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Abstract

Machine scheduling is a critical problem in industries
where products are custom-designed. The wide range of
products, the lack of previous experiences in manufactur-
ing, and the several conflicting criteria used to evaluate the
quality of the schedules define a huge search space. Fur-
thermore, production complexity and human influence in
each manufacturing step make time estimations difficult to
obtain thus reducing accuracy of schedules. The solution
described in this paper combines evolutionary computing
and neural networks to reduce the impact of (i) the huge
search space that the multi-objective optimization must deal
with and (ii) the inherent problem of computing the pro-
cessing times in a domain like custom manufacturing. Our
hybrid approach obtains near optimal schedules through
the Non-dominated Sorting Genetic Algorithm II (NSGA-II)
combined with time estimations based on multilayer percep-
tron networks.

1. Introduction

Machine scheduling is a difficult problem in industrial
environments such as custom furniture industry. This prob-
lem can be defined as finding an optimal sequence of op-
erations for a set of resources and constraints. Machine
scheduling is classified as NP-hard [9] because it has a com-
binatorial search space caused by the resources that must
be allocated to maximize the utilization of machines and
to minimize the time required to complete the scheduling
process. Therefore, this problem can take a lot of com-
puting time with exact methods such as branch and bound,

dynamic programming or constraint logic programming.
For this reason, solutions near the optimal are considered
good solutions in this context and non-derivative methods,
such as evolutionary algorithms, simulated annealing, tabu
search or complex method, are better suited [2].

Machine scheduling problem is characterized by the
presence of many conflicting objectives. Therefore, it is
natural to look at scheduling as a multi-objective optimiza-
tion problem that raises the issue about how different ob-
jectives should be combined to yield a final solution. Un-
fortunately, the processing times that constitute the essence
of some scheduling process are difficult to obtain in custom
manufacturing. The computing of these times depends on
several factors such as machine, material and piece charac-
teristics. The latter is the key point because materials, di-
mensions and shape of custom-designed pieces may take a
wide range of different values. Since these times consist of
a mixture of numerical simulations, analytical calculations
and catalog selections, there is no precise way of calculating
the objective functions of the scheduling.

Selection of the multi-objective optimization algorithm
is closely related to the particular problem to be solved.
This paper deals with a real-world scheduling problem that
is close to job shop scheduling problems family. However,
the scheduling constraints in our problem define a huge
search space which may be even huger if the scheduling
faced events such as machines breaking down, workers get-
ting sick or new jobs appearing. In our approach we deal
with these events through a new scheduling and not through
rescheduling. That is, these events will only modify the
conditions under which the new scheduling is performed.
For this reason, our approach requires to be reliable but also
time efficient since time is critical to have a faster response
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to customer orders. In this context, evolutionary algorithms
are known to be a fast and robust solution in optimization
problems such as scheduling [6, 4] because they facilitate
finding a global optima, and do not get trapped on local op-
tima as gradient methods might do.

The machine scheduling solution described in this pa-
per combines evolutionary computing and neural networks
to reduce the impact of (i) the huge search space that our
multi-objective scheduling process must deal with and (ii)
the inherent problem of computing the processing times
in a domain like custom manufacturing. Our approach is
based on the use of a multi-objective evolutionary algorithm
where schedule evaluation is based on processing times
modeled by neural networks. In essence, we apply the non-
dominated sorting genetic algorithm II (NSGA-II) [7] for
producing new schedules in each iteration, and a multilayer
perceptron classifier [15] to estimate their processing times.

The paper is structured as follows: Section 2 introduces
the problem of scheduling in custom wood-based furniture
manufacturing industry. Section 3 describes the NSGA-II
algorithm that solves the scheduling problem, how the prob-
lem has been encoded and which objective functions evalu-
ate the fitness of the solutions, while Section 4 describes the
neural network model we defined to compute the processing
times of machines. Finally, Section 5 points out the conclu-
sions and some results of the experiments in a real-world
production environment.

