the schedule, removes it from A and add
its job successors to A.

Fig. 8 depicts the first steps of the algorithm for the chromosome
represented in Figs. 4 and 6 and the time-table of Fig. 5. In this fig-
ure, a schedule is described by a directed graph G = (V, P ∪ T) in
which each node in the set V represents an operation Oi,j and each
arc in P ∪ T represents a relation between the operations. Specif-
ically, non-dashed arcs represent the set P of precedence relations
while dashed arcs the set T of technological (machine) relations.
Each job Ji of the chromosome represents a row of the graph and
each node is marked with the number of the machine that will pro-
cess the operation. Note that each row of the graph may also have
parallel branches since several operations of a job may be processed
Fig. 7. Modified Giffer–Thompson algorithm used for schedule generation. The algo-
rithm has been modified to use the corresponding priority dispatching rule of each
iteration.
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ig. 8. Example of the modified Giffer–Thompson algorithm 7. Each step of the algo

After the initial step, A contains the initial operations of each job
O1,1, O2,2, O3,1, O4,1} and Q the operation O1,1 which has the earli-
st completion time of all machines. According to the SOT strategy
ssociated to the first iteration, only O1,1 may be selected as the
hortest processing time operation for machine M1. Therefore, it is
cheduled for processing, removed from A and its successor opera-
ion in J1 is added to A. In the second step, A = {O1,3, O2,2, O3,1, O4,1}
nd the algorithm selects O2,2 as the operation o with the earliest
ompletion time. Then it looks for operations processed by the same
achine M2 with the shortest processing time. Thus, step 2 defines

he set Q = {O1,3, O2,2} and randomly selects O1,3. The algorithm
ill keep running until all the operations of A have been scheduled

step 13).
.3. Crossover

Crossover only will be applied to one of the parts of the compos-
te chromosome in each iteration of the evolutionary algorithm. A
andom number is used to decide which part will be crossed.
is represented by a graph representation with Gantt chart showing the schedule.

Two crossover operators have been adapted to machine assign-
ments. Both operators cross two randomly selected chromosomes
to generate a new schedule although row crossover affects jobs
whereas column crossover operations:

• Row crossover (Fig. 9(a)): the child chromosome consists of the
1, . . . , k jobs of parent1 and the k + 1, . . . , n jobs of parent2.

• Column crossover (Fig. 9(b)): the child chromosome is made up of
the 1, . . . , k operations of parent1 and the k + 1, . . . , n operations
of parent2.

where k is a randomly selected cross point.
A two point crossover has been applied to the priority dispatch-

ing rules encoding, as it lets us to interchange a random number of
rules between individuals in any position of the chromosome.
4.4. Mutation

This operator uses the same strategy as crossover for select-
ing which of the parts of the chromosome to mutate. For machine
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Fig. 9. Two crossover operators for the parallel job

ssignments, only machine mutation is used since parallel job
ncoding does not allow to interchange jobs or operations in the
hromosome. Taking this constraint into account, two mutation
perators have been used, however, only one of them is applied
er mutation:

Random mutation: a different machine is randomly selected to
perform operation Oi,j .
Load balancing mutation: a different machine is selected to per-
form operation Oi,j . The selection is based on the load of the
machine in the schedule so this operator looks for balancing the
machine loads.

here ith row and jth column are randomly selected. Note that both
utation operators always generate feasible schedules.
These two mutation operators are complementary. The first one

ssumes a uniform probability for all the machines. The second one
ries to improve the load balancing taking into account a probability
f selection that is inversely proportional to the loan of the machine.

For priority dispatching rules, a uniform mutation is applied as
here is no a priori information of the advantages of the selection
f one rule over the others.

