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Abstract. Several process discovery algorithms have been presented in
the last years. These approaches look for complete, precise and simple
models. Nevertheless, none of the current proposals obtains a good in-
tegration between the three objectives and, therefore, the mined models
have differences with the real models. In this paper we present a genetic
algorithm (ProDiGen) with a hierarchical fitness function that takes into
account completeness, precision and simplicity. Moreover, ProDiGen uses
crossover and mutation operators that focus the search on those parts
of the model that generate errors during the processing of the log. The
proposal has been validated with 21 different logs. Furthermore, we have
compared our approach with two of the state of the art algorithms.

Keywords: Process mining, process discovery, Petri nets, genetic
mining.

1 Introduction

In the last decade a great effort has been made for developing technologies to
automate the execution of processes in different application domains such as in-
dustry, education or medicine [3]. In this context, a process is understood as a col-
lection of tasks —or activities— with coordination requirements among them [8].
These tasks are performed by a set of actors to achieve the purpose of the process.
Typically, these processes have a detailed description, i.e., there is a design of the
process where its activities and the actors participating in these steps are clearly
described. However, even in this situation there might be differences between what
is actually happening and what is predefined in the process.

Based on this, Process Mining (PM) techniques are needed to get informa-
tion about what is really happening in the execution of a process, and not what
the people think it is happening [9]. Typically, these techniques use the log files
that collect information about the events detected and stored by the informa-
tion system in which the process has been executed. While PM techniques can
be classified in different groups —process discovery, conformance checking or
enhancement— this paper focuses its attention into the process discovery prob-
lem, i.e, the control-flow discovery, which aims to retrieve the process model that
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represents the behavior recorded in an event log. These algorithms are used to
discover the underlying process that has been followed by users to achieve an
objective.

There has been a lot of work on process discovery [9,13,10,1,12,2,4]. Although
some mining techniques use a specific target model for control flow discovery
[4], most of the process discovery algorithms are based on Petri nets. These
algorithms can be classified depending on the type of technique they applied.
Thus abstraction-based algorithms [9,13], in general, retrieves simple models but
with poor completeness. Other approaches, based on heuristics [12], although
being robust to noise, do not guarantee optimal results in terms of completeness,
as they focus on the main behavior of the log —also, they cannot handle all the
common structures at once. Within the search-based algorithms, some techniques
guarantee sound models [1] —not guaranteeing always the complete model as a
solution—, and others can tackle all the different main behavior at once [2], but
leaving simplicity aside. Other techniques, based on theory of regions, despite
guaranteeing complete models [10], cannot handle noise and all the different
pattern constructs. Summarizing, very valuable results have been achieved, but
it is necessary to deep in the development of algorithms that guide its search
towards complete, precise and simple models.

In this paper we present ProDiGen1 (Process Discovery through a Genetic al-
gorithm), a process discovery algorithm that guides its search towards complete,
precise and simple models. The algorithm uses a hierarchical fitness function
that takes into account completeness, precision and simplicity —with new def-
initions for both precision and simplicity— and uses heuristics to optimize the
genetic operators: (i) a crossover operator that selects the crossover point from
a Probability Density Function (PDF) generated from the errors of the mined
model, and (ii) a mutation operator guided by the causal dependencies of the
log. The proposal has been tested using 21 unbalanced logs, i.e, logs with many
different traces and different frequencies. Furthermore, we have compared our
approach with two of the state of the art process mining techniques, using a
collection of conformance checking metrics.

The remainder of this paper is structured as follows. Sec. 2 presents the pro-
posed genetic algorithm for process discovery. Sec. 3 shows the obtained results
with the 21 logs and, finally, Sec. 4 points out the conclusions.

2 ProDiGen: Process Discovery through a Genetic
Algorithm

The proposal of this paper (ProDiGen) is inspired by Genetic Miner [2], albeit
there are several differences between them (Tab. 1). Although ProDiGen still
codifies each individual2 of the population3 using the causal matrix representa-
tion [2], almost all of the mains steps of the genetic algorithm (GA) have been

1 http://tec.citius.usc.es/SoftLearn/ProDiGen.html
2 A candidate solution, i.e., a mined model.
3 A collection of candidate solutions.

http://tec.citius.usc.es/SoftLearn/ProDiGen.html
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Table 1. Differences between ProDiGen and Genetic Miner

Fitness The fitness is hierarchical and takes into account the completeness,
precision and simplicity of the mined model.

