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Abstract—Many computer vision applications require real-time
processing speeds, which prevents them from running an object
detector on all frames of the sequence. In such circumstances, it
is necessary to resort to motion estimation techniques in order
to maintain the identity of the targets. This can be carried
out by instantiating multiple single object trackers, if there
are few targets, or through methods that globally extract the
frame features, in order to share computations. The problem
with the latter is that they yield features with limited semantic
information and detect changes in the scene by performing multi-
scale tests, which is inefficient and prone to errors. To solve these
problems and provide accurate tracking for multiple objects in
real-time, we propose SiamFAST. SiamFAST includes: a feature-
pyramid-based region-of-interest extractor that produces quality
features for both object exemplars and search areas; a pairwise
depthwise region proposal network to compute fast similarities
for several dozens of objects; and a multi-object penalization
module in order to suppress the effect of distractors. SiamFAST
has been validated on three public benchmarks, achieving leading
performance against current state-of-the-art trackers.

I. INTRODUCTION

Many computer vision applications seek to extract in-depth

knowledge about what occurs in a video, such as anomaly

detectors [1] or automatic summarizers [2]. A common feature

of most of these systems is that they rely on multiple specific

components to gather baseline information from the scene,

in order to then use it to reach more elaborated conclusions.

One of the most widely adopted components are visual object

trackers, since they maintain the identity of the elements

of interest over time, observing their evolution in size and

location. If there are multiple targets in the scene, this is

usually accomplished by running an object detector in each

frame, and then associating the detections to generate tracks.

However, if the use case requires real-time feedback, tra-

ditional multiple object tracking (MOT) techniques have to

be dismissed, as they are computationally very expensive —

only 5 methods submitted to the MOT2020-Challenge [3] are

able to run in real-time1, despite having the detections already

available. Moreover, all this is further aggravated by the fact

that good-performing detectors alone already have difficulties

running in real-time —on an NVIDIA TITAN V, EfficientDet-

D3 [4] processes HD720 images at 23 fps. Thus, in this type of

situations, motion estimation techniques are often relied upon

to maintain the identity of the targets between detections.

1We qualify a system/module as real-time-capable if it can handle an
HD720 video stream at least at 25 fps on an NVIDIA TITAN V or equivalent.
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Fig. 1. In a real-time application, an MVOT (green) is able to process the
image (upwards arrows) and provide a prediction (downwards arrows) for
each frame of the sequence. Meanwhile, an MOT system lacking motion
estimation (red) is computationally very expensive, so it is not able to process
some frames —it resorts to populate them with the last known position of
the objects— and its outputs present noticeable delays. Benchmarks such as
VOTChallenge’s VOT-RT [5] simulate these scenarios.

Motion estimation mechanisms are able to provide the

coordinates of objects in all the frames without depending

on continuous detections. Nowadays they are mostly based

on Visual Object Tracking (VOT), leading to the concept of

Multiple Visual Object Tracking (MVOT) techniques (Fig. 1),

which allows them to exploit the most recent breakthroughs

in single-object tracking [6]. Moreover, since most of them

support arbitrary objects (they are class-agnostic), they can

be applied to a wide variety of scenarios without requiring

any further retraining or adaptation. However, the main disad-

vantage they present is that they often resort to the multiple

instantiation of single-object trackers, making them viable only

for a few targets —as their speed decreases exponentially

with each added object. To overcome this problem, techniques

such as [7] emerge, which share computations between objects

and introduce specialized efficient operators, being able to

track several dozens of objects in real-time. Nonetheless, the

resulting features are not always of high quality, leading to

inferior accuracies.

In this paper we propose SiamFAST (Siamese Feature

pyrAmid propoSal Tracker), a multiple visual object tracker

for motion estimation. SiamFAST takes inspiration from the

techniques employed in computer vision to generate quality

predictions and applies them to tracking, following the basics

defined in [7], all while solving several problems of the

previous framework. The main contributions of our work can

be summarized as follows:

• We enable the tracking of widely varying object sizes



by integrating a Feature Pyramid Network (FPN) into

the regions-of-interest (RoI) crop-and-resize operation.

