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Abstract. Process Mining is concerned with the analysis, understand-
ing and improvement of business processes. One of the most important
branches of process mining is conformance checking, i.e. assessing to
what extent a business process model conforms to observed business
process execution data. Alignments are the de facto standard instru-
ment to compute conformance statistics. Alignments map elements of an
event log onto activities present in a business process model. However,
computing them is a combinatorial problem and hence, extremely costly.
In this paper we show how to compute an alignment for a given process
model, using an existing alignment and an existing process model as a
basis. We show that we are able to effectively repair the existing align-
ment by updating those parts that no longer fit the given process model.
Thus, computation time decreases significantly. Moreover, we show that
the potential loss of optimality is limited and stays within acceptable
bounds.
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1 Introduction

Today’s information systems store an overwhelming amount of data related to
the execution of business processes. Process mining [1] is concerned with the
analysis, understanding and improvement of business processes based upon such
data in the form of event logs. Three main branches form the basis of process
mining: process discovery, conformance checking and process enhancement.
Within process discovery the main goal is to discover a business process model
based on an event log. Within conformance checking the main goal is to check
whether a given process model conforms to the behavior recorded in an event
log. Within process enhancement the main goal is to improve business processes,
primarily (though not exhaustively) using the two aforementioned fields.

Alignments [2] have proven to be very effective for the purpose of conformance
checking. In essence, an alignment aligns an event log to a process model. Based on
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such alignment, a variety of analysis techniques can be applied resulting in differ-
ent statistics describing the relation between the event log and the process model.
A plethora of process mining techniques use alignments internally [3–7]. Replay-
fitness and precision, two essential process mining quality dimensions [8], are com-
puted on the basis of alignments [3,4]. In evolutionary process discovery [5,6],
replay-fitness and precision are used to judge the quality of a newly generated
process model. The Inductive Visual Miner [7] uses replay-fitness measures to visu-
alize the flow of cases through a given process model.

The sheer complexity of computing alignments has its effects on the tech-
niques that internally use them. Using alignments in combination with realisti-
cally sized event logs and process models, typically results in poor run time per-
formance. However, some of the aforementioned techniques share an interesting
common property, i.e. the potential use of similar process models. For exam-
ple, within evolutionary process discovery a new generation of process models is
created based on slight manipulations of the current generation of process mod-
els [9]. The Inductive Visual Miner allows the user to apply filtering techniques,
resulting in a new, rather similar, process model for which we need to recompute
alignments. Hence, the question arises whether we can use previously computed
alignments as a basis for computing of new alignments.

In this paper we propose an alignment repair method that, given a process
model and an existing alignment on a different process model, computes a new
alignment for the given process model. The technique identifies fragments of
the existing alignment that do not correspond to the given process model and
replaces them with new alignment fragments that do correspond. Because the
method only focuses on those alignment fragments that do not fit, i.e. the method
strikes the right nerve, computation time decreases significantly. Moreover, we
show that the loss of optimality is limited and stays within acceptable bounds.

The remainder of this paper is structured as follows. Section 2 explains event
logs, process trees and alignments. Section 3 describes the alignment repair
method in detail. In Sect. 4 we present an evaluation of the approach. Section 5
discusses related work and Sect. 6 concludes the paper.

2 Preliminaries

In this section we introduce the notion of event logs, process trees and align-
ments.

2.1 Sequences, Bags and Event Logs

We write a bag as [en1
1 , en2

2 , ..., enk

k ] where element e1 occurs n1 times, with n1 > 0.
As an example, B1 = [a3, b5] denotes a bag consisting of 3 a’s, 5 b’s and 0 c’s.
Sequences are written as 〈e1, e2, ..., en〉. Sequence concatenation of sequences σ1

and σ2 is written as σ1 ·σ2. As an example consider the concatenation of sequences
〈a, b〉 and 〈c, d〉: 〈a, b〉 · 〈c, d〉 = 〈a, b, c, d〉. The set of all possible sequences over
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some set of elements X is denoted as X∗, e.g. 〈a, b〉 ∈ {a, b, c}∗. Given a set X and
an element e /∈ X, we write Xe as a shorthand for X ∪ {e}.