Precision Definition of a new method to measure the precision of a model.
Simplicity Definition of a new method to measure the simplicity of a model.
Initialization The solution of the Heuristics Miner is incorporated to the initial

population as well.
Selection Prodigen uses the binary tournament selection as selection mecha-

nism.
Crossover The crossover operator is guided by a Probability Density Function

(PDF) generated from the errors of the mined model.
Mutation The mutation operator is guided by the causal dependencies of the

log.
Replacement Steady-state approach, with a reinitialization criterium based on

the improvement of the population.

Algorithm 1. ProDiGen

Initialize population1

Evaluate population2

t = 1, timesRun = initialTimesRun, restarts = 03

while t ≤ maxGenerations && restarts < maxRestarts do4

Selection5

Crossover6

Mutation7

Evaluate new individuals8

Replace population9

t = t+ 110

if bestInd (t) == bestInd (t− 1) then11

timesRun = timesRun− 112

if none of the individuals of the population have been replaced then13

timesRun = timesRun− 114

if timesRun < 0 then15

Reinitialize population16

Evaluate population17

timesRun = initialTimesRun, restarts = restarts + 118

modified. More specifically, one of the major changes takes place in the evaluation
of the population, where completeness, precision and simplicity are considered
in a hierarchical way. ProDiGen also defines (i) a new metric to measure the
precision of each individual, and (ii) a new method to measure the simplicity of
the model. Furthermore, we introduce heuristics to guide the genetic operators,
focusing the search on those parts of the mined model that have errors and, also,
reducing the search space to those models that are supported by the information
in the log.
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Algorithm 1 describes how ProDiGen works. The first three steps correspond
to an initialization, where t represents the number of iterations, timesRun is
used to detect situations in which the search gets stuck, and restarts counts the
number of reinitializations. The evolution cycle of the algorithm starts at Alg.
1:4. This part will be repeated until the stopping criterion is fulfilled. The mains
steps of the iterative part are the selection of the individuals, the crossover and
mutation operations to generate new individuals, their evaluation, the replace-
ment of the population, and the analysis of the population to detect blockages
in the search process. All these steps are described in detail in the next sections.

2.1 Initialization

In ProDiGen, each individual codifies a workflow using a causal matrix repre-
sentation [2]. A causal matrix can map any Petri net in terms of dependency
relations —which tasks enable the execution of other tasks— as it represents the
input and output dependencies of each activity of the model.

ProDiGen uses the same heuristics —based on the causality relations between
tasks— described in [2] to generate the initial population. Moreover, we also add
to the initial population the solution mined with the Heuristics Miner approach
[12]. With this process, the dependency relations are captured using the Heuris-
tics Miner and then, with ProDiGen, the different inputs and outputs bindings
are optimized. We have empirically concluded that adding the Heuristics Miner
solution to the initial population does not modify the model mined with ProDi-
Gen. Nevertheless, the inclusion of this individual in the initial population speeds
up the iteration at which the best individual is found: instead of relying only on
randomly initialized individuals, ProDiGen also uses the dependency relations
mined by Heuristics Miner.

2.2 Evaluation

The individuals of the population are evaluated taking into account complete-
ness, precision and simplicity, combined in a hierarchical fitness function.

Completeness. We use the definition of completeness (Cf) described in [2],
which takes into account the number of correctly parsed tasks 4, but also punishes
the number of missing and not consumed tokens of the Petri net encoded in the
individual —each missing or not consumed token represents a failure.