It allows for less abrupt scale variations and features

with richer semantic information. To the best of our

knowledge, this is the first time that such a technique

is employed in a detection-independent object tracker.

• We introduce a novel Pairwise Depthwise Region Pro-

posal Network (PD-RPN) that efficiently identifies vari-

ations in the objects’ aspect ratio and size without re-

sorting to multi-scale testing. This component merges

the features of exemplars and search areas in pairs,

generating tensors on which anchors are then applied to

more accurately predict the coordinates of the objects.

• We introduce a novel multi-object penalization module

for a computationally efficient refinement of proposals.

It embeds a morphological operator for filtering outliers

and a distractor suppression mechanism, which prove

especially useful in crowded scenarios.

• We assess our architecture on three public benchmarks

using VOT-RT metrics [5], outperforming current state-

of-the-art trackers.

II. RELATED WORK

A. Visual Object Tracking

Visual object trackers define a function that compares the

appearance of an object at the beginning of a video —

exemplar— with the current frame or a portion of it —search

area—. This comparison will yield the new coordinates of

the object in the scene. Most single object trackers provide

predictions as they process frames —online tracking— and

do not vary the exemplar image of the object, which makes

them efficient, and good potential candidates for real-time

applications.

Traditionally, the similarity between the exemplar and the

search areas was modeled through Discriminative Correlation

Filters (DCF). Initially, these selected the single filter that

resulted in the highest correlation with the exemplar, and then

applied it over the following search areas, thus being able

to distinguish the background from the target [8]. Given the

effectiveness and simplicity of the technique, it was gradually

developed to incorporate more types of filters, even modeling

them through convolutional learned layers [9]. However, while

DCFs are fast, they have now been displaced in favor of more

accurate deep learning-based trackers.

The current state-of-the-art in visual object tracking relies

on deep learning techniques. They are based on deep con-

volutional neural networks (CNNs) that are trained offline

over large databases, which produces accurate and robust

similarity functions. These networks extract the features of

the exemplar and fuse them with those of the search area,

generating predictions. This architecture can be modeled with

a Siamese structure with shared weights, which is very effi-

cient and helps learning [10]. On this basis, new contributions

from other fields of computer vision were incorporated, such

as the inclusion of region proposal networks —with [11]

or without anchors [12]—, segmentation heads [13], deeper

backbones [14], or mechanisms to assess the quality of the

predictions [15].

Besides Siamese networks, there are also convolutional

architectures that feature different components for estimating

and classifying objects [16]. These trackers incorporate an

estimation module to predict the overlap between the output

bounding-box and the object, and a classification component

to discriminate the object from the background and possible

distractors. The results they deliver are generally good, but

they are strongly affected by the initialization of the exemplar

—as they are not deterministic— and are very sensitive to

the chosen hyperparameters. This is why specific mechanisms

have been proposed to reinitialize the starting appearance

model until its quality is satisfactory [17]. Nonetheless, the

nondeterminism of these architectures together with the high

computational cost of refining initializations and predictions

makes them unsuitable as real-time MVOT systems.

B. Motion estimation

The most widely used methods for tracking multiple objects

in a video rely on the association of detections. To do so, they

are highly dependent on a quality detector that must run on

all frames and result in few false positives while providing

good recall [18]. Since the most accurate detectors are very

resource-expensive, this approach is only feasible when no

constraint is imposed on the system speed. If the objective is

to track multiple objects in real-time, the paradigm changes,

and motion estimation is required for those periods when no

detections are available.