Event logs often act as a primary input for process mining techniques and
describe the actual execution of activities within a business process. In essence,
an event log is a bag of sequences that consist of business process events. Consider
Table 1 depicting a snapshot of an event log of a fictional loan application han-
dling process. Let us consider all activities related to the case 3554. First, John
Checks the application form, after which Harold checks the applicant’s credit
history. Pete appraises the property after which Harold performs a loan risk
assessment. Finally, Harry assesses the eligibility of the client for the loan and
in the end he decides to reject the application. A sequence of events, e.g. the
execution of the activities related to case 3554, is referred to as a trace. Thus,
from the control-flow perspective, i.e. the sequential ordering of activities w.r.t.
cases, case 3554 can be written as 〈Check application form, Check credit history,
Appraise property, Assess loan risk, Assess eligibility, Reject application〉.

Table 1. A fragment of an event log loosely based on a fictional loan application
process [10], where each individual line corresponds to an event.

Case-id Activity Resource Time-stamp

...
...

...
...

3554 Check application form John 2015-10-08T09:45:37+00:00

3555 Check application form Lucy 2015-10-08T10:12:37+00:00

3554 Check credit history Harold 2015-10-08T10:14:25+00:00

3555 Check credit history Harold 2015-10-08T10:31:02+00:00

3554 Appraise property Pete 2015-10-08T10:45:22+00:00

3554 Assess loan risk Harold 2015-10-08T10:49:52+00:00

3555 Assess loan risk Harold 2015-10-08T11:01:51+00:00

3553 Return application to client John 2015-10-08T11:03:18+00:00

3556 Check application form Lucy 2015-10-08T11:05:10+00:00

3555 Assess eligibility Harry 2015-10-08T11:06:22+00:00

3554 Assess eligibility Harry 2015-10-08T11:33:42+00:00

3554 Reject application Harry 2015-10-08T11:45:42+00:00

3557 Check application form Lucy 2015-10-08T13:48:12+00:00

3555 Prepare acceptance pack Sue 2015-10-08T14:02:22+00:00

...
...

...
...

2.2 Process Trees

A process tree [5,11] is an abstract hierarchical representation of a block-
structured workflow net [12]. The leafs of a process tree are labeled with activi-
ties. The internal nodes are labeled with operators, used to specify the relation
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between their children. Formally, every node within a process tree describes a
language, i.e., a set of sequences of activities. The language of the process tree
itself is equal to the language of the root node of the process tree. Thus, the
labels of the leafs of the process tree form the alphabet of a process tree’s lan-
guage. The operators describe how the languages of their children have to be
combined.

There are five standard operator types [5] defined for process trees: the
sequential operator (→), the parallel execution operator (∧), the exclusive choice
operator (×), the non-exclusive choice operator (∨), and the repeated execution
(loop) operator (�). Operators can have an arbitrary number of children in any
arbitrary order, except for the sequence and loop operators. For the sequence
operator (→), the number of children can be arbitrary, though the order of the
children specifies the order in which they must be evaluated, i.e. from left to
right. Loop nodes (�) always have three children: the left child is the do part of
the loop, the middle child is the redo part, and the right child is the exit part.
We refer to [5,11] for an exact, formal, language definition of process trees.

Figure 1 shows an example process tree P1 with all five possible operators.
The root node n1 is labeled with a sequence operator (→), hence we first evaluate
its left-most child, n2, which is a leaf labeled with activity a. Thereby, every
sequence present in the language of P1 starts with an a-activity. The second child
of the root, n3, is a sub-tree describing the parallel execution (∧) of activity b,
with a non-exclusive choice (∨) between activities c and d. The third child again
refers to a single activity, labeled e. Finally a loop (�) will be executed. The
do part of the loop consists of an exclusive choice (×) between f and g. If we
decide to re-do the loop, we execute activity h. Executing activity h enforces us
to re-execute the exclusive choice between f and g. The exit part of the loop is
labeled with activity τ . This activity is unobservable, i.e., it is not part of any
sequence in the language of P1.

Fig. 1. Process Tree P1.