Precision. A model is precise when it reproduces the event traces of the log,
not allowing for too much extra behavior, i.e, behavior that does not exist in
the log. Our definition of precision considers all the activities that are enabled
—tasks for which their input conditions are met when reproducing the log—
while an individual parses the event traces of the log:

4 If a task from an individual does not have the proper input arcs, that task will be
incorrectly fired when reproducing the log, as its input conditions are not fulfilled.
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Pf (L, CM) =
1

allEnabledActivities (L, CM)
(1)

where allEnabledActivities is the sum of enabled activities after firing each ac-
tivity of the log L by an individual CM . The idea behind this definition is to
punish those individuals that enable too many activities during the parsing of
the log, as they activate several paths that allow for extra behavior. Contrary to
[2], ProDiGen does not consider the rest of the population in order to compute
the precision of each individual, which can evolve regardless the precision of the
rest of the population.

(a) Mined model with needless
branches.

E D

B

C

A

(b) Simplest mined model.

Fig. 1. Two possible solutions with the same completeness and precision

Simplicity. Completeness and precision give, by their own, a good indicator of
how good is a mined model, but do not guarantee to find the simplest model.
Hence, the third dimension of the fitness is simplicity. Although, there are several
metrics that measure the complexity of a directed graph [6], there is no metric
to measure the simplicity of a causal matrix. Instead of converting the causal
matrix to a Petri net each time we want to measure the complexity of the
model, we opted to define a new complexity metric for causal matrices. The new
metric measures the complexity of a mined model based on the number of causal
relations of an individual:

Sf (CM) =
1∑

t∈CM
(∑

Φ∈I(t) |Φ|+
∑
Ψ∈O(t) |Ψ |

) (2)

where t is a task of the causal matrix CM, Φ is an element of the input function of
t —I(t)—, and Ψ is an element of the output function of t —O(t)—. Therefore,
the simplicity counts the number of causal relations of the model using the
cardinality of the input and output subsets of the causal matrix.
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To illustrate the relevance of simplicity to mine the correct model, lets assume
a simple example with three different traces:<< A,B,C,D >3,< A,C,B,D >2,
< A,E,D >4>. Fig. 1 shows two mined models that have the same completeness
and precision: (i) both can parse all the traces, i.e., Cf = 1.0; and (ii) they enable
exactly the same number of tasks during the parsing (50), thus Pf = 1/50.
However, the model in Fig. 1a has a Sf = 1/16, while the model in Fig. 1b has
a Sf = 1/14 and, therefore, the second one is a better model5.

Fitness. ProDiGen uses a hierarchical fitness function that establishes priorities
among these three objectives:

F(a) > F(b) ⇐⇒ {Cf (a) > Cf (b)} ∨ {Cf (a) = Cf (b) ∧ Pf (a) > Pf (b)} (3)

∨ {Cf (a) = Cf (b) ∧ Pf (a) = Pf (b) ∧ Sf (a) > Sf (b)}

where F (a), Cf (a), Pf (a) and Sf (a), are respectively the fitness, completeness,
precision and simplicity of a process model a. The advantage of using this hier-
archical fitness function over a weighted fitness function is that, during the first
stage of the evolutionary process, the GA focuses the search on those individuals
that are complete. Once these individuals become representative in the popula-
tion, the second level of the hierarchy takes the control, modifying the models
that are complete in order to improve their precision. Finally, in the third stage,
the fitness function guides the GA to improve the simplicity of those models that
are both complete and precise.

2.3 Selection

ProdDiGen uses the binary tournament selection as selection mechanism. In a
n-tournament selection, n individuals are randomly picked from the population
—with replacement— and the best of them is selected. In this case, n = 2
—binary tournament selection.

2.4 Crossover

As the process models are represented through causal matrices, and the size of
the causal matrix increases with the number of activities in the log, the num-
ber of possible crossover points could be really large —increasing significantly
the search space. Thereby, we have noticed that picking the crossover point at
random produces a poor performance of the crossover operator, as most of the
offspring have a fitness lower than their parents after the crossover operation
—the selected task of the individual to be crossed can be a correctly fired one.

5 The difference between these two solutions —in terms of simplicity— is caused by the
output function of the task A: the causal matrix of the model in Fig. 1a has O(A) =
{{BE}, {DC}, {C E}}, which increases its complexity by 6. On the other hand, the
causal matrix of the model in Fig. 1b has O(A) = {{BE}, {C E}}, increasing the
complexity by 4.
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ProDiGen makes the selection of the activity that is going to be crossed using
a non uniform Probability Density Function (PDF). This PDF assigns a null
probability of being selected to those activities that have been correctly fired
during the parsing of the traces in the log. On the other hand, those activities
that were incorrectly fired receive a uniform probability —inversely proportional
to the number of incorrectly parsed activities— of being crossed.