Currently, the preferred method for estimating the motion

of multiple targets in real-time video is based on the use

of multiple visual object trackers (MVOT) [6]. As the name

implies, they employ models that rely on visual features

to locate objects from one frame to the next. Given their

flexibility and efficiency, single-object visual trackers are often

employed to accomplish this task, either as part of some

modules of the architecture [19] or by incorporating them

as a completely independent component [20]. However, the

problem with these approaches is that they instantiate one

tracker per object, resulting in highly inconsistent performance

and being only usable for environments with few objects.

To solve the aforementioned problem, it is necessary to

develop MVOT architectures capable of scaling naturally with

the number of objects. Thus, approaches such as [7] arise,

which introduces new specialized operators and shares most of

the computations between targets, having a practically constant

computational cost, regardless of the number of objects. This

allows it to track several dozen objects in real time, being

much more efficient than other approaches — [7] handles

100 objects in an FHD video at 25 fps while [19] runs at

5 fps for just 21 targets. However, the techniques it employs

present some problems —it is not able to track very large or

very small objects without changing the input frame size— and

the outputs it provides are error prone —it resorts to multi-

scale testing and cannot recognize scale changes.
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Fig. 2. SiamFAST’s architecture. The (a) region-of-interest extractor obtains high-quality features for exemplars and search areas. The (b) pairwise-depthwise
region proposal network performs efficient comparisons, providing the new coordinates for each object. The (c) multi-object penalization module refines the
predictions to make them more robust against distractors and outliers.

III. SIAMFAST NETWORK ARCHITECTURE

SiamFAST has been designed with the aim of sharing as

many computations between objects as possible, and using

specialized operators that provide improved accuracy while

naturally scaling to several dozens of targets. As depicted in

Fig. 2, SiamFAST first extracts the global frame features, to

then isolate search areas using a region-of-interest (RoI) ex-

tractor that embeds a feature pyramid network (FPN) (a). Fol-

lowing this, exemplar and search area features are compared 2-

by-2 using a pairwise depthwise region proposal network (PD-

RPN) (b). This yields maps with objectness classifications and

bounding-box regressions that are later refined using a multi-

object penalization module (c). The most relevant components

are explained in more detail below.

A. Region-of-Interest Extractor

SiamFAST computes the updated coordinates of the targets

in each new frame. To do this, it could compare the exemplar

appearance model of each object with the whole frame. How-

ever, this would be computationally very expensive and would

have problems finding the objects if they had changed in size.

This is why visual object trackers rely on the use of search

areas, which are small portions of the scene that have been

cropped to contain the object of interest with an approximately

constant size. Trackers such as [11] or [14] perform this

cropping on the input image, and then extract their features.

This allows them to always work at an optimal resolution but

degrades the speed of the system, as the backbone is the most

expensive operation and its execution per-region is impractical.

On the other hand, [7] first extracts the features of the entire

frame —sharing computations between objects—, and then

crops and resizes the deepest feature map to create the search

areas. This allows it to be extremely efficient, but the quality

of the features suffers greatly if the objects do not have a

particular size —between 100 px2 and 200 px2.

To overcome these problems, SiamFAST shares computa-

tions by running the backbone on the entire frame, and then

generates high-quality search areas using the region-of-interest

extractor shown in Fig. 2a. Thus, SiamFAST does not rely

only on the last layer of the backbone, but integrates its

intermediate levels through a feature pyramid network that

generates semantically rich features at different resolutions.

Forward propagation of the deeper layers pushes the higher-

level information to the rest of the network, while connections

with shallower layers allows retaining object details that are

lost as the resolution decreases. This architecture will therefore

provide 4 levels of enriched features whose resolutions will al-

low to faithfully represent objects between 64 px2 and 512 px2.

Unlike object detectors that employ similar techniques [21],

we consider FPN level 1 since the scene will usually contain

dozens of not very large objects, and do not want to generate

very deep features —levels 5 or 6— as they are too abstract

and not good for discriminating between very similar objects.

To the best of our knowledge, this is the first time that

this technique is exploited in a detection-independent object

tracker.