Instead of recording the activity
labels directly, we first record the
sequence of leaf-nodes described by the
process tree. As a second step, this
sequence is projected on the activi-
ties associated with the leaf nodes.
As an example consider the sequence
of leaf nodes 〈n2, n4, n6, n8, n12, n14〉.
Projected on the activity labels yields
〈a, b, c, e, g, τ〉. The final label τ is
an unobservable label and hence the
sequence becomes 〈a, b, c, e, g〉. Due to
the loop operator n9, the language
of P1 is infinite. Some other exam-

ple sequences present in P1’s language are: 〈n2, n7, n4, n8, n11, n14〉 ≡
〈a, d, b, e, f〉, 〈n2, n6, n4, n7, n8, n11, n13, n12, n14〉 ≡ 〈a, c, b, d, e, f, h, g〉, etc.
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2.3 Alignments

Alignments map events present in a trace to activities in a process model, i.e., the
leaf nodes of a process tree. Alignments allow us to decide to what degree a given
trace fits the language of a process tree. Given a trace σL and a sequence of leaf
nodes σP , an alignment is a partial injective function mapping the elements of
σL to the elements of σP . If the function is total and every non-mapped element
in the range has a τ label, the trace σL perfectly aligns σP .

Throughout the paper we will use A to represent the activities of a trace and
N to represent the set of leafs of some process tree P . Additionally, we use 

(i.e. 
/∈ A, 
/∈ N) to represent the skip move. The skip move represents an
element from the domain (range) that is not part of the alignment, i.e. not part of
the partial injective function. We represent an alignment as a sequence of pairs,
combining the events in a trace with leaf nodes of a process tree, i.e., an alignment
is represented as an element of (A� × N�)∗. A pair (a, n) ∈ (A� × N�) is
referred to as a move. The premise of an alignment is that: (i) the elements of
the A�-part respect the ordering of the events within the trace; and (ii) the
elements of the N�-part, projected onto their activity labels, form an element
of the language of the process tree. We distinguish the following moves (a, n):
(i) a synchronous move, if a ∈ A and n ∈ N s.t. n’s label equals a or a =
 and
n ∈ N s.t. n’s label is τ ; (ii) a model move, if a =
 and n ∈ N ; and (iii) a log
move, if a ∈ A and n =
. Other combinations are considered illegal. Given a
trace σ and a process tree P , we write γ(σ,P ) to denote an alignment of σ and P .
We refer to [2] for a formal, Petri-net based definition of alignments.

Consider the trace σ1 = 〈a, b, c, e, f〉 and the leaf sequence 〈n2, n4, n6, n8, n11,
n14〉 of process tree P1 of Fig. 1. Clearly 〈n2, n4, n6, n8, n11, n14〉 ≡ 〈a, b, c, e, f〉
and thus if we (trivially) map σ1(1) onto n2, σ1(2) onto n4, ..., σ1(5) onto n11

we find a perfect alignment of σ1 on the process tree.1

γ1
(σ1,P1)

=
A� a b c e f 

N� n2 n4 n6 n8 n11 n14

Alignment γ1
(σ1,P1)

is not the only possible alignment between σ1 and P1. It is

also possible to map σ1 to the leaf sequence 〈n2, n4, n6, n8, n11, n13, n12, n14〉:

γ2
(σ1,P1)

=
A� a b c e f 
 
 

N� n2 n4 n6 n8 n11 n13 n12 n14

However, we favor γ1
(σ1,P1)

over γ2
(σ1,P1)

as it contains less (
, n)-typed moves.
In the previous example, the trace is an element of the language of P1. If we

consider the trace σ2 = 〈a, b, c, d, e, f, g〉, this is not the case. Activity f and g
can never co-occur in any sequence present in the language of P1, unless activity
h is in between them (due to the loop operator). For σ2, we are able to construct
(amongst others) these alignments:

1 Note that n14 is a leaf with a τ label and maps to synchronous move (�, n14).
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γ1
(σ2,P1)

=
A� a b c d e f g 

N� n2 n4 n6 n7 n8 n11 
 n14

γ2
(σ2,P1)

=
A� a b c d e f g 

N� n2 n4 n6 n7 n8 
 n12 n14

For alignments γ1
(σ2,P1)

and γ2
(σ2,P1)