Algorithm 2. Crossover operator

r ← getRandomNumber() ; // returns a random number between [0,1)1

if r < crossoverRate then2

incorrectlyFiredActivities ← ∅3

if fitness(parent1) >= fitness(parent2) then4

incorrectlyFiredActivities ← set of incorrectly fired activities of parent15

else6

incorrectlyFiredActivities ← set of incorrectly fired activities of parent27

if incorrectlyFiredActivities �= ∅ then8

crossoverPoint ← randomly select an activity t from9

incorrectlyFiredActivities

else10

crossoverPoint ← randomly select an activity t from the bag of all11

possible tasks in the log

offspring1, offspring2 ← doCrossover(parent1, parent2, crossoverPoint)12

Repair offspring1 and offspring213

The selection of the crossover point is summarized in Alg. 2. By incorrectly
fired activities we mean (i) activities that need extra tokens in their inputs to be
fired, i.e, tasks that do not have the correct input arcs, and (ii) activities that
have left tokens in their outputs after the parsing of the traces, i.e, tasks that do
not have the correct output arcs. Therefore, during the evaluation process, the
algorithm keeps track of the tasks with missing or extra tokens, and generates a
bag of incorrectlyFiredActivities for each individual. Thereby, the crossover point
is selected from the set of incorrectlyFiredActivities of the fittest parent (Alg.
2:4). Note that if the set of incorrectlyFiredActivities of the fittest individual is
empty (Alg. 2:8), i.e, it has a completeness equal to 1, the crossover point is
randomly chosen from the bag of all the possible tasks in the log (Alg. 2:11).
After the crossover point is selected, the crossover is performed as defined in [2].
Thus, the crossover operator combines —by adding or merging subsets— the
inputs for the selected task t of both parents, in order to generate the new inputs
for t in the offspring. Finally this process is repeated for the output functions.
As the input and output (I/O) functions of the crossover task can change by
adding/removing causal dependencies, there may be inconsistencies between the
I/O function of the crossover point and the rest of I/O functions of the individual
— for example, a task t may have an output dependency with t’, but t’ does not
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have the input dependency with t. Thereby, after each crossover, the individual
has to be repaired (Alg. 2:13) to avoid these discrepancies between the input
and output sets of the tasks. The repair process works as follows. For each task
t’ that was eliminated from O(t), the process checks if t’ ∈ O(t) —notice that
t’ can be in several subsets of O(t). If that is false, t has to be eliminated form
I(t’). This process is repeated also for the input sets. On the other hand, when
a task t’ is added to O(t), the process checks if t ∈ I(t’). If that is false, then t
is added to I(t). A similar process is done for the inputs of t.

2.5 Mutation

The mutation operator modifies the population by (i) adding new material —new
relations— to the individuals; (ii) removing causal relations; or (iii) reorganizing
an input/output function, for instance, converting an AND-join into an OR-join.

Although ProDiGen uses the three mutation actions defined in [2], there are
four major differences between our mutation operator and the one defined in
Genetic Miner: (i) the individual is iteratively mutated until it is different from
its parent —a mutation could generate an individual equal to its parent due to
an useless mutation, for example, redistributing an empty set; (ii) only one task
is affected by the mutation operator; (iii) individuals are always forced to mutate
—the mutation probability is 1; and (iv) the task t′ added to the I/O set of a
task t must belong to the set of tasks that have an input/output dependency
with t. The major goal of these modifications is to avoid duplicate individuals
within the same population, or at least to minimize the duplicates. With these
modifications, we have a more diverse population.