.5. Objective functions

Many time performance measures exist for JSSP, such as
akespan, total flow-time, total lateness, and total tardiness. Our

im is to minimize the following two objectives:

Cmax: Makespan. This measure returns the maximum completion
time of the jobs:

Cmax = max(Ci) (2)

where i ∈ {1, . . . , n} and the completion time of a job i is:

Ci = max{sk,i,j + pk,i,j} (3)

for j ∈ {1, . . . , o}, and k ∈ {1, . . . , m}.
T�: Total tardiness. The tardiness measures how much later than
the deadline the job finishes. If the job finished earlier than di, it
is assigned a negative lateness:

T� =
n∑

i=1

max(0, Ci − di) (4)

Makespan and total tardiness are the most important objectives
hen evaluating a schedule in the context in which this work has

een developed. Cost is also relevant but it can be considered a
ime-dependent variable and like another objectives, such as the
ommunication capacity between two manufacturing steps, has

ittle influence in the selection of the most suitable schedule.

For the schedule example depicted in Fig. 1(a), the makespan
s Cmax = max{10, 6, 8, 11} = 8 and total tardiness of the T� = 1 +
+ 0 + 0 = 1. Note that both objective functions depend on the
rocessing time of machines. The estimation of this time is an
ding. (a) Row crossover and (b) column crossover.

important task in any manufacturing industry [44] and has a huge
impact on the quality of the work plans produced by the scheduling
process.

5. Neural network approach for processing times
estimation

The approach presented in this section looks for a high accu-
racy regression model for processing times estimation. Processing
times of a machine can be described as polynomials of several input
variables where variables can be combined in many different ways:

∑
i

˛i ·
na∏
j=1

ıi,j
x
j

(5)

where ˛i are the coefficients, xj are the input variables for j =
1, . . . , na, and ıi,j is an indicator variable defined by

ıi,j =
{

1 if xj ∈ ith term of the polynomial
0 otherwise

(6)

Note that for a given machine, there can coexist different poly-
nomials, each one representing the estimation of the processing
time of a class of the input variables. For example, in an specific
machine, processing times of pieces with a thickness over a thresh-
old could be estimated with a polynomial, and under that threshold
with another polynomial.

Summarizing, the learning model must have the capacity to
approximate non-linear functions, to capture complex relation-
ships in the data, and to identify the regression function to apply
for each class of input variables for a machine and operation. Fur-
thermore, the learning model must be reactive to changes in the
supply chain configuration. That is, it may learn new polynomi-
als for each updating of machinery or new operation a machine
can perform. Taking into account the previous conditions, a neural
network approach has been used. Neural networks are universal
approximators and can easily be trained to map multidimensional
nonlinear functions because of their parallel architecture.

5.1. Multilayer perceptron

We approach each time estimation through a multilayer per-
ceptron (MLP). The computations performed by the network for a
single hidden layer can be written as

y = f (x) = Bϕ(A S + a) + b (7)

where S is a vector of inputs, x a vector of outputs, A and a are the
weight matrix and the bias vectors of the first layer whereas B and
b are the weight matrix and the bias vectors of the second layer.

The function ϕ denotes a sigmoidal function ϕ(z) = 1/(1 + exp−z).

The standard backpropagation (BP) learning algorithm was
adopted in the learning process of time estimations [54]. Here the
output values are compared with the production time to compute
the value of the error function. The error is then fed back through
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Table 2
Summary of the results obtained for the considered methods.

Benchmark Size Method Cmax T� Method Cmax T�

Best Avg. Best Avg. Best Avg. Best Avg.

abz8 10 × 10 FastPGA 803 852.00 866 1158.00 GDE3 826 890.14 1212 1648.14
NSGA-II 784 851.75 780 1022.00 PAES 820 877.22 1000 1409.67
PESA-II 794 823.33 841 993.00 SPEA2 786 831.40 828 1070.80

abz9 10 × 10 FastPGA 795 800.00 721 802.00 GDE3 815 859.25 1070 1550.50
NSGA-II 763 810.14 619 1109.86 PAES 808 880.25 976 1271.25
PESA-II 777 857.00 618 969.67 SPEA2 766 823.60 609 859.80