, it is less obvious which one is favored over
the other one, or, if both alignments are equally favorable. In general, given
a trace and a process model, a multitude of alignments exist. We are however
interested in an optimal alignment. In essence, an optimal alignment is an align-
ment that minimizes some cost function κ : (A� × N�)∗ → R+. For a given
alignment γ, κ(γ) often is computed deterministically as each type of move gets
a cost assigned. A synchronous move typically has cost 0, whereas any illegal
move has cost ∞. Costs of model/log moves are usually problem specific though
usually greater than 0. Optimal alignments are computed for ordinary Petri nets
with an initial marking and a (collection of) final marking(s), e.g. by using the
A∗ algorithm [2]. Trivially this applies to workflow nets and, as a consequence,
process trees as well. Hence, for the purpose of this paper, we assume the avail-
ability of an oracle function o that, given a trace σ and a model P , produces an
(optimal) alignment.

3 Repairing Alignments

As indicated, some process mining techniques share an interesting property, i.e.,
alignments need to be computed for multiple relatively similar process models.
Henceforth, the main research question addressed in this paper is formulated as
follows. Given a trace σL, a process tree P , a process tree P ′, and an alignment
γ(σL,P ), are we able to compute an alignment γ(σL,P ′) by reusing and repairing
γ(σL,P )?

3.1 Repairing Alignments: A Concrete Example

We illustrate alignment repair by providing an algorithmic sketch based on a
running example. We use process trees P1 and P2 (Fig. 2) as a running example.
Consider trace σ3 = 〈a, c, d, e, f, g, h, g, f〉 and alignment γ(σ3,P1) of σ3 on P1:

γ(σ3,P1)=
A� a 
 c d e f g h g f 

N� n2 n4 n6 n7 n8 n11 
 n13 n12 
 n14

Trace σ3 is missing a b activity enforced by n3 (∧). Moreover, n10(×), does not
allow for executing both the f - and g-activity without an h-activity in between.
We are interested in changing the operator type of n10 as it yields two moves that
include a 
 symbol: (g,
) and (f,
). This is fixed by changing the operator type
of n10 to either ∧ or ∨. Consider process tree P2 depicted on the right-hand side of
Fig. 2, in which the operator type of n10 is changed to ∧. For convenience, n10 and
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Fig. 2. Modification of node n10 in process tree P1 (left), resulting in process tree P2

(right). Scope of change S1 is highlighted in P1 (light gray), scope S2 is highlighted in
P2 (dark gray).

its children n11 and n12 are relabeled to n′
10, n

′
11 and n′

12, respectively. The process
to compute γ(σ3,P2) by reusing γ(σ3,P1) consists of three steps: (i) scope of change
detection, (ii) sub-alignment computation, and (iii) alignment reassembly.

Step 1; Scope of Change Detection. The first step in reusing γ(σ3,P1) involves
detecting the scope of change of P1 w.r.t P2 and vise versa. The scope of change
itself is a process tree and is defined by the modified node and its children. For
process trees P1 and P2 we highlighted scopes of change S1 and S2 in light and
dark gray in Fig. 2. S1 consists of nodes n10, n11 and n12 of P1. S2 consists of
nodes n′

10, n′
11 and n′

12 of P2. Using this information, we need to detect what
elements of γ(σ3,P1) belong to the scope of change of P1, i.e. to leaf nodes of
S1. In this step, we linearly walk through all moves of γ(σ3,P1) checking for each
(a, n) ∈ γ(σ3,P1), whether or not it belongs to scope S1. We take the following
(a, n) moves in consideration for scope S1:

1. If n is a leaf of scope S1, (a, n) belongs to S1.
2. If n =
, and the previous move (a′, n′) ∈ γ(σ3,P1) belongs to S1, then also

(a, n) belongs to S1.