For each resolution level, SiamFAST has a header that per-

forms the remaining region-of-interest extraction process. This

header first applies a 1×1 convolution on each enriched feature

map. The goal of this operation is to transform the features

to a similar feature representation, in order to make them

comparable regardless of the original resolution they came

from. This allows the rest of the network architecture —i.e.,

similarity operation and multi-object penalization module—

to be shared for all levels, which eases the convergence of

the algorithm and improves the efficiency. The latter is highly

significant, as it allows SiamFAST to compare exemplars

and search areas originally extracted at different resolutions,

something that other visual object trackers do not allow —

e.g., SiamRPN++ [14] and SiamCAR [12] have to modify the

stride in their backbones to ensure that all comparisons are

performed at the same resolution, and employ an ensemble of

heads for the different levels of the network.



Finally, each header clips the regions corresponding to each

search area through a modified RoI Align [22], stacking them

all in the same tensor. This operation has one sampling point

per bin, for a better computational efficiency, and ensures

that regions are always rendered with the same aspect ratio

in relation to the frame (1:1), which facilitates subsequent

similarity functions. The decision as to whether the header

at level 𝑘 ∈ [1, 4] will manage an area 𝐵 with coordinates

(𝐵𝑥 , 𝐵𝑦 , 𝐵𝑤 , 𝐵ℎ) is calculated as follows:
{

True, if 𝑘 = min
(
𝑘𝑙𝑜,max

(
𝑘ℎ𝑖 ,

⌊
𝑘0 + log2

(√
𝐵𝑤𝐵ℎ

𝑠 ⌊𝑎/𝑠⌋

)⌋ ))

False, otherwise (1)

where 𝑎 and 𝑠 are the canonical sizes of the search area and

network stride in Siamese trackers, respectively —𝑎 = 255

and 𝑠 = 8 for SiamFC-based architectures—, 𝑘ℎ𝑖 is the level

with the highest resolution —i.e., 4—, 𝑘𝑙𝑜 is the level with the

lowest resolution —i.e., 1—, and 𝑘0 is the level with resolution

1/𝑠 —level 3 in our case. Lastly, the crop coordinates for areas

in layer 𝑘 are calculated as 𝐵/2𝑘 .

B. Similarity Operation

The next step in the pipeline of a Siamese tracker involves

comparing the exemplars with the search areas in a sliding-

window manner, in order to obtain the updated coordinates

of the objects. This can be carried out with a simple cross-

correlation that directly returns a flat score map per object with

its probabilities of occurrence in each location of the search

area [7], [10]. It is extremely efficient and is very effective

in finding the center of the objects —as it is the only thing

that the similarity function learns—, but it is unable to detect

size variations. This is why it is necessary to combine it with

multi-scale testing —which therefore requires a total of S ∗N
comparisons, where S is the number of considered scales and

N is the amount of targets. Nonetheless, this makes it more

prone to instabilities and does not allow handling variations

in the aspect ratio of the objects, so some approaches emerge

trying to mitigate this by posing the similarity operation as a

region proposal network (RPN) [11].

An RPN is based on the use of anchors, which are rectangles

of different sizes and aspect ratios that slide across the search

area. Thus, when applied to tracking, the objective of the

network is to predict the probability of each anchor containing

the target and to redefine its location and size to fit said

object. This is implemented through 2 branches: one for the

classification of an anchor between object and non-object —

objectness— and another for the regression of the bounding

box —coordinates—. This removes the need for feeding mul-

tiple search areas at different scales, as the regressor takes care

of detecting size and aspect ratio changes. However, to apply

the RPN, [11] first transforms the features of exemplars and

search areas depending on the number of anchors 𝐾 to then

cross-correlate them, resulting in 6𝐾N comparisons —4𝐾N

for the coordinates regression and 2𝐾N for the objectness

classification—. This has a very large impact on the speed

of the system as the number of objects grows. This is why,

although SiamFAST’s similarity operation is based on this

concept, it also takes the idea described in [14] of postponing

the anchor-dependent transformations.