car5 10 × 6 FastPGA 5373 5588.70 2979 4695.82 GDE3 6030 7032.75 6461 9909.12
NSGA-II 5369 5849.17 2040 5025.93 PAES 5431 5750.00 4101 4101.00
PESA-II 5324 5966.70 2586 6072.22 SPEA2 5413 5707.62 2554 3396.46

car6 8 × 9 FastPGA 5486 5941.00 299 299.00 GDE3 6519 6986.50 299 1988.33
NSGA-II 5554 5819.00 299 299.00 PAES 5759 6362.76 299 304.78
PESA-II 5486 5708.00 299 299.00 SPEA2 5486 5706.62 299 326.72

la06 15 × 5 FastPGA 837 1009.18 3117 4145.41 GDE3 888 929.20 3961 4825.80
NSGA-II 837 895.34 3294 4053.81 PAES 862 927.85 3547 4066.98
PESA-II 842 898.71 3550 3987.35 SPEA2 846 894.92 3306 3857.52

la11 20 × 5 FastPGA 1119 1229.64 8025 8725.36 GDE3 1184 1325.25 8458 9482.75
NSGA-II 1109 1136.48 6946 7941.38 PAES 1112 1177.00 8384 9307.33
PESA-II 1113 1175.38 7985 9539.12 SPEA2 1109 1187.33 6881 8483.49

la16 10 × 10 FastPGA 762 811.00 49 49.00 GDE3 918 976.00 119 338.60
NSGA-II 734 849.03 49 68.78 PAES 789 955.26 49 90.10
PESA-II 777 903.12 49 235.16 SPEA2 756 799.77 49 101.59

la24 15 × 10 FastPGA 1076 1123.91 577 1393.64 GDE3 1167 1291.60 1242 1917.50
NSGA-II 982 1103.33 236 981.25 PAES 1090 1163.80 810 1596.50
PESA-II 1015 1209.91 707 1257.36 SPEA2 988 1064.14 338 815.29

la29 20 × 10 FastPGA 1308 1459.40 4484 5525.80 GDE3 1400 1491.86 5212 6280.71
NSGA-II 1295 1405.88 3565 4846.38 PAES 1321 1465.60 4102 6466.20
PESA-II 1327 1385.75 4440 5455.25 SPEA2 1287 1378.38 3841 4935.00

la34 30 × 10 FastPGA 1923 1976.80 18,098 20715.80 GDE3 1985 2092.67 19,030 20106.67
NSGA-II 1879 2007.00 17,420 18523.40 PAES 1940 2027.20 18,686 20933.40
PESA-II 1897 2008.25 17,310 19976.62 SPEA2 1891 2008.71 16,951 18645.14

la35 30 × 10 FastPGA 1944 2082.17 17,706 20085.83 GDE3 2028 2186.25 18,729 19837.00
NSGA-II 1912 2105.80 16,976 17887.00 PAES 2002 2090.70 18,711 20250.10
PESA-II 1934 2021.38 16,918 19516.50 SPEA2 1889 2002.67 16,796 18612.83

la39 15 × 15 FastPGA 1381 1472.50 103 566.38 GDE3 1417 1514.00 362 990.89
NSGA-II 1280 1441.86 46 364.14 PAES 1379 1554.86 125 702.86
PESA-II 1343 1474.00 51 391.60 SPEA2 1320 1443.45 64 297.09

la40 15 × 15 FastPGA 1363 1473.33 42 458.00 GDE3 1413 1523.22 228 751.56
NSGA-II 1290 1388.44 20 187.44 PAES 1397 1508.60 195 688.60
PESA-II 1340 1518.25 24 228.12 SPEA2 1287 1458.83 35 176.67

mt10 10 × 10 FastPGA 744 826.92 31 72.20 GDE3 840 927.00 69 363.60
NSGA-II 731 840.07 31 127.05 PAES 772 823.90 31 142.71
PESA-II 717 795.99 31 43.60 SPEA2 742 743.00 31 31.00

mt20 20 × 5 FastPGA 1074 1182.30 6904 8276.90 GDE3 1118 1206.90 8127 9640.30
NSGA-II 1049 1112.14 6450 7880.14 PAES 1086 1244.80 7670 8334.60
PESA-II 1068 1104.19 6985 9331.56 SPEA2 1057 1114.87 6236 8508.13