Using the aforementioned rules, we start constructing the new alignment
γ(σ3,P2). Every pair (a, n) ∈ γ(σ3,P1) not belonging to S1 remains untouched and
is copied in the exact same position into the new alignment γ(σ3,P2). On the other

Table 2. Schematic overview of the first step of the alignment repair algorithm.
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hand, we skip every move (a, n) belonging to S1, yet for each of such move we
remember the exact position in γ(σ3,P1). Moreover, whenever we encounter the
first move (a, n) inside scope S1, we create an intermediary sequence σ1

3 = 〈a〉
(or σ1

3 = ε if a =
). For every subsequent move (a′, n′) belonging to scope S1

we update σ1
3 to σ1

3 · 〈a′〉 (or σ1
3 ·ε = σ1

3 if a′ =
). However, if during this process
we detect a move (a′′, n′′) belonging to S1, which indicates a new execution of
the process tree described by S1, we create a new trace σ2

3 = 〈a′′〉 (or σ2
3 = ε if

a′′ =
). Note that this type of behavior might be present in the alignment due
to loop structures in P1. Let us consider Table 2. The first five elements of γ(σ3,P1)

are outside of scope S1, hence they will be copied directly into γ(σ3,P2). The sixth
and seventh element, i.e. (f, n11) and (g,
), belong to scope S1 and thus we
remember their positions and create σ1

3 based on them. The eight element is
again outside of scope S1 and will be directly copied into γ(σ3,P2). The ninth
and tenth element, i.e. (g, n12) and (f,
), again belong to scope S1. These two
moves indicate a new execution of the process tree described by S1 and hence,
we create a new sequence σ2

3 out of the two elements. Finally the last element
of the alignment is again outside of scope S1.

Step 2; Alignment Calculation. We now constructed a part of the new alignment
γ(σ3,P2) together with a set of sequences, i.e. the lower part of Table 2. For each of
these sequences, we additionally have a set of pointers referring to the elements
of γ(σ3,P1) that generated the sequence. The next step of the repair consists
of creating new chunks of alignments for the sub-sequences generated from the
elements belonging to S1. The core idea is that sequences σ1

3 and σ2
3 are both

referring to behavior related to S1. However, in P2, S2 is the replacement of S1.
Thus in the new alignment, this behavior can no longer be present and needs to
be updated in context of S2. As S2 itself defines a process tree we use the oracle
function o to compute two new alignments γ(σ1

3 ,S2) and γ(σ1
3 ,S2). The result of

computing these alignments, together with S2, are depicted in Fig. 3.

Fig. 3. Process tree S2 and the two alignments γ(σ1
3 ,S2) and γ(σ2

3 ,S2).

Step 3; Alignment Reassembly. The final step of the approach concerns placing
back the newly created alignment fragments into the partially finished alignment,
i.e. the bottom part of Table 2. Recall that we stored the position of every move in
γ(σ3,P1) that belonged to S1. For each such move (a, n) inside the scope in γ(σ3,P1)

with a �=
, we know that there is a move (a, n′) in either γ(σ1
3 ,S2) or γ(σ2

3 ,S2).
In our example consider (f, n11) vs. (f, n′

11) in γ(σ1
3 ,S2), (g,
) vs. (g, n′

12) in
γ(σ1

3 ,S2), (g, n12) vs. (g, n′
12) in γ(σ2

3 ,S2) and (f,
) vs. (f, n′
11) in γ(σ2

3 ,S2). These
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type of moves serve as anchor points for placing the new alignment fragments
into the partially finished alignment. If an alignment fragment does not contain
any anchor point, i.e. caused by replay on an empty sequence, we are still able to
place the new alignment back due to the fact that we have a one-to-one mapping
between the old alignment moves and the (empty) sequence used in step 2. Once
the third step is performed, we obtain an alignment of σ3 on P2, constructed
by only calculating alignments on S1 rather than P1 as a whole. The final step
resulting in γ(σ3,P2) is depicted in Table 3.

Table 3. Schematic overview of the third step of the alignment repair algorithm.

In the example, intermediary sequences σ1
3 and σ2

3 directly correspond to a
consecutive block of elements of γ(σ3,P1). Due to parallelism, either by nodes
labeled with an ∧ or an ∨ operator, this is not necessarily the case, i.e. the
subsequences can be related to a set of alignment moves scattered around the
original alignment. Note that due to the use of the anchor moves, we are still
able to put the elements of the newly created alignments into a correct position.