The mutation operator is summarized in Alg. 3. It uses two sets for the addi-
tion of a new task: outputDependencies(t) and inputDependencies(t). ProDiGen
uses these sets to reduce the set of tasks that are appropriate to be inserted in an
I/O set, preventing the inclusion of a new task t’ that never appears in a trace
of t within the log. A first approach could be to include in the dependencies
sets those tasks that have a dependency with t as calculated in the initialization
phase. However, if we only take into account these dependencies, there will be
not enough new material to discover all the different constructs. Therefore, in-
putDependencies(t) will be the set of tasks appearing before t in any trace of the
log and, in the same way, outputDependencies(t) will be the set of activities that
appear after t in any trace of the log. In this way, the mutation operator focuses
only on those regions of the search space that represent information contained
in the log. As a result, the success of the mutation operator increases, finding
better offspring. Again, as the mutation operator can add or remove a task from
an I/O set of a task t, there may be inconsistencies within the causal dependen-
cies of the individual. Therefore, after each mutation the individual has to be
repaired (Alg. 3:15), following the same strategy described in Sec 2.4.
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Algorithm 3. Mutation operator

while the individual does not change do1

Randomly choose one task t in the individual2

mutationType← getRandomNumber() ; // returns a random number3

between [0,1)

if mutationType < 1/3 then4

Randomly select a task t’ from inputDependencies(t)5

if getRandomNumber() < 1/2 then6

Randomly choose one subset X ∈ I(t) and add the task t’ to X7

else8

Create a new subset X, add the task t’ to X, and add X to I(t)9

else if mutationType < 2/3 then10

Randomly choose one subset X ∈ I(t) and remove a task t’ from X,11

where t’ ∈ X. If X is empty after this operation, exclude X from I(t)

else12

Randomly redistribute the elements from I(t)13

Repeat from line 3, but using O(t) instead of I(t) and14

outputDependencies(t) instead of inputDependencies(t)
Repair the individual15

2.6 Replacement

At each iteration, ProDiGen generates N offspring —being N the size of the
population— as follows. Tournament selection randomly picks two parents from
the current population. These individuals are modified by the genetic opera-
tors, creating two new individuals. This process is repeated until N offspring
are generated. At this point, the parent population —current population— and
the offspring population are joined and sorted —using the fitness. Finally the re-
placement operator selects the N best individuals. In order to maintain a diverse
population, those repeated individuals are placed at the bottom of the ranking
—keeping one representative in the original ranking position.

2.7 Reinitialization

A reinitialization takes place when the value of timesRun goes under 0 (Alg.
1:15), which indicates that the search process was not improving in the last
iterations. This situation is detected in two ways. The first one (Alg. 1:11) is
when the new population of an iteration has no new individuals —in comparison
with the initial population of that iteration. The second indicator (Alg. 1:13)
is the fact that the best individual does not improve. Each time that one of
these situations is detected, timesRun decreases. The initial population after
a reinitialization is generated in the same way as in the initialization stage.
Moreover, ProDiGen also includes in the new population a mutation of the
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Table 2. Process models used in the experimentation

Activity structures Log content

Model #
Ta
sk
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Le
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th
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ne

Lo
op

Le
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-T
wo

Lo
op

Ar
bi
tr
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ta
sk
s
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nc
ed
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D
-jo
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/s
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it

#
tr
ac
es

#
ev
en
ts

g2 [2] 22 � � � � � � 300 4501
g3 [2] 29 � � � � � � 300 14599
g4 [2] 29 � � � � � 300 5975
g5 [2] 20 � � � � � 300 6172
g6 [2] 23 � � � � � 300 5419
g7 [2] 29 � � � � � 300 14451
g8 [2] 30 � � � � � � � 300 5133
g9 [2] 26 � � � � � � 300 5679
g10 [2] 23 � � � � � 300 4117
g12 [2] 26 � � � � � � 300 4841
g13 [2] 22 � � � � � � � 300 5007
g14 [2] 24 � � � � � � 300 11340
g15 [2] 25 � � � � � 300 3978
g19 [2] 23 � � � � � � 300 4107
g20 [2] 21 � � � � � � 300 6193
g21 [2] 22 � � � � 300 3882
g22 [2] 24 � � � � � � 300 3095
g23 [2] 25 � � � � � 300 9654
g24 [2] 21 � � � � � � 300 4130
g25 [2] 20 � � � � � 300 6312
EMT [1] 7 � � � � 100 790

best individual of the last iteration. The maximum number of reinitializations
is limited, and when it reaches the threshold (maxRestarts) ProDiGen ends.