SiamFAST implements its similarity operation through the

pairwise-depthwise region proposal network (PD-RPN) de-

scribed in Fig. 2b. First, the tensors containing the exemplars

and the search areas go through a 3 × 3 convolution that

focuses on object/background distinction and another 3 × 3

convolution that specializes them for area delimitation, thus

creating the root of the two branches of the RPN. At this point,

the exemplar tensors can be cached and reused during the rest

of the tracking process, in order to speed up the computations.

Following this, within each branch, the feature tensors are

merged together. This is accomplished using a combination

of reshapes and the pairwise cross-correlation (Ẽ) defined

in [7]. Thus, the features are fused depthwise —without

aggregating their channels, which keeps their information

highly discriminative— and in a very efficient manner, since

Ẽ is designed to have a practically constant computational

cost regardless of the number of objects. Finally, anchors are

applied on the resulting tensors, yielding the classification

and regression predictions for each object. This entire process

requires only 2N lightweight comparisons, involving an order

of magnitude fewer parameters than a conventional RPN,

which allows SiamFAST to combine speed and accuracy.

C. Multi-Object Penalization Module

Although the predictions generated by the PD-RPN are

mostly sound, they can be improved through heuristic knowl-

edge, as most visual object trackers do [10]–[12], [15], [17].

The preferred and most effective methods are based on estab-

lishing a lower base probability to large displacements and to

bounding box transformations that involve large variations in

the area or the aspect ratio. These give good results, however,

since SiamFAST operates in environments with potentially

several dozens of objects, there is still room for improvement

to further refine its predictions. Thus, as shown in Fig. 2c,

SiamFAST introduces a multi-object penalization module that

applies the two previously stated techniques plus two novel

ones: a morphological penalization and a distractor penaliza-

tion, taking advantage of the fact that it will have information

from many of the objects in the scene. The proposed new

techniques are detailed below.

Morphological penalization. Occasionally, isolated points

with excessively high probabilities appear in the classification

score map. These outliers are a problem, since they are not

associated with anything specific —it can be anything from

a stuck pixel in the video to a complex background with

unusual colors— and represent failures that overshadow the

real predictions of the network and prevent it from working

properly. To solve this problem, we propose a novel penaliza-

tion based on the morphological erosion operation, which is

able to reduce the shapes contained in grayscale images. Thus,

we slide a 3× 3 kernel per channel —since the activations for

different anchor types are weakly related— that suppresses

such outliers and spares the large high-probability areas, which

are mostly related to correct predictions.



This process has the added effect of shrinking the correct

matches, causing them to cover a smaller area of the object.

This can be reversed by applying a 3 × 3 morphological

dilation kernel after the erosion. However, according to our

experiments, tightening the predictions of the network in

crowded scenarios has a positive impact on its performance.

This is why in such situations we only apply erosion.

Distractor-aware penalization. In videos with multiple

targets, it is common for those elements to be similar to each

other —e.g., of the same caterogry—, so identity switches

are a concern. Since SiamFAST will maintain the identity

of several objects at once, this allows it to have a strong

knowledge regarding what occurs in the scene and, thus,

consider such elements as potential distractors. Hence, we

propose a novel lightweight penalization mechanism capable

of modeling the interactions between objects in the video in

a simple-yet-effective manner.

The distractor model is rendered as a probabilistic

map 𝐺𝑊×𝐻×N that is proportional to the size of the scene

—(𝑊, 𝐻) =

⌈
𝑀∗𝐹
𝑎

⌉
—where 𝑀 is the size of the PD-RPN

classification map, 𝐹 is the dimensions of the frame, and 𝑎

is the canonical search area size of Siamese trackers [10].