Fig. 4. Process Trees P3 (left), P4 (right), scope of change S3 (light gray), scope of
change S4 (dark gray) and alignment γ(σ1

4 ,S4).

3.2 Optimality of Repaired Alignments

In the previous example, the repaired alignment is optimal. In general, we are
not able to guarantee that the resulting repaired alignment is optimal. Con-
sider the change between process trees P3 and P4 depicted in Fig. 4, trace
σ4 = 〈a, b, c, d, a, b, c, a, b〉 and optimal alignment γ(σ4,P3):
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γ(σ4,P3) =
A� a b c d a b c a b
N� 
 
 
 n5 n3 n4 
 
 


Scope S3 is defined by the sub-tree of P3 starting from node n2 whereas scope
S4 is the subtree of P4 starting at node n′

2. Note that if we apply the algorithm
as described in Sect. 3.1, the light gray colored moves belong to scope S3. The
algorithm will subsequently create the intermediary sequence σ1

4 = 〈a, b, c, a, b〉
and let oracle function o compute the alignment γ(σ1

4 ,S4) as depicted in Fig. 4.
Eventually, γ(σ1

4 ,S4) is combined with the first four moves of γ(σ4,P3), yielding
γ(σ4,P4):

γ(σ4,P4) =
A� a b c d a b c a b 

N� 
 
 
 n5 n′

4 n′
5 n′

6 n′
4 n′

5 n′
7

Clearly γ(σ4,P4) is not optimal, i.e. consider γ∗
(σ4,P4)

, which in fact is an optimal
alignment of σ4 on P4.

γ∗
(σ4,P4)

=
A� a b c d a b c a b 

N� n′

4 n′
5 n′

6 n5 n′
4 n′

5 n′
6 n′

4 n′
5 n′

7

Unfortunately, we are not able to assign the three log moves at the start of
alignment γ(σ4,P3), i.e. (a,
), (b,
) and (c,
) to scope S3. Hence these moves
remain untouched whereas they in fact should be mapped onto elements of the
leafs of S4. Therefore, this leads to a repaired alignment that is not optimal.
Nevertheless, in Sect. 4 we show that the potential loss of optimality is limited
and stays within acceptable bounds.

3.3 Feasibility of Repaired Alignments

One of the basic requirements of the presented approach is that, after reusing an
existing (optimal) alignment, the repaired alignment itself is an alignment. Due
to the rather informal nature of this paper, we provide an intuition on the fact
that the repaired alignment is indeed an alignment, rather than a formal proof.
Recall that the premise of an alignment is that: (i) the elements of the A�-part
respect the ordering of the events within the trace and (ii) the elements of the
N�-part, projected onto their activity labels, form an element of the language
of the process tree. Let P and P ′ denote two process trees and let S and S′

denote the scopes of change of P and P ′ respectively. Moreover let σ ∈ A∗ be a
trace and let γ(σ,P ) denote an (optimal) alignment of σ on P . Let γ(σ,P ′) denote
the sequence of (A� ×N ′�) moves resulting from a repair of γ(σ,P ) based on P ′.

Observe that by using moves (a, n) with a �=
 as anchor points, we effectively
keep all elements of the A�-part in place w.r.t. each other. The oracle function
o by definition respects the order of the elements of the A�-part w.r.t. the
generated intermediary subsequences. Thus we enforce that the elements of the
A�-part of γ(σ,P ′) respect the ordering of trace σ. Hence γ(σ,P ′) fulfills part (i)
of the premise.

