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Abstract

This paper describes an Adaptive Evolution-
ary approach to the problem of the produc-
tion planning task in the wood furniture in-
dustry. The objective is to schedule new in-
coming orders and if necessary regenerate the
scheduling for already existing orders. Com-
plexity and uncertainty of this task promotes
the use of an hybrid solution that combines
Evolutionary Algorithms (EAs) and Fuzzy
Sets. On one hand, EAs allow an efficient
and flexible use of the great amount of pa-
rameters involved in the scheduling task and
to reduce its computation time. On the other
hand, fuzzy sets improve the confidence in
the evaluation of the solutions when uncer-
tain knowledge is used.

Keywords: fuzzy production planning, evo-
lutionary algorithms, wood furniture indus-
try.

1 Introduction

The problem of production planning and scheduling
in the furniture industry [8] is not new. Conventional
search and optimization techniques are hard to apply
for scheduling of large-scale custom furniture. On one
hand jobs, resources and the variety of constraints and
preferences configure a huge and complex search space
that cannot be timely solved in practice by traditional
techniques. On the other hand, the schedule must be
frequently updated in response to changes in the jobs
priority or the availability of resources. However, in
real-world production environments, efficiency and op-
timization must be balanced and results close to the
optimum but achieved in a reasonable amount of time
are often sufficient. Evolutionary Algorithms (EAs)
are well suited to such problems due to their adapt-
ability and their effectiveness at searching large spaces

[7]. For detailed short/medium term scheduling, EAs
can get good solutions in a reasonable amount of time,
when compared with classic techniques [5, 6].

An important feature of the wood furniture indus-
try is the difficulty to estimate its manufacturing
times. Unlike other planning domains, humans still
have much influence on the furniture manufacturing
processes. Although some Computer-Aided Manufac-
turing (CAM) products which estimate the time from
Computer-Aided Designs (CAD) designs are available,
most of estimations are based on experts knowledge
and are therefore uncertain. For this reason, the plan-
ning task must be able to manage the uncertainty of
time estimations the schedules are based on.

In this paper, we describe the module for production
planning as a part of a Knowledge-Based Business Pro-
cess Management System (BPMS) [4] in the wood fur-
niture industry that solves the product design task by
means of knowledge-enriched workflows [3]. The mod-
ule is implemented by means of an adaptive EA that
selects a number of suitable production options tak-
ing into account the jobs to be done and the resources
available for them to be done (current resource work-
load, resources centers availability, ...). The EA is
adapted along the search process using a Fuzzy Rule-
Based System (FRBS) in order to avoid premature
convergence and increase the search speed, modifying
the tradeoff between exploration and exploitation.

The paper is structured as follows: Section 2 presents
the scheduling problem in custom furniture industry.
Then, Section 3 describes the proposed approach, and
Section 4 its implementation. Finally, in Section 5,
conclusions and future work are pointed out.

2 Wood-based Furniture

Manufacturing

This section describes the most elementary concepts
of the production planning task in the custom wood-
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Figure 1: Time estimation of a resource manufacturing
operation is built from a polynomial equation

based furniture manufacturing industry and provides
the basis for the approach presented in the follow-
ing sections. We must remark that some of the task
features described in this section are attached to the
characteristics of the industry the system is being de-
veloped for. However, experience tells us that most
of companies of this field face similar troubles when
promoting the automation of the production planning
task and therefore, could take advantages of the solu-
tion herein described.

The aim of production planning is to schedule a fi-
nite set of client orders O = {Oo, 1 ≤ o ≤ NO} in
the manufacturing workload. A finite set of resources
R = {Rr, 1 ≤ r ≤ NR}, both human as well as ma-
chines (cutting machine, horizontal band saw, two side
thickness planner, abrasive finishing machine, etc.)
have to perform the different manufacturing opera-
tions MO = {MOm, 1 ≤ m ≤ NMO} (cut, shape, as-
semble, finish, etc.) of a production plant. Client or-
ders must be sorted according to a given priority and
its delivery date. Orders are subdivided in a set of jobs
Ji =

{

Jk
i , 1 ≤ k ≤ NJi

}

, Oi ∈ O with a specific man-
ufacturing operation MOm to be done. Jobs inherit
the client order precedence but are also sorted accord-
ing to the operation dependencies. These dependen-
cies are defined by means of predefined manufacturing
routes which are assigned to a furniture manufacturing
based on its CAD design specification. For example,
the use of a type of joint may require to assemble the
furniture before the finishing, thus increasing the man-
ufacturing, packaging and/or shipping costs.