2. Machine Scheduling Problem in Custom
Wood-based Furniture Manufacturing

The time interval for completing all of the operations of
a work order is known as throughput time. Its accurate es-
timation is hard in industries where custom-designed prod-
ucts are dominant, such as the furniture industry. The lack
of previous manufacturing experiences and the complexity
in the production makes time estimations difficult.

The reduction of throughput time has many benefits:
lower inventory, reduced costs, improved product quality
(problems in the process can be detected more quickly),
faster response to customer orders, and increased flexibil-
ity. Much effort is therefore spent to reduce throughput
time by improving manufacturing planning, control sys-
tems, and developing more sophisticated scheduling proce-
dures [11, 12]. The objective is to define work plans that
minimize the resources queuing and maximize resources ca-
pacity, constrained to the material availability and product
requirements. In this context, the feasibility, time, and cost
of the most promising plans is analyzed [10, 14]. Note that
the throughput time has many components, including move,
queue, setup, and processing times [1, 5, 16]. In this work
we will address all these components by improving the ma-
chine scheduling task to produce feasible work plans such
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Figure 1. Gantt chart of a schedule. Oi,j

stands for the j-th operation in job Ji.

as depicted in Figure 1.
The real-world scheduling problem described in this

work is close to the job shop scheduling problem (JSSP)
family. A JSSP P of size n × m consists of n jobs J =
{J1, J2, . . . , Jn} to be scheduled on a set of m machines
M = {M1, M2, . . . , Mm}. Each job i ∈ J consists of a set
of ni operations Oi = {Oi,1, Oi,2, . . . , Oi,ni} describing
the processing order of the operations. Although the way in
which we select the manufacturing route is out of the scope
of this paper, we just mention that selection is based on a
set of rules based on woodworking knowledge. These rules
take into account the constructive decisions, joints used to
assemble the furniture, and finishing or quality standards.
The operation Oi,j is the j-th operation of job i to be pro-
cessed on a specific machine Mk with a processing time
pMk,Oi,j . Furthermore, each job must be achieved before
a due date di, and each machine has a start time sMk,Oi,j

before which no processing can be done on the machine for
this operation. The following constraints must also hold al-
though some of them modify the classical constraints of the
JSSP:

• Although JSSP constraints that each job is scheduled
on each machine only once, our problem needs that
each job can be scheduled on each machine more than
once. For example edge banding machines can be used
for edge banding, trimming or sanding. Therefore, the
same machine may be used more than once for a job.

• Two operations of the same job may be processed si-
multaneously.

• Contrary to the JSSP, jobs do not have to visit every
machine in M .

• Each machine can process only one operation at a time.

• No machine can free an operation until it is finished.

• The total number of machines of each type is fixed and
greater than one.
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• No job can start before the processing of its parts is
available such as gluing and assembly jobs.

Another difficulty our scheduling problem must deal
with is the processing times estimation, which is a critical
piece in each manufacturing step. The estimation of the
processing time is one of the most important tasks in the
product design life cycle. For example, time estimations
are taken into account to redesigning the product if the pre-
dicted time is longer than expected. There are many mod-
els and techniques for estimating the processing times of a
manufacturing step based on the product design [3]. For a
detailed design, highly detailed process planning, manufac-
turing process simulation, or time estimation models can be
employed [3, 14]. For a conceptual design, however, less
detailed models must depend on a more limited set of crit-
ical design information [3]. Both approaches are applied
in the furniture industry since the definition of a detailed
design is cost and time expensive. Therefore, there are sev-
eral ways of computing the processing time of a machine
depending on the available input variables.

The processing time of an operation for a machine can
depend on several input variables, like the dimensions of
the product, the material, the speed of the machine for that
kind of product, and so on. For example, the calibrating
of wood pieces depends on the sanding machine that will
perform the operation, apart from the piece variables. Cali-
brating machinery specifies feed speed, abrasive belt speed,
abrasive belt size, working thickness, maximum and min-
imum workpiece dimensions and so on. Nevertheless, the
processing time for a given operation may not always be in-
fluenced by all of these variables. Thus, a machine can have
several regression functions for a class of operation and
product characteristics. Therefore, a good estimation of the
throughput time demands an accurate regression function
as well as the selection of the appropriate function among
all the regression functions of the machine. In this context,
processing times estimation is difficult to obtain by standard
methods or manufacturing experts and is a source of errors
and uncertainty for the scheduling process.