Each channel represents one of the N objects and captures its

contribution to the distractor model in the following way:





1 −
(
sin

(
𝜋

𝐴𝑥
𝑝−0.5𝐴𝑤

𝑝−𝑖
𝐴𝑤

𝑝−1

)
sin

(
𝜋

𝐴
𝑦
𝑝−0.5𝐴ℎ

𝑝− 𝑗

𝐴
𝑦
𝑝−1

))2

,

if 𝑖 ∈
[
𝐴𝑥
𝑝 − 𝐴𝑤

𝑝

2
, 𝐴𝑥

𝑝 + 𝐴𝑤
𝑝

2

]
and 𝑗 ∈

[
𝐴
𝑦
𝑝 − 𝐴ℎ

𝑝

2
, 𝐴

𝑦
𝑝 + 𝐴ℎ

𝑝

2

]

1, otherwise (2)

where 𝑖 ∈ [0,𝑊), 𝑗 ∈ [0, 𝐻), 𝑝 ∈ [0,N ), and 𝐴4×N ={
(𝐴𝑥

𝑝 , 𝐴
𝑦
𝑝 , 𝐴

𝑤
𝑝 , 𝐴

ℎ
𝑝)
}
𝑝∈[0,N ) is the search area coordinates of

the objects mapped over the probabilistic map. Thus, each

object will generate a low-probability region centered on its

location and proportional to its size, making it harder to

consider network proposals in that area.

Once the global probabilistic model 𝐺 is available, it must

be adapted to each specific object. Thus, a local penalization

tensor 𝐿𝑀𝑤×𝑀ℎ×N is created, which contains the windows to

be applied to the classification predictions of each object. This

tensor is computed as follows:

𝐿𝑝 = min
𝑑∈D

𝜅𝑀
(
𝐺𝑑 , 𝐴𝑝

)
(3)

where D := {∀𝑑 ∈ [0,N ), 𝑑 ≠ 𝑝} and 𝜅𝑀 is a crop-and-resize

operator —e.g., RoI Align [22]— with an output of size 𝑀 .

At this point, 𝐿 can now be applied to the output of the

classification branch to suppress potential proposals biased by

distractors. This whole process is very efficient —𝐺 needs to

be computed only once per frame— and delivers good results,

which makes it very well suited for MVOT solutions.

IV. EXPERIMENTS

We conducted experiments in different multi-object scenar-

ios in order to verify the performance of SiamFAST. The

experiments were run using TensorFlow on a computer with an

NVIDIA TITAN Xp and an Intel Core i7-9700K with 16 GB

of DDR4 RAM.

A. Implementation details

Feature extractor. It is important to employ a backbone

with padding in its convolutions, so the information at the

edges of the image is not diluted. Thus, we chose ResNet-

18 [23] as it also provides robust features without requiring

too much memory or computational overhead. Since we aim

to capture the details of the scene at different resolutions,

we maintain the stride of all the convolutional blocks of the

backbone —unlike other trackers [12], [14] that modify them

to have unit spatial stride. Lastly, we do not adopt deeper

versions of ResNet since the gain in feature quality they

provide does not compensate for the loss of speed.

Exemplar and search area sizes. Our PD-RPN produces

outputs of size 25 × 25 from exemplars of size 7 × 7 and

search areas of size 31 × 31, as [14] shows that they provide

good accuracy without consuming excessive computational

resources. The area 𝐴2 covered by an exemplar is determined

by the size (𝑤, ℎ) of the object:

𝐴2
=

(
𝑤 + 1

2
(𝑤 + ℎ)

)
×
(
ℎ + 1

2
(𝑤 + ℎ)

)
(4)

This is mapped to 15×15 bins, and then the central 7×7 region

is extracted —as we need no additional context. Regarding the

search area, it also depends on the size of the target, and covers

an area of size
(

31𝐴
15

)2

, which is mapped to 31 × 31 bins.

Training process. SiamFAST is trained on ILSVRC [24],

YT-BB [25], GOT-10k [26], and COCO [27], following the

spatial-aware sampling strategy described in [14] and ensuring

that the FPN receives objects of all sizes throughout the

whole process. We use a batch size of 16 and optimize the

regression and classification losses defined in [11] using an

Adam optimizer [28] that starts from a learning rate of 3×10−5

and is exponentially decayed to 3×10−7. The backbone is pre-

trained on ImageNet and is frozen during the first 15 epochs,

to then end-to-end train the network for 30 additional epochs.