3 Experimentation

This section describes (i) the validation of ProDiGen with 21 different logs us-
ing several conformance checking metrics, and (ii) the comparison of ProDiGen
performance with two well-known state of the art process mining techniques:
Heuristics Miner [12] and Genetic Miner [2].

3.1 Logs

ProDiGen has been validated with 21 different logs from [2] and [1]. Tab. 2
summarizes the structural complexity of these models ranging from 7 to 30



128 B. Vázquez-Barreiros, M. Mucientes, and M. Lama

tasks. Some of the models used in the experimentation contain unbalanced AND-
split/join points, i.e, there is not a one-to-one relation between the AND-split
points and the AND-join points. Moreover, all the logs are imbalanced, i.e., they
contain traces with very different frequencies. Thereby, with this experiment
we can check whether the algorithm overfits or underfits the data due to the
unbalanced frequencies of the traces in the log.

3.2 Metrics

The performance of ProDiGen over the different logs has been measured with
two different sets of metrics: (i) metrics based on the original model; and (ii)
metrics based on the event log.

Metrics Based on the Original Model. To compare the original and the
mined models, we use the metrics defined in [2]:

– To quantify the behavior similarity between the original model and the mined
one we use the metrics Behavioral precision (Bp) and Behavioral recall (Br),
which detect, respectively, if the mined model can process traces that cannot
be parsed by the original model, and if the original model can parse traces
that cannot be processed in the mined model. The mined model is as precise
as the original one if Bp = 1 and Br = 1: the closer the values of Bp and Br
to 1, the higher the similarity between the original and the mined models.

– On the other hand, to measure the similarity from the structural point of
view of the mined model with respect to the original one, we use the metrics
Structural precision (S p) and Structural recall (S r). They check, respectively,
if there are causality relations of the mined model that are not defined in the
original model, and if there are causality relations of the original model that
are not defined in the mined model. When the original model has connections
that do not appear in the mined model, Sr will take a value smaller than 1,
and, in the same way, when the mined model has connections that do not
appear in the original model, Sp will take a value lower than 1.

Metrics Based on the Log. Additionally to the four previously described
metrics, we also use three metrics that do not require the original model as
input:

– To measure the completeness we use the proper completion measure [5],
which is the fraction of properly completed process instances. Proper com-
pletion (C ) takes a value of 1 if the mined model can process all the traces
without having missing tokens or tokens left behind.

– The precision is evaluated with the alignment precision (P) defined in [7],
which, takes a value of 1 if all the behavior allowed by the model is observed
in the log.

– Finally, for the simplicity (S ) we use:

S =
1

1 + S′
(4)
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where S′ is the weighted P/T average arc degree defined in [6]. The higher
the value of S, the higher the simplicity. To measure these three metrics we
used the tool CoBeFra [11].

Table 3. Results for the 21 logs

Logs

g2 g3 g4 g5 g6 g7 g8 g9 g1
0

g1
2

g1
3

g1
4

g1
5

g1
9

g2
0

g2
1

g2
2

g2
3

g2
4

g2
5

E
M
T

ProDiGen

Model

metrics

Bp 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.96 1.0

Br 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 1.0
Sp 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.91 1.0
Sr 1.0 1.0 0.97 1.0 1.0 1.0 0.94 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.98 0.91 1.0

Log

metrics

C 1.0 1.0 0.78 1.0 1.0 1.0 0.52 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.98 1.0
P 0.90.82 0.98 0.980.95 0.88 0.86 0.92 0.890.97 0.93 0.93 0.860.92 0.78 0.91 0.9 0.58 0.89 0.74 0.87
S 0.3 0.3 0.31 0.310.31 0.32 0.28 0.31 0.3 0.31 0.3 0.31 0.25 0.3 0.29 0.31 0.3 0.3 0.29 0.31 0.27