The intuition of part (ii) of the premise is a bit more involved. Let us consider
the case in which there is no ∧ or ∨ operator on the path from the root of P to
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the root of S. In this case any valid execution of S always results in a consecutive
block of leaf nodes of S in γ(σ,P ). For each of these consecutive blocks we know
that at that point in time sub-tree S must have been active. In step two, for
each of these consecutive blocks we create a new alignment fragment based on
S′. The oracle function o guarantees that (ii) holds for these fragments. We then
place the newly created chunks, corresponding to behavior of S′, exactly at the
points where S was active. If we assume that in this case (ii) does not hold, this
contradicts either the oracle function or the fact that γ(σ,P ) was an alignment
in the first place, hence (ii) must hold. In case there is an ∧ or ∨ operator
on the path from the root of P to the root of S, we know that there might
be interference of other parts of the tree w.r.t. S. The intermediate sequences
can be potentially build up out of multiple chunks of alignment moves scattered
around γ(σ,P ). In this case, S was active throughout the whole span of the first
chunk mapping to an intermediate subsequence up until the last chunk mapping
to the same intermediate subsequence. Moreover, we know that within the span
of S, we can reorder any leaf node of S with any other leaf node not in S, as
long as we do not reorder any two leafs of S. The oracle function o provides us
with the guarantee that (ii) holds for the new alignment fragments based on S′.
Since we use the anchor points we know that we might only reposition leafs of
S′ w.r.t. leafs of P ′ that are not an element of S′. Leaf nodes of S′ are however
never shuffled. We know that at any position where we place the new (chunks
of) fragments based on S′ back, S′ has to be active. Thus, also in this case, if we
assume that in this (ii) does not hold, this contradicts either the oracle function
or the fact that γ(σ,P ) was an alignment.

4 Evaluation

To validate the usefulness of the presented technique, we answer two main ques-
tions: (i) What is the time needed to align a model and a log with the presented
technique? and (ii) How close/far is the repaired alignment from the optimal
alignment? In this section we answer these questions by (i) comparing the time
needed for alignment repair with the time expended to compute a new, optimal
alignment and (ii) by measuring the quality of the repaired alignments w.r.t.
the new, optimal alignment.

Fig. 5. Process followed during the experimentation.
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4.1 Experimental Set-Up

Figure 5 shows a schematic overview of the experimental set-up. We generate an
initial random process tree with a random size. Based on this model, we simulate
a non-fitting event log, i.e. the event log contains noise, consisting of 2000 traces.
We then calculate the optimal alignments of all traces in the event log w.r.t. the
initial model. As a second step, we perform a set of random changes on the base
model (step a in Fig. 5), generating a total of 150 different mutated process trees.
We enforce that every mutated model is unique. The possible changes applied
over the base model are: randomly adding a new node, randomly removing a
node and randomly changing a node of the tree. Then, we calculate two different
types of alignments for each mutated tree: the optimal alignments based on the
simulated log (step b in Fig. 5) and the repaired alignments reusing the optimal
alignments previously calculated on the base model (step c in Fig. 5). Finally,
we compare both outputs (step d in Fig. 5).

Following this process, we created a set of 50 initial random trees with arbi-
trary sizes between 21 and 47 nodes. Thus, we applied the presented technique
over 50 × 150 × 2000 ≈ 1.5 · 106 alignments. We additionally checked whether
the repaired alignment is indeed an alignment, which was true in all cases.2

4.2 Running Time

As the time needed to compute alignments varies significantly between runs, we
grouped the results of the experiments based on the size of the initial random
process trees. We created a bucket with initial trees of sizes between 21 and 28
nodes (12 trees in total), a bucket with sizes between 29 and 31 nodes (12 trees
in total), a bucket with sizes between 32 and 34 nodes (13 trees in total) and a
bucket with sizes greater than 35 nodes (13 trees in total).

Figure 6 shows the time comparison, using box plots, for each bucket of exper-
iments. Due to the high dispersion of the data, on the right-hand side of Fig. 6
we also show the box plots zoomed into the domain 0–100 s.

In general we observe there is no overlap in the second and third quartiles of
computing alignments based on the repair method versus computing an optimal
alignment from scratch. This implies that in nearly all cases, the time needed
to align a model and an event log by applying alignment repair outperforms
computing a new optimal alignment. In this case, the time needed for alignment
repair is directly related to the size of the scope of change which explains the
rather high range of the right whiskers in the box plots for alignment repair.
Clearly, if the change is performed in the root node of a process tree, the scope
of change is the process tree as a whole. The time needed to apply the presented
approach will be roughly equal to the time needed to compute the optimal
alignment as there is no room to repair the old alignment. Thus, we conclude
that using the presented technique, guarantees a lower, or, in worst case equal,
running time compared with computing the optimal alignments between an event
log and a process tree from scratch.