A special feature of the planning task in this field
is that jobs are not directly related to resources.
A job is assigned to a resource center Cc (C =
{Cc|1 ≤ c ≤ NC}) which is in charge of dividing the

work among its resources. In this sense, the resource
center has the capability to assign the job to an indi-
vidual or a group of resources. For this purpose, a set
of strategies S = {Ss|1 ≤ s ≤ NS} have been defined
to group resources. Basically, three type of strategies
have been defined: (i) only one, (ii) a percentage or
(iii) all the available resources belong to the group
that will perform the job. However, the association of
operations is made at a resource level and thus cen-
ters can only perform those operations that can be
carried out by their resources. Moreover, resource as-
signment to centers may vary along the time. In a
certain sense, resources define time slots that are as-
signed to a center. Thus, the time slots for resource
Rr can be defined as TSr =

{

TSt
r, t = ([tin, tout], J

k
i )

}

where t represents the resource assignment to perform
a job Jk

i in the time interval [tin, tout] in resource Rr.
Initially, all the resources are available, i.e. they have
no schedules assigned Jk

i = φ for k = 1, ..., NJi and
i = 1, ..., NO.

Let us suppose a client order O1 composed of one hun-
dred office desks. The office desks may consists of
different kinds of materials such as metal, wood and
wood-based products, plastic, melamine foils, lami-
nate, PVC, and so on. Based on the CAD designs
of the desks, specific manufacturing, and assembly
rules related to the kind of material the furniture will
be made of, the manufacturing operations to be per-
formed and thus its jobs Jk

1 for k = 1, ..., NJi. In
order to define a manufacturing plan, each job must
be assigned to a resource center. For example, job J1

1

(e.g. in charge of cutting the melamine panels) may be
assigned to the cut center C1 which assigns two cut-
ting machines (R1 and R2) machines to perform this
job. As regards the manufacturing plan, this assign-
ment means that the free time slots of the R1 and R2

resources are assigned to job.

The main difficulty related to the planning task is that
the time to perform a job depends on (i) the resource
that will perform it, (ii) the manufacturing operation
to be performed, and (iii) the furniture specification
(specially related to material). This scenario implies
that the job time must be estimated for each manufac-
turing plan generated along the planning process. We
use an estimation method based on influence parame-
ters in order to determine a polynomial approach for
estimating the time of resource operations. Once these
parameters are identified by means of regression equa-
tions (over a set of well balanced examples that were
timed), the coefficients of these polynomials are calcu-
lated. Following with the office desk example, suppose
the drying kiln operation J1

1 . The polynomial that
obtains the job time for this process should take into
consideration relevant parameters such as the intended
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Figure 2: High Level Petri Net of the adaptive fuzzy EA

use of the product (inside or outside use), the product
volume, or the moisture content among other aspects.
As it is depicted in Fig. 1, time estimation requires to
relate the resource and its polynomial equation with
the CAD specification of the furniture purpose of the
evaluation. Since time recordings are not available for
all future productions, and the relevant parameters for
them may also be different from previous ones, time
estimations are always associated to a degree of uncer-
tainty that is inherent to the production problem.

3 Adaptive Evolutionary Approach to

Production Planning

The EA defined for our scheduling task is depicted in
Fig. 2. The usual structure of the EA has been up-
graded in order to support a fuzzy control over the EA
behavior (grey box in Fig. 2). Production scheduling
in the wood furniture industry is based on the human
experience and empirical information to a great extent
and its results have a certain degree of uncertainty. In
this sense, it is necessary to control the degree of con-
fidence of the solutions obtained in each EA iteration.
For this purpose, a fuzzy controller supervises the new
populations and modifies the elitism, mutation and
crossover rates in order to improve the quality of the
solutions and to avoid premature convergence.

3.1 Problem Encoding

The encoding of our scheduling problem is depicted
in Fig. 3. The chromosomes contain all the orders
that must be manufactured. Specifically, a chromo-
some contains a sequence of orders scheduled accord-
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Figure 3: Chromosome and gene representation

ing to its priority and delivery date. This kind of ar-
rangement assigns a higher priority to jobs based on
the client order precedence and allows those jobs to
choose their resources and reserve their free slot times
in advance.

Jobs of the chromosome are ordered based on the man-
ufacturing route selected to perform a client order.
This kind of sorting, jointly with the precedence con-
straints of client orders, define a unique jobs config-
uration. In fact, a job position is the same in all the
chromosomes of a population. The genes that compose
the chromosomes are defined by three elements: a job
identifier, a resource center identifier and a resource
assignment strategy identifier. A gene defines the cen-
ter that will perform a job and its resource assignment
strategy.

3.2 Fitness Function

The fitness function herein described evaluates the
goodness of each of the individuals of the population.
This evaluation is very hard because of the simplicity
of the chromosome. In a certain sense, an individual



defines the assignment of resources to jobs and the con-
figurations of resources within the same resource cen-
ter. Although this information restricts the schedul-
ing, it does report nothing about the workload of the
resources or the manufacturing time. In fact, it is nec-
essary to compute the work plan from the chromosome
information before the fitness function can evaluate it.