orb8 10 × 10 FastPGA 664 710.14 27 57.86 GDE3 762 822.67 31 267.00
NSGA-II 637 723.58 27 111.94 PAES 694 768.79 27 78.72
PESA-II 672 746.18 27 63.67 SPEA2 621 695.68 27 46.47

t
t
a
o
w
u
g
w
i
f

orb9 10 × 10 FastPGA 764 824.51 51
NSGA-II 726 803.24 51
PESA-II 750 777.23 51

he network and the algorithm adjusts the weights of each connec-
ion in order to reduce the value of the error function by some small
mount. After repeating this process for a sufficiently large number
f training cycles the network will usually converge to some state
here the error of the calculations is small. To adjust weights we

se a method for non-linear optimization that is called conjugate
radient. It works by iteratively computing search directions, along
ith a search line procedure that minimize the function, produc-

ng a new approximation to the (local) minimum of the objective
unction.
112.70 GDE3 869 971.29 82 413.29
88.03 PAES 769 907.74 51 73.06
131.14 SPEA2 730 852.64 51 136.28

However, MLP networks trained with BP suffer some disadvan-
tages: (i) they are easily trapped into local minima, (ii) they have
slow convergence, and (iii) network topology must be determined
by trial and error. To get around the first problem, the learning
algorithm simply trained multiple nets and pick the best. The sec-

ond and third problems are mitigated with a network optimization
scheme. Specifically, the training method implements a network
growing approach: the layout starts with a small network with
only a single hidden unit. The network is trained until the improve-
ment in the error over one epoch falls below some threshold. Then
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Table 3
Comparison results between B =NSGA-II and the other methods.

Benchmark Measure A

FastPGA GDE3 PAES PESA-II SPEA2

abz8 C̃(A, B) 0.26 0.00 0.00 0.70 0.95
C̃(B, A) 1.00 1.00 1.00 0.97 0.85

abz9 C̃(A, B) 0.49 0.00 0.03 0.69 0.99
C̃(B, A) 0.98 1.00 1.00 0.97 0.59

car5 C̃(A, B) 0.82 0.00 0.40 0.64 0.79
C̃(B, A) 0.77 1.00 1.00 0.92 0.90

car6 C̃(A, B) 0.22 0.00 0.19 0.22 0.22
C̃(B, A) 0.00 0.86 0.19 0.00 0.16

la06 C̃(A, B) 0.50 0.00 0.07 0.53 0.96
C̃(B, A) 0.79 1.00 1.00 0.97 0.73

la11 C̃(A, B) 0.02 0.00 0.02 0.01 0.73
C̃(B, A) 1.00 1.00 0.99 0.99 0.91

la16 C̃(A, B) 0.60 0.00 0.50 0.50 0.60
C̃(B, A) 0.52 1.00 0.83 0.80 0.58

la24 C̃(A, B) 0.16 0.00 0.05 0.55 0.83
C̃(B, A) 1.00 1.00 1.00 0.88 0.90

la29 C̃(A, B) 0.41 0.00 0.24 0.23 0.79
C̃(B, A) 1.00 1.00 1.00 1.00 0.98

la34 C̃(A, B) 0.36 0.00 0.09 0.64 0.89
C̃(B, A) 1.00 1.00 1.00 0.97 0.90

la35 C̃(A, B) 0.51 0.00 0.00 0.79 0.87
C̃(B, A) 1.00 1.00 1.00 0.97 0.90

la39 C̃(A, B) 0.25 0.00 0.13 0.52 0.61
C̃(B, A) 1.00 1.00 1.00 0.99 1.00

la40 C̃(A, B) 0.00 0.00 0.00 0.55 0.86
C̃(B, A) 1.00 1.00 1.00 1.00 0.98

mt10 C̃(A, B) 0.47 0.00 0.22 0.57 0.47
C̃(B, A) 0.40 1.00 0.41 0.64 0.58

mt20 C̃(A, B) 0.22 0.00 0.02 0.65 0.97
C̃(B, A) 1.00 1.00 1.00 0.99 0.68

orb8 C̃(A, B) 0.18 0.00 0.06 0.18 0.30
C̃(B, A) 0.72 1.00 0.75 0.68 0.60
Fig. 10. Evolution of the NSGA-II Pareto front for the test problem la24.