2 All results can be found at https://svn.win.tue.nl/repos/prom/Packages/Evolution-
aryTreeMiner/Branches/BorjaImp/experiments/bpmds2016/.
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Fig. 6. Box plots showing the time needed to repair an alignment versus computing
the optimal alignments for each bucket of experiments. The right-hand side shows the
results zoomed into the domain 0–100 s.

4.3 Alignment Quality

As explained in Sect. 3.2, alignment repair does not guarantee optimality. It is
not straightforward to assess how well the repaired alignment scores in terms of
optimality. To judge the “rank” of the repaired alignment, i.e. how many other
alignments are closer to the optimal alignment, we need to traverse all possible
alignments of a trace and a process tree. This is rather involved from a run-time
complexity point and hence hard to incorporate within the experiments.

We propose a grade measure, that grades the repaired alignment, based on
the relative distance of the alignment w.r.t. the optimal alignment. To compute
the distance, we first compute the cost of the optimal alignment γ∗. Additionally,
we create an alignment γw, consisting of only (a,
)-moves and (
, n)-moves,
such that the a-moves form the trace and the n-moves form a shortest possible
valid sequence of leaf nodes. The γw alignment represents “the best of the worst”
alignment. Finally, we calculate the cost of the repaired alignment γr. Based on
the difference between the cost of γ∗ and γw we compute the relative cost of
γr. Let c∗, cw and cr denote the costs for γ∗, γw and γr. We grade the cost of
γr as follows: grade(γr) = 1 − cr−c∗

cw−c∗ . Clearly, 0 ≤ grade(γr) ≤ 1. We used the

following cost function κ : (A� × N�) → R+: κ(a, n) = +∞ if a and n’s label
do not match, κ(a, n) = 5 if a ∈ A and n =
, κ(a, n) = 2 if a =
 and n ∈ N ,
and finally κ(a, n) = 0 if either a ∈ A a and n’s label match, or, a =
 and n’s
label is τ .
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Figure 7 shows the box plots for the computed average grades of the repaired
alignments. As the figure shows, we always have a grade above 0.84, and in the
top 75 % of all experiments is above 0.98. Thus, when the repaired alignments
are not optimal, the difference with the optimal alignments is minimal. Hence,
the loss of optimality is limited and stays within acceptable bounds.

Fig. 7. Normalized grade of the repaired alignments.

Again, there is a close relation between the size of the scope of change and
the potential loss of optimality. If the change is performed close to the root
node, more moves of the previous alignment will belong to the scope of change.
Consequently, the probability of retrieving an optimal alignment is higher. If the
root of the point of change is the root node, we do have optimality.

5 Related Work

Alignments were introduced in [3]. In [2] an alignment computation approach is
presented based on the A∗ algorithm. The concept presented in this paper, i.e.
solving a sub-problem rather than the whole problem, is similar to methods that
aim at decomposition of process mining techniques [13–15]. In [15] the authors
present a decomposition technique that partitions process models and event
logs into smaller parts that can be analyzed independently. A similar approach
for data-aware conformance checking problems is presented in [14]. The main
difference compared to these works is the fact that the presented technique
results in an alignment for the whole trace and the whole process model, whereas
decomposition techniques typically provide solutions for sub-problems, which in
aggregated form provide lower bounds rather than a full solution.

6 Conclusion

We presented a novel approach to compute alignments based on an existing
alignment, instead of (re)computing the alignment from scratch. The approach
has been validated with a set of random trees and event logs. The evaluation
shows that our approach always retrieves an alignment in a significantly lower,
or equal, time than computing optimal alignments. Furthermore, we show that
the potential loss of optimality is limited and stays within acceptable bounds.
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We plan to improve and/or extend the approach as follows. Depending on
the type of operators in the tree, it might be possible to extend or shrink the
scope of change, allowing to reduce the loss of optimality. Moreover, we plan to
develop means to predict optimality, allowing us to decide at which point it would
be necessary to compute the optimal alignment instead of reusing and existing
one. Based on the achieved results, we plan to apply the presented technique,
if applicable, in different process mining domains, e.g. within handling concept
drift in stream-based process discovery [16].
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