The method that solves this task defines the following
steps for each job Jk

i of a client order Oi:

• Select all the resources Rr of the resource center
Cc that can perform the job Jk

i .

• Compute the time and the percentage of work per-
formed for the operation type MOm per minute
of work and for each Rr.

• Get the free time slots of each Rr based on (i)
the manufacturing strategy of the Oi (”as soon as
possible”, ”as late as possible”, ”no strategy”), on
(ii) its delivery date and (iii) on the jobs depen-
dencies.

• Define the resource groups of the Cc that can per-
form Jk

i according to the grouping strategy Ss in
the chromosome.

• Select the most suitable group based on the free
slot assignment and the time worked by each re-
source.

Fitness evaluation is based on four criteria. The first
one, is related to the resources work load. In this sense,
a high degree of work load indicates a good use of
resources. Resource work load is based on the usage
of a resource and on its availability in a time interval.

The second criterion looks for overloads and possible
bottlenecks in the production plant. This is a negative
property of a plan. A resource Rr for r = 1, .., NR is
overloaded for a certain period of time [tin, tout] where
tin + 60 < tout if the workloadr > 0.9 and other re-
sources Rk for k = 1, .., NR and k 6= r in the same
center have a workloadk < 0.9 for the same manufac-
turing operations. It should be noted that the mini-
mum period of time to define an overload is fixed in 1
hour.

The last two aspects taken into account are the time
and cost related to the orders manufacturing. This
evaluation compares the time and cost needed to per-
form a client order manufacturing in relation to the
time and cost set in its price estimate. For example,
the use of a certain resource may reduce the produc-
tion time but increase the price of the manufacturing.

The same procedure has been used to compute the
cost comparison. In this case, the time slots of each

resource are multiplied by the resource cost per minute
and compared against the cost estimate.

3.3 Selection, Crossover and Mutation

Functions

Although the operators used in this EA are quasi-
standard, some of them introduce some differences be-
cause of the chromosome encoding. The scheduling
task uses a crossover operator that randomly defines
one crossover point. However, this point cannot cut a
gene. As regards mutations, a random mutation oper-
ator is defined with the ability to perform two kind of
changes. It is possible to change the center that will
perform the manufacturing operation or the resource
assignment strategy. In both cases, the number of mu-
tations is restricted to the centers that have a resource
with the ability to perform the job and the grouping
strategies defined in the environment, respectively.

3.4 FRBS for EA adaption

The fuzzy control system modifies the elite, mutation
and crossover rate values according to a fuzzy evalu-
ation of the population. The objective of this control
is the dynamic adaption of the algorithm in order to
improve its behavior, also considering less uncertain
plans. The fuzzy evaluation of the population and the
control of the EA is performed in several steps:

• In a previous off-line step, experts are requested to
linguistically define the significant terms for eval-
uating the quality or reliability of the estimation
times provided by the regression equations for ev-
ery job. This is done by a fuzzy partition involv-
ing three terms (HIGH, MEDIUM, LOW) that
refer to the uncertainty of the estimation times.

• Historical information of all the previous time es-
timations and the actual production times for all
jobs is collected. This allows the systems to cal-
culate, for every job with estimated time teJ , its
mean percentage error ∆teJ . This error will be
the key information for calculating the reliability
of future time estimations. If no previous history
exists for te, the value provided by a linear inter-
polation among the previously existing te is used.

• The first on-line step evaluates the quality of the
time estimations of each job Ji of the work plan,
using the previously indicated historical informa-
tion. A percentage error ∆teJi is obtained for job
Ji and their membership degree to the three lin-
guistic labels that define its quality. These three
degrees are the measure of the uncertainty of the
estimation times for each new job.
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• The second step computes the global work plan
evaluation. Once the particular degrees of un-
certainty are calculated for each job in the plan
(as stated before) the total uncertainty measures
are calculated by means of simple t-conorm oper-
ations between the uncertainty of each job in the
plan.

• Finally both the total time estimation for the plan
and its uncertainty measure are used twofold:

1. It is used as the input to the fuzzy control
system that will improve the EA parameters.

2. It is forwarded to the expert as an indica-
tion of the quality of the plan. In order to
make it more understandable a linguistic ap-
proximation process is applied for giving such
information only in terms of the relevant lin-
guistic labels HIGH, MEDIUM, LOW and all
the linguistic formulae including them (i.e.,
all the AND, OR, NOT combinations of these
terms), thus considering all expressions that
may be informative to experts.