GM

Model

metrics

Bp 1.00.61 0.78 1.0 1.0 1.0 0.84 0.96 0.99 1.0 0.98 0.61 0.8 0.98 1.0 1.0 0.970.57 0.83 0.81 1.0
Br 1.00.97 0.97 1.0 1.0 1.0 1.0 1.0 0.97 1.0 0.99 1.0 0.97 0.9 1.0 1.0 1.0 0.88 0.88 0.96 0.83
Sp 1.00.81 0.81 1.0 1.0 1.0 1.0 0.97 0.9 1.0 0.95 0.95 0.880.95 1.0 1.0 0.850.76 0.75 0.76 0.85
Sr 1.00.81 0.81 1.0 1.0 1.0 0.94 0.98 0.92 1.0 0.94 0.94 0.870.89 1.0 1.0 0.850.74 0.75 0.74 0.85

Log

metrics

C 1.00.31 0.59 1.0 1.0 1.0 0.26 0.48 0.48 1.0 0.75 1.0 0.15 0.2 1.0 1.0 0.43 0.2 0.72 0.41 0.3
P 0.90.42 0.98 0.980.95 0.88 0.0 0.94 0.910.97 0.96 0.74 0.0 0.0 0.78 0.91 0.86 0.0 0.88 0.49 0.81
S 0.30.31 0.3 0.310.31 0.32 0.26 0.3 0.290.31 0.3 0.31 0.240.29 0.29 0.31 0.3 0.28 0.3 0.28 0.3

HM

Model

metrics

Bp 1.0 1.0 0.94 1.0 0.9 0.97 0.87 1.0 0.96 1.0 1.0 0.97 0.960.97 1.0 1.0 0.99 0.6 0.92 0.76 0.81

Br 1.00.98 0.92 1.0 0.98 0.97 0.99 0.98 0.95 1.0 1.0 0.97 0.98 1.0 1.0 1.0 0.99 1.0 0.88 0.94 0.96
Sp 1.00.97 0.96 1.0 0.93 0.97 0.95 1.0 0.96 1.0 1.0 0.96 1.0 1.0 1.0 1.0 0.970.91 0.89 0.85 0.76

Sr 1.00.97 0.86 1.0 0.97 1.0 0.86 1.0 0.96 1.0 1.0 0.92 0.86 0.9 1.0 1.0 0.910.94 0.81 0.85 0.74

Log

metrics

C 1.0 1.0 0.78 1.0 0.66 1.0 0.52 0.74 0.78 1.0 1.0 0.91 0.870.85 1.0 1.0 0.9 0.0 0.93 0.23 0.37
P 0.90.83 0.99 0.980.93 0.9 0.86 0.93 0.9 0.97 0.93 0.92 0.870.93 0.78 0.91 0.9 0.0 0.86 0.71 0.85
S 0.3 0.3 0.32 0.310.31 0.31 0.28 0.31 0.3 0.31 0.3 0.32 0.26 0.3 0.29 0.31 0.3 0.29 0.29 0.3 0.29

3.3 Results

Within this scenario, we have conducted an experimentation comparing ProDi-
Gen with two of the state of the art most popular algorithms: Genetic Miner [2]
and Heuristics Miner [12].

The values that have been used for the parameters of ProDiGen are: max-
Generations = 1,000, initialTimesRun = 35, population size = 100, crossover
probability = 0.8 andmaxRestarts = 5. For the Genetic Miner (GM), we selected
the parameters indicated by the authors in [2]: maxGenerations = 5,000, pop-
ulation size = 10, crossover probability = 0.8, mutation probability 0.2, elitism
rate = 0.2, selection type = tournament 5. For the Heuristics Miner (HM), we
used the default parameters established in ProM 6.3 with the option mine long
distance dependencies enabled.

Table 3 shows the results on the 21 logs. ProDiGen mines the same model as
the original model in 17 of the logs —the values of the four model metrics are 1—
while in the other four logs the mined model is very similar to the correct one.
The difficulties in these 4 logs arise when (i) mining logs with parallel constructs
with more than two branches and with two or more tasks in each branch, and
(ii) when mining logs that came from models with unbalanced AND-join/split
points. These type of patterns are even more difficult to mine considering that
not all the possible combinations admitted by the original model are represented
in the log, and not all the traces have the same frequency. Therefore, ProDiGen
tries to better fit the most frequent behavior of the log, overfitting the data
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(a) Original model.