3. NSGA-II Multi-Objective Approach for Ma-
chine Scheduling

Generally, we can describe a multi-objective scheduling
problem as a multi-objective optimization problem:

min F (x) = {f1(x), f2(x), ..., fk(x)} s. t. x ∈ S (1)

where x is a solution, S is the set of feasible solutions, k is
the number of objectives in the problem, F (x) is the image
of x in the k-objective space and each fi(x) for i = 1, . . . , k
represents one objective. In custom furniture manufactur-
ing, like in many other real-world problems, there are con-

1. Initialize population

(a) Generate schedules

2. for iteration = 1 to maxIterations

(a) Neural networks-based schedules evaluation

(b) Selection

(c) Crossover

(d) Mutation

3. Select best individuals

Figure 2. NSGA-II algorithm structure for ma-
chine scheduling

flicting fi(x) objectives. For example, objectives like mini-
mize the cost of furniture and minimize the completion time
may be in conflict since it is usual that faster machines have
a higher recovery cost. So, in contrast to a single-objective
optimization problem, there is not one best solution, but
several solutions to choose from (non-dominated set of so-
lutions).

Our approach to this problem uses the multi-objective
scheduling optimization through the NSGA-II algorithm
[7]. NSGA-II is one of the most efficient multi-objective
evolutionary algorithms using elitist approach: its compu-
tational complexity is in O

(
MN2

)
, where M is the num-

ber of objectives and N the population size. The algo-
rithm structure is described in Figure 2. NSGA-II has a
fitness assignment scheme that consists in sorting the pop-
ulation in different fronts using the non-domination order
relation. Therefore, it has two objectives: (i) to find a set of
non-dominated solutions as close as possible to the Pareto-
optimal front in each iteration but (ii) maintaining the set
of solutions as diverse as possible covering or nearby the
Pareto-optimal front. Each iteration returns a new popula-
tion that combines the current population and its offspring
generated with the crossover and mutation. Finally, the
best individuals in terms of non-dominance and diversity
are chosen.

3.1. Problem Encoding

Choosing a good representation is a vital component for
solving search problems. In this paper we selected a direct
chromosome representation so no transformation is needed
from the chromosome to the schedule. Specifically, we
represent chromosomes through the Parallel Job Encod-
ing [13]. Figure 3 depicts this encoding for a 4 jobs and
4 machines scheduling problem. Each row of the matrix
is an ordered sequence of operations Oi,j , i = 1, . . . , 4,
j = 1, . . . , 3. Each element in a row contains two terms: (i)
the machine Mk, k = 1, . . . , 4, which performs the opera-
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tion and (ii) the starting time tMk,Oi,j of operation Oi,j in
machine Mk. For example, the first operation in job J2 is
performed on machine M4 at time 4.

O1 O2 O3

J1 (M1, 0) (M4, 6) (M3, 1)
J2 (M4, 4) (M1, 1) (M3, 5)
J3 (M2, 0) (M4, 5) (M2, 7)
J4 (M4, 0) (M2, 5) (M4, 7)

Figure 3. Chromosome representation of the
4 × 4 schedule example

This encoding directly produces a feasible solution. It
contains the machines that will execute each operation and
at which time. Time is set to zero when the machine can-
not perform the operation. Therefore, a schedule is easily
created knowing the operations routing and the processing
times. Figure 4 complements the 4× 4 scheduling example
and provides (i) the due date of each job Ji, (ii) the opera-
tions order in the job and (iii) the time (the sum of the setup
and processing time) of each operation Oi,j on each ma-
chine of the production plant. For example, job J2 has a due
date of 7 time units and defines the O2,2, O2,1, O2,3 opera-
tions order. The Gantt chart depicted in Figure 1 represents
the schedule that can be inferred from the chromosome de-
picted in Figure 3 and the data of Figure 4.