Let us see this by means of an example. Figure
4 graphically describes the process. The historic of
percentage deviations of previous jobs is depicted in
te − ∆te axis, whilst linguistic labels defined by the
expert are depicted in membership − ∆te axis. For
a new job Ji, time estimation teJi

is previously cal-
culated using the regression model for that opera-
tion. The corresponding error mean percentage er-
ror ∆teJi

and its associated uncertainty are obtained.
For the example in Fig. 4 uncertainty for job Ji is
(LOW0.8, MEDIUM0.2, HIGH0.0). For a plan in-
volving just this job Ji and another job Jk (LOW0.0,

MEDIUM0.4, HIGH0.6), the total uncertainty will
be described as (LOWs(0.8,0.0), MEDIUMs(0.2,0.4),

HIGHs(0.0,0.6)), where s is the t-conorm operator used
for aggregation.

The global uncertainty (reliability) information for ev-
ery plan is of great help for experts to select the most
adequate plan at every moment. This critical deci-
sion is always done manually by experts and therefore
the system is only requested to provide them with in-
formation on the plan duration, its schedule proposal
and uncertainty associated. Decision is usually made
on the total time criteria, but it may be the case that
the uncertainty criteria be considered for discarding
some plans.

Using the information coming from the fitness func-
tion and the uncertainty of each plan, a FRBS has
been implemented in order to modify the crossover and
mutation probabilities, and the elitism rate. Adaptive
EAs [1, 2] can improve conventional EAs, for example
avoiding the premature convergence and increasing the
search speed.

In this application, it is quite important to obtain rea-
sonably good solutions (plans) in a short time (few
minutes). For this reason, an adaptive balance be-
tween exploration and exploitation of the search space
helps in speeding up the search process. The main
idea underlying the FRBS is to explore the search
space when the obtained solutions are not good and
have a high uncertainty. This is done with a regular
genetic algorithm (GA) with high crossover rate and
low mutation probability. But when the solutions im-
prove and the uncertainty is reduced, this rates are
changed to approach the genetic algorithm to an Evo-
lution Strategy (lower crossover rate and higher mu-
tation rate).

The FRBS uses as input variables the average fit-
ness of the population (AF ), the diversity of the
population (div), and the average uncertainty of the
plans (AU). As outputs, the system will mod-
ify the crossover and mutation probabilities (pc,
pm), and the elitism rate (er). As an example:
If AF is low andAU is high and div is low

Then pc is high and pm ismediumand er is low

In this situation the individuals have a low fitness
value, the uncertainty of the plans is high, and the
diversity is low, so the EA must maintain a high
crossover rate to continue the exploration of the search
space, keep a low value for the elitism (as the average
fitness is low), but the mutation probability must be
medium in order to increase the diversity of the pop-
ulation.

4 System implementation

In order to test the behavior of our solution we have
designed a set of five small client orders. Each of these
orders is composed of five jobs with different manufac-



turing operations: wood and wood-based panels cut-
ting, varnishing, assembly, etc. The results described
in this section were simulated with the following pro-
duction plant configuration:

• 25 resource centers.

• 10 resources per center.

• 3 resource assignment strategies.

This produces a search space of size 1046. The fact that
each scheduling lasts approximately 2 seconds for each
plan, makes the complete exploration of the search
space impossible in a reasonable amount of time with
a conventional algorithm.

The FRBS for the adaptation of the EA has three
input and three output variables with the following
characteristics:

Variable Labels Universe of discourse

AF 2 [1.0, 2.0]
AU 2 [0, 1]
div 2 [0.33, 0.66]
pc 3 [0.4, 1.0]
pm 3 [0.01, 0.05]
er 2 [0.06, 0.12]

Table 1: Characteristics of the data base of the FRBS

The other parameters of the EA are a population of
50 individuals and 100 iterations.

The proposed system will help in the near future in the
decision making for scheduling in the wood furniture
industry. For this reason, it provides the human deci-
sion maker with information related to the uncertainty
of the proposed plan. This information must be also
considered during the execution of the evolutionary al-
gorithm in order to focus in areas of the search space
with both high fitness and low uncertainty. The main
advantage of the proposed adaptive EA over a usual
EA is its capability to model all this information with
a FRBS in a easier and more intuitive way.

5 Conclusions and Future Work

Although a prototype of the planning model is still
currently being validated at a wood furniture indus-
try, two conclusions can be derived from the results
obtained. Firstly, our solution considerably reduces
the time needed to compute manufacturing plans. In
fact it fulfils all the requirements to perform a future
dynamic re-scheduling task. Secondly, even though
some time estimations are far from the obtained in the

production plant, the approach for dealing with uncer-
tainty has proved to be useful for experts plan valida-
tion. In this sense, a fitness and uncertainty measure
helps experts to have a vision of the plan that is closer
to the reality. Moreover, the fuzzy labels facilitates
the understanding of the plan evaluations.
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