Finally, we fine-tune SiamFAST during 15 epochs in which

we favor intra-class discrimination and samples extracted from

videos. We consider 5 anchors with ratios [ 1
3
, 1

2
, 1, 2, 3].

B. Comparison with the state-of-the-art

The role of an MVOT is to receive the coordinates of several

objects and provide their subsequent locations in real-time,

without having access to further detection information. This is

why these systems must present a good balance between speed

and tracking quality. Therefore, we employed VOTChallenge’s

VOT-RT metrics [5] to evaluate the performance of SiamFAST

and other state-of-the-art approaches. This benchmark pro-

vides the robustness —percentage of frames where the tracker

did not lose the object, with an exponential sensitivity of

S = 30— and accuracy —average overlap between ground

truths and predictions— for different speed thresholds —i.e.,

25 fps and 20 fps.

In order to have a representative set of scenarios in

which motion estimation systems are commonly used,

we have selected various multi-object public datasets:

MOT-2017 [29], UAVDT [30], and VisDrone [31]. We

compared SiamFAST against the leading state-of-the-art



TABLE I
VOT-RT METRICS RESULTS

MOT-2017 UAVDT VisDrone
@20 fps @25 fps @20 fps @25 fps @20 fps @25 fps

Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

SiamMT 54.5 76.2 54.5 73.8 54.6 92.3 54.5 92.3 45.7 52.2 45.4 51.5

SiamFC++ 53.9 70.2 52.3 67.6 52.4 86.1 48.5 81.2 34.2 32.8 32.0 31.5
SiamCAR 47.5 60.0 46.0 58.2 40.3 70.0 37.1 64.9 28.9 29.8 27.8 29.3
SiamRPN++ 48.5 60.1 47.0 58.9 38.2 67.1 35.2 62.5 28.2 29.6 27.2 29.1
SiamRPN 50.9 70.7 49.5 67.9 53.5 89.9 49.8 85.7 36.2 34.4 33.9 32.8
SiamFC 45.8 58.4 45.2 57.2 41.4 73.3 37.5 67.3 27.9 29.5 27.0 29.0

SiamFAST 57.7 77.5 57.7 76.6 57.5 93.3 57.4 93.4 50.5 59.2 49.1 57.6

TABLE II
ABLATION STUDY WITH VOT-RT METRICS @25 FPS

MOT-2017 UAVDT VisDrone
Acc. Rob. Acc. Rob. Acc. Rob.

Baseline 49.5 74.1 41.9 75.9 42.3 48.7
+ R 55.2 76.3 50.9 92.5 44.8 54.4
+ R + S 56.7 76.2 57.0 93.4 47.0 56.3
+ R + S + P 57.7 76.6 57.4 93.4 49.1 57.6

methods SiamFC [10], SiamRPN [11], SiamRPN++ [14],

SiamCAR [12], SiamFC++ [15], and SiamMT [7], which are

frequently used as MVOTs for motion estimation tasks. The

results for each algorithm are shown in Table I. Red, blue and

green, represent 1st, 2nd and 3rd respectively.

As shown, SiamFAST improves the state-of-the-art in the

tested datasets by generous margins. It outperforms the best

state-of-the-art algorithm —SiamMT— by an average of +3.5

points in accuracy and +3.2 points in robustness —computed

for both 20 fps and 25 fps—, and beats all other trackers

by more than +8.4 and +12.7 points in average accuracy and

robustness, respectively. This demonstrates the effectiveness

and versatility of SiamFAST and its novel components, being

able to operate in very different and varied environments

without any additional tuning.

MOT-2017 contains several pedestrian videos under a va-

riety of settings: both indoors and outdoors with different