di Order Oi,j M1 M2 M3 M4

J1 6 1,3,2
O1,1 1 4 6 9
O1,2 3 2 5 1
O1,3 4 1 1 3

J2 7 2,1,3
O2,1 4 8 7 1
O2,2 2 10 4 5
O2,3 6 11 2 7

J3 8 1,2,3
O3,1 8 5 8 9
O3,2 9 3 6 1
O3,3 7 1 8 5

J4 9 1,2,3
O4,1 5 10 6 4
O4,2 4 2 3 8
O4,3 7 3 12 1

Figure 4. Due dates, operations order and
processing times of operations on machines

3.2. Crossover

Figure 5 shows the two crossover operators adapted to
the described encoding. Both operators cross two randomly
selected chromosomes to generate a new schedule although

row crossover affects jobs whereas column crossover oper-
ations:

• Row crossover: the child chromosome consists of the
1, . . . , k jobs of parent1 and the k + 1, . . . , n jobs of
parent2.

• Column crossover: the child chromosome is made
up of the 1, . . . , k operations of parent1 and the k +
1, . . . , n operations of parent2.

where k is a randomly selected cross point.

3.3. Mutation

The parallel job encoding used in this work forces mu-
tations to act on machine assignments since it does not al-
low to interchange jobs or operations in the chromosome.
Taking this constraint into account, two mutation operators
have been used, however, only one of them is applied per
mutation:

• Random mutation: a different machine is randomly se-
lected to perform operation Oi,j .

• Load balancing mutation: a different machine is se-
lected to perform operation Oi,j . The selection is
based on the load of the machine in the schedule so
this operator looks for balancing the machine loads.

where i-th row and j-th column are randomly selected.
Note that both mutation operators always generate feasible
schedules.

3.4. Objective Functions

Many time performance measures exists for JSSP, such
as makespan, total flow-time, total lateness, total tardiness,
and so on. Our aim is to minimize the following two objec-
tives:

• Cmax: Makespan. This measure returns the maximum
completion time of the jobs:

Cmax = max (Ci) (2)

where i ∈ {1, . . . , n} and the completion time of a job
i is:

Ci = max
{
sMk,Oi,j + pMk,Oi,j

}
(3)

for j ∈ {1, . . . , o}, and k ∈ {1, . . . , m}.

• TΣ: Total tardiness. The tardiness measures how much
later than the deadline the job finishes. If the job fin-
ished earlier than di, it is assigned a negative lateness:

TΣ =
n∑

i=1

max (0, Ci − di) (4)
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parent1 parent2

child

(a) Row crossover

parent1 parent2

child

(b) Column crossover

Figure 5. Two crossover operators for the Parallel Job Encoding

Makespan and total tardiness are the most important ob-
jectives when evaluating a schedule in the context in which
this work has been developed. Cost is also relevant but it
can be considered a time-dependent variable and like an-
other objectives, such as the communication capacity be-
tween two manufacturing steps, has little influence in the
selection of the most suitable schedule. Note that we lim-
ited the number of objective because NSGA-II is not as suc-
cessful in dealing with large dimensional problems and ex-
tremely disconnected Pareto fronts.

For the schedule example depicted in Figure 1, the
makespan is Cmax = max {7, 7, 8, 8} = 8 and total tar-
diness of the TΣ = 1 + 0 + 0 + 0 = 1. Note that both
objective functions depend on the processing time of ma-
chines. The estimation of this time is an important task in
any manufacturing industry [11] and has a huge impact on
the quality of the work plans produced by the scheduling
process.

4. Neural Network Approach for Processing
Times Estimation

The approach presented in this section looks for a high
accuracy regression model for processing times estimation.
Processing times of a machine can be described as poly-
nomials of several input variables where variables can be
combined in many different ways:

∑
i

αi ·
na∏
j=1

x
δi,j

j (5)

where αi are the coefficients, xj are the input variables for
j = 1, . . . , na, and δi,j is an indicator variable defined by:

δi,j =

{
1 if xj ∈ i-th term of the polynomial

0 otherwise
(6)

Note that for a given machine, there can coexist differ-
ent polynomials, each one representing the estimation of the
processing time of a class of the input variables. For exam-
ple, in an specific machine, processing times of pieces with
a thickness over a threshold could be estimated with a poly-
nomial, and under that threshold with another polynomial.