he method adds an additional hidden unit, with weights from
nputs and to outputs (weights have been randomly initialized) and
esume training. The process continues until no significant gain is
chieved by adding an extra unit.

. Results

.1. Machine scheduling

Our NSGA-II approach for scheduling has been validated with
everal benchmark problems of the classical JSSP. More specifically,
e used the test suites created by Hurink et al. [55] that adapt origi-
al JSSP problems to flexible JSSP. In these problems, each operation
as assigned a set of machines and not only the machine Mk used

n the original problem. The problem data are available in [56]. The
ue dates of the benchmark problems have been defined according
o [57]: jobs 2, 3 and 11 have a due date 1.5 times the correspond-
ng processing time of the job; job n, where n is the number of
obs of the problem, has a due date equal to its processing time;
nd the remaining jobs have a due date 2 times the corresponding
rocessing time.

We have compared our NSGA-II approach with other
OEAs.1Table 22 shows the best and average makespan and the

est and average total tardiness for 10 runs of each approach. Each
xecution consisted of 500,000 iterations of a population of 200
ndividuals, with crossover and mutation rates set to 0.95 and 0.05,
espectively.3 In each test problem, the best makespan and best
otal tardiness of all the approaches is marked in boldface. Note that
he number of iterations has been established taking the Pareto-

ront evolution into account. An example of this evolution for the
est problem la24 is depicted in Fig. 10. In this case we can see how
he improvement is less than 1% between the fronts of the iteration
00,000 and 500,000.

1 See Appendix A for a short description of the different MOEAs that have been
ompared with our approach.

2 Results have been obtained using the software jMetal [58] which stands for
eta-heuristic algorithms in Java, and it is an object-oriented Java-based frame-
ork aimed at the development, experimentation, and study of meta-heuristics for

olving multi-objective optimization problems.
3 The different values of the parameters (crossover rate, mutation rate, etc.) have

een selected using standard common parameters that work well in most cases,
nstead of searching for very specific values to apply the GA to our specific prob-
em. Moreover, we have set a large number of generations to allow the algorithm
o achieve an appropriate convergence. No significant changes were achieved by
ncreasing that number of generations or by reasonably changing these parameters.
orb9 C̃(A, B) 0.58 0.00 0.46 0.75 0.75
C̃(B, A) 0.73 1.00 0.74 0.75 0.61

As shown in Table 2, NSGA-II obtains the best makespan and the
best total tardiness on 11 of the 17 problems.

Table 3 summarizes the comparison results between NSGA-II
and FastPGA, GDE3, PAES, PESA-II and SPEA2. The C̃ metric [57]
is used to compare the approximate Pareto-optimal set between
the NSGA-II and each of the MOEAs. More specifically, the C̃(A, B)
measures the fraction of members of the set B that are dominated
by the members of the set A:

C̃(A, B) =
|
{

b ∈ B : ∃a ∈ A, a 	 b
}

|
|B| (8)

As shown in Table 3 NSGA-II outperforms most of other MOEAs
in most of the situations. NSGA-II obtains lower C̃ metric than
FastPGA on 13 problems, than GDE3 and PAES on all the prob-
lems, than PESA-II on 15 problems, and than SPEA2 on 10 of the
17 problems. We must remark that SPEA2, the second ranked algo-
rithm, only outperforms clearly NSGA-II in the abz9, la06, mt20,
and orb9 cases. In the other three problems for which SPEA2 gets

a better C̃ metric, the results of NSGA-II and SPEA2 are similar. To
illustrate the convergence and diversity of the solutions, the non-
dominated solutions of the final generation produced by NSGA-II
and SPEA2 for the problem la24 are presented in Fig. 11. Solutions
of both algorithms are well spread and converged. However, NSGA-
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Table 5
Results of the fivefold cross-validation for machine CSLB.