(b) Mined model.

Fig. 2. Detail of the original and mined models for log g24

when dealing with these constructs. We now discuss the details of the models
incorrectly mined by ProDiGen:

– The results for log g24 (Fig. 2) show that the mined model is almost equal
to the original one, except the only one relation between two tasks (tasks in
grey, Fig. 2b). If we process the log with the original model (Fig. 2b) we can
check that the missing relation is never used and, hence, it is impossible to
mine that relation with the information of the log.

– The mined model for log g8 (Fig. 3) has a behavioral precision and recall
equal to 1, i.e., the mined model can parse all the traces from the log and
allows the same behavior as the original one with respect to the information
contained in the log. However, the model is not complete because it can-
not tackle the output dependencies of the tasks timeout and return-contract,
considering them as final tasks —Fig. 3a shows the original output depen-
dencies of these tasks. This results in a incomplete mined model, because
all the traces involving these two tasks will have an extra token at the end
of the parsing. The main problem with this log is that these two tasks are
involved in the unbalanced AND-join/split, which cannot be correctly mined
by ProDiGen.

– For log g25 the behavioral recall and precision are close to 1. This means
that, even when the model is not as precise as the original, it does not allow
for more extra behavior than the original one with respect to the log. Despite
this model does not have an unbalanced AND-join/split point, it has many
interleaving situations, which make very difficult to properly mine the correct
relations of the different branches of the parallel construct.
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– The mined model for log g4 has again a behavioral precision and recall of
1, showing that it expresses the same behavior as the original model with
respect to the log. The main problem when mining this log is that ProDiGen
cannot find the complete model because it discovers an extra final task due
to the unbalanced AND-join/split point —the same problem as in log g8.

(a) Original model. (b) Mined model.

Fig. 3. Detail of the original and mined models for log g8

Table 3 also shows the results of the other algorithms. The main problem of
GM is that it finds solutions with too many silent transitions6 generating models
with low precision and simplicity. On the other hand, HM focuses its search on
the main behavior of the log —finding solutions with high levels of simplicity.
Hence, it cannot find the original model on those logs that came from models
with many interleaving situations, as it tries to better fit the most frequent
behavior recorded in the log —as the logs are unbalanced, not all the possible
relations have the same frequency.

Comparing the results of the three algorithms: ProDiGen correctly mines, i.e,
finds the original model, the 81% (17 out of 21) of the cases; GM finds the original
model in the 33% (7 out of 21) of the logs; and HM finds the original model in
the 28% (6 out of 21) of the logs. Moreover, Table 3 also shows information
about which algorithm retrieves better results for each metric —highlighted in
grey. On those logs where ProDiGen did not find the original model —logs g4,
g8, g24 and g25— it still obtains the best solution of the three algorithms.

6 A silent transition is a type of activity used for routing purposes only, as it does not
correspond to any activity in the log.
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Based on this experimentation, we can conclude that using a hierarchical
fitness function based on completeness, precision and simplicity, shows a great
performance when mining unbalanced logs. Moreover, the inclusion of heuristics
in the genetic operators also improves the results, as ProDiGen focuses the search
over those regions that represent the behavior of the log.

4 Conclusions

We have presented ProDiGen, a genetic algorithm for process mining that can
tackle all the different constructs at once, and obtains models that are complete,
precise, and simple, while being robust to infrequent behavior and unbalanced
logs. ProDiGen uses a new hierarchical fitness function that includes new defini-
tions for precision and simplicity. Moreover, the proposal uses genetic operators
that focus the search on specific parts of the model: (i) the crossover operator
selects the crossover point based on the errors of the mined model; and (ii) the
mutation operator is guided by the causal dependencies of the log. ProDiGen
has been validated with 21 different models with all kind of workflow patterns
and unbalanced logs. Results conclude that ProDiGen mine in most of the cases
the original model, or a very similar, simple, and precise model that represents
almost all the behavior of the log. Furthermore, ProDiGen has been compared
with two of the state of the art algorithms, showing a better performance, and
finding models that are complete, precise and simple.
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