Summarizing, the learning model must have the capac-
ity to approximate non linear functions, to capture complex
relationships in the data, and to identify the regression func-
tion to apply for each class of input variables for a machine
and operation. Furthermore, the learning model must be re-
active to changes in the supply chain configuration. That is,
it may learn new polynomials for each updating of machin-
ery or new operation a machine can perform. Taking into
account the previous conditions, a neural network approach
has been used. Neural networks are universal approxima-
tors and can easily be trained to map multidimensional non-
linear functions because of their parallel architecture.

4.1. Multilayer Perceptron

We approach each time estimation through a Multilayer
Perceptron (MLP). The computations performed by the net-
work for a single hidden layer can be written as:

y = f(x) = Bϕ (AS + a) + b (7)

where s is a vector of inputs, x a vector of outputs, A and a
are the weight matrix and the bias vectors of the first layer
whereas B and b are the weight matrix and the bias vectors
of the second layer. The function ϕ denotes a sigmoidal
function ϕ = 1/1 + exp−x.

The standard backpropagation (BP) learning algorithm
was adopted in the learning process of time estimations [8].
However, MLP networks trained with BP suffer some dis-
advantages: (i) they are easily trapped into local minima,
(ii) they have slow convergence, and (iii) network topology
must be determined by trial and error. To get around the
first problem, the learning algorithm simply trained multi-
ple nets and pick the best. The second and third problems
are mitigated with a network optimization scheme. Specif-
ically, the training method implements a network growing
approach: the layout starts with a small network with only a
single hidden unit. The network is trained until the improve-
ment in the error over one epoch falls below some thresh-
old. Then the method adds an additional hidden unit, with
weights from inputs and to outputs (weights have been ran-
domly initialized) and resume training. The process contin-
ues until no significant gain is achieved by adding an extra
unit.
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5. Results and Conclusions

A solution for multi-objective machine scheduling in the
custom furniture industry has been presented. The solu-
tion is based on a multi-objective evolutionary approach to-
gether with a neural network. The system uses the NSGA-
II algorithm to produce reliable schedules which are opti-
mized on the basis of their makespan and total tardiness.
Initial population combines random generation with the
generation of initial schedules following priority rules. The
evolutionary implementation has a parallel chromosomes
representation and has tuned the NSGA-II parameters so
that (i) the objectives are satisfied, (ii) the entire Pareto fron-
tier is covered, promoting the diversity of work plans and
(iii) machines load is balanced.

Schedules evaluation is based on multilayer perceptron
networks trained with backpropagation algorithm. These
neural networks learn non linear functions to approach pro-
cessing times estimation. Their accuracy will determine
work plan quality since objective functions of the multi-
objective problem are based on these times. The system
performs a continuous and automatic improvement of these
estimations each time a significant number of furniture or-
ders have been manufactured. In each learning step, neural
networks are trained again taking real times (obtained from
the new manufacture) into account. Note that training data
selection is random which may be a problem in the presence
of noise. As an improvement, a future approach will look
for reducing the noise variance in order to achieve better
learning results.

Although the system is still being validated, first results
showed that it has reduced the differences between real and
planned processing times. Note that first iterations of the
learning process have a greater impact because they usually
add new classes of input variables (for a machine and oper-
ation) to the training data. When most of the classes have
been included, the improvement in the error becomes more
stable. It should be remarked that some time estimations
are still being computed with polynomials defined by ex-
perts so the whole system configuration has not been tested.
Test data for training neural networks are difficult to obtain
and require time measurements. However, the comparison
of experts-defined polynomials with trained networks have
shown a 10% lower mean error. Tests also demonstrated
a time efficient response both to a huge work load and to
changes in the environment, such as the definition of new
client orders or changes in production due dates.
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