Method MSEtra MSEtst

x̄ � x̄ �

MOGUL-TSK 5683.54 588.31 7330.85 1183.87
M5 2737.21 276.89 3252.85 735.89
QLMS 2510.29 124.59 2549.84 496.28
NN-MPCG 2762.84 146.48 2923.59 579.85

Table 6
Results of the fivefold cross-validation for machine RS-II.

Method MSEtra MSEtst

x̄ � x̄ �

MOGUL-TSK 1497.49 50.56 1774.93 189.06
Fig. 11. Final Pareto fronts of NSGA-II and SPEA2 for the test problem la24.

I produces more non-dominated solutions for most of the test
roblems.

.1.1. Discussion
Table 4 summarizes the characteristics of the different MOEAs.

he second column indicates the way in which the fitness of each
ndividual is calculated [59]. From the dominance point of view,
he algorithms can be classified in three groups: depth (the front
he individual belongs to), rank (number of individuals that domi-
ate the individual), and count (number of individuals dominated
y the individual). From the diversity point of view, the algorithms
se two preservation mechanisms: crowding and fitness sharing.
lso, fitness sharing is based on two criteria: nearest neighbor and
istogram. Finally, the last column indicates the evolutionary oper-
tors that are used: crossover (c) and mutation (m).

Taking into account the characteristics of the algorithms and the
esults shown in Tables 2 and 3 for the benchmarks of JSSP, we can
xtract the following conclusions on the use of MOEAs for JSSP:

The best MOEAs are NSGA-II and SPEA2, which agrees with pre-
vious knowledge on the performance of MOEAs in different types
of problems.
The MOEAs that use any dominance criteria (NSGA-II, SPEA2 and
FastPGA) are superior to those that rely only on the dominance
between pairs of individuals (PAES, PESA-II and GDE3).
The dominance depth (NSGA-II), which only relies on the qual-
ity of the individual, works better (in most of the problems) than
other dominance approaches (SPEA2 and FastPGA), which also
take into account the solutions dominated and that dominate

the individual. It seems that better results are obtained when
the population has a high number of non-dominated individu-
als, although diversity could be low in the best fronts. This could
be due to the huge size of the search space in JSSP, and the fact

able 4
haracteristics of the different MOEAs.

Algorithm Fitness Operators

NSGA-II [5] Dominance depth and crowding c + m
SPEA2 [60] Dominance rank and count, and fitness

sharing (nearest neighbors)
c + m

PAES [61] (1+1), Pareto and fitness sharing
(histogram)

m

PESA-II [62] Pareto and fitness sharing (histogram) c + m
GDE3 [63] (1+1), Dominance rank and crowding c + m
FastPGA [64] Dominance rank and count, and

crowding
c + m
M5 888.69 37.72 1086.61 82.06
QLMS 1271.61 41.99 1301.65 173.51
NN-MPCG 950.42 96.80 977.82 90.40

that the best individuals are obtained from small changes in for-
mer best individuals. This advantage of NSGA-II in most of the
problems becomes a disadvantage in some of them, where more
diversity in the best Pareto fronts should be necessary.

Taking this into account, as future work it would be interesting
to modify the fitness to include not only the dominance depth, but
also other criteria to introduce more diversity in the best Pareto
fronts. This is already done in the NSGA-II using the crowding dis-
tance, but it is only used when individuals of the last Pareto front
have to be selected for the next population. The solution should be
a midway between NSGA-II and SPEA2 fitness approaches.

6.2. Time estimation

Our neural network approach for processing time estimation
has been validated with a subset of the machines that are currently
being used in the production plans of a wood furniture industry.
These machines are: rip saw for edging and ripping I (RS-I), abrasive
calibrating machine (ACM), veneer slicers (VS), rip saw for edging
and ripping II (RS-II), and commissioning system for large boards
(CSLB). Data of 1,500 different custom pieces of furniture, that have
been built in the factory along several years, have been used to
generate the examples sets. The dimensions of each of the pieces
was obtained and then, for each of the machines, the processing
time was measured. These times are very noisy because many of the
operations require some kind of manipulation by a human operator
and, also, because this operator measures the times manually.

In each example the following variables are considered for each
piece: length, width and thickness of the piece of furniture, as well
as the measured processing time for that piece in the machine.
The neural network has to minimize the error in time estimations.
Experiments were performed with a fivefold cross-validation for
each of the examples sets. Each set was divided in five subsets of
equal size, and the learning process was run five times, using as
training set four of the subsets, and as test set the remaining one.
The test set was different in each of the runs.

We have compared our neural network approach (NN-MPCG

[6]) with other regression techniques.4 In the experiments, our
approach was run with one hidden layer with 30 neurons.
Tables 5–9 show, for each of the machines (or data sets), the mean
square error of training (MSEtra), and test (MSEtst) of the fivefold

4 The methodologies that have been compared with our approach are described
in short in Appendix B.
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Table 7
Results of the fivefold cross-validation for machine RS-I.

Method MSEtra MSEtst

x̄ � x̄ �

MOGUL-TSK 6179.25 315.76 7433.03 1172.69
M5 4234.22 68.69 4512.69 354.77
QLMS 4009.73 116.56 4066.40 427.05
NN-MPCG 4215.76 152.32 4352.03 530.21

Table 8
Results of the fivefold cross-validation for machine VS.

Method MSEtra MSEtst

x̄ � x̄ �

MOGUL-TSK 1080.58 50.50 1336.62 170.22
M5 953.66 23.26 959.71 94.12
QLMS 952.19 23.72 966.05 97.19
NN-MPCG 983.89 13.77 1012.28 120.13

Table 9
Results of the fivefold cross-validation for machine ACM.

Method MSEtra MSEtst

x̄ � x̄ �

MOGUL-TSK 961.92 114.35 1277.09 217.76
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M5 703.94 34.96 893.68 149.63
QLMS 1401.70 32.61 1439.56 127.17
NN-MPCG 655.60 21.54 688.39 212.08

ross-validation experiments for each technique.5 In each table, the
ower average values for MSEtra and MSEtst are marked in boldface.

The methods can be ranked in increasing order of accuracy:
OGUL-TSK, M5, QLMS, and NN-MPCG. If we compare the aver-

ge values of MSEtst for all the machines, M5 is the best method
or machine VS, QLMS overcomes the other algorithms in two

achines (RS-I and CSLB), and our NN-MPCG regression method is
he best in another two machines (RS-II and ACM). Comparing our
pproach with the other proposals, the following discussion can be
ade: the error of MOGUL-TSK, taking into account MSEtst , ranges

etween a 151% (CSLB, Table 5) and a 32% (VS, Table 8) higher than
N-MPCG. Also, for the M5 algorithm, the error ranges between a
0% higher (machine ACM, Table 9) and a 5% lower (VS, Table 8).

Finally, QLMS is better than our proposal in three of the
achines, ranging from a 5% (VS, Table 8) to a 13% (CSLB, Table 5)

ower error. However, in the other two machines the accuracy of
he QLMS algorithm is very poor when compared with the NN-

PCG approach: the error is a 33% (RS-II, Table 6) and a 109% (ACM,
able 9) higher. In summary, our proposal (NN-MPCG) obtains a
igh time estimation accuracy with a good regularity over all the
achines. This means that, although other approaches have a lower

rror in some of the machines, in the worst case the improvement
s low. On the contrary, when NN-MPCG overcomes other methods
he improvement is much higher.

. Conclusions

A solution for multi-objective machine scheduling in the cus-
om furniture industry has been presented. The solution is based

n a multi-objective evolutionary approach together with a neu-
al network. The system uses the NSGA-II algorithm to produce
eliable schedules which are optimized on the basis of their
akespan and total tardiness. Moreover, processing time estima-

5 Results have been obtained using the software KEEL [65].
uting 11 (2011) 1600–1613 1611

tions have been obtained through a multilayer perceptron neural
network.

The system has been extensively tested and compared with
other approaches. Our NSGA-II-based algorithm has been com-
pared with another five MOEAs on 17 different classical JSSP,
outperforming the other algorithms in most of the problems. Also,
processing time estimations through the multilayer perceptron
neural network has shown a much better accuracy than the other
regression techniques that have been analyzed. Moreover, tests also
demonstrated a time efficient response both to a huge work load
and to changes in the environment, such as the definition of new
client orders or changes in production due dates.
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Appendix A. Description of other MOEAs

The MOEAs that have been compared with our NSGA-II-based
approach are:

• FastPGA [64]: the Fast Pareto Genetic Algorithm uses a new
fitness assignment and ranking strategy where each solution
evaluation is relatively computationally expensive. This is often
the case when there are time or resource constraints involved
in finding a solution. A population regulation operator is intro-
duced to dynamically adapt the population size as needed up to
a user-specified maximum population size.

• GDE3 [63]: Generalized Differential Evolution 3 is an extension
of Differential Evolution (DE) for global optimization with an
arbitrary number of objectives and constraints. GDE3 improves
earlier GDE versions in the case of multi-objective problems by
giving a better distributed solution.

• PAES [61]: the Pareto Archived Evolution Strategy consists of a
1 + 1 evolution strategy (i.e., a single parent that generates a single
offspring) in combination with a historical archive that records
the non-dominated solutions previously found. This archive is
used as a reference set against which each mutated individual is
being compared. Such a historical archive is the elitist mechanism
adopted in PAES.

• PESA-II [62]: improved variant of PAES in which the unit of selec-
tion is a hyperbox in objective space. In this technique, instead of
assigning a selective fitness to an individual, selective fitness is
assigned to the hyperboxes in objective space which are currently
occupied by at least one individual in the current approxima-
tion to the Pareto frontier. A hyperbox is thereby selected, and
the resulting selected individual is randomly chosen from this
hyperbox.

• SPEA2 [60]: the Strength Pareto Evolutionary Algorithm II assigns
a fitness value to each individual that is the sum of its strength
raw fitness and a density estimation. The algorithm applies the
selection, crossover, and mutation operators to fill an archive
of individuals; then, the non-dominated individuals of both the
original population and the archive are copied into a new popula-

tion. If the number of non-dominated individuals is greater than
the population size, a truncation operator based on calculating
the distances to the kth nearest neighbor is used. This way, the
individuals having the minimum distance to any other individual
are chosen.
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ppendix B. Description of other regression techniques

The processing time estimation techniques that have been com-
ared with our approach are:

MOGUL-TSK [66]: a two-stage evolutionary algorithm based on
MOGUL (a methodology to obtain Genetic Fuzzy Rule-Based Sys-
tems under the Iterative Rule Learning approach). The first stage
performs a local identification of prototypes to obtain a set of
initial local semantics-based TSK rules, following the Iterative
Rule Learning approach and based on an evolutionary gener-
ation process within MOGUL. Then, a postprocessing stage is
applied. It consists in a genetic niching-based selection process
to remove redundant rules and a genetic tuning process to refine
the fuzzy model parameters. The method was run with the stan-
dard parameter values, and the initial partition of each variable
was of five labels.
M5 [67,68]: a technique for regression using model trees (deci-
sion trees for regression). In the first stage, a decision tree
induction algorithm is used. The splitting criterion tries to min-
imize the intra-subset variation in the class values down each
branch. The second stage is pruning, and consideration is given
to replacing a node by a regression plane instead of a constant
value. Attributes that define that regression are those that par-
ticipate in decisions in nodes subordinate to the current one. The
method was run with a pruning factor of 2.
QLMS [69]: an statistical model for regression using a quadratic
combination of the features. The weights of such combination are
fitted as a quadratic discriminant using least mean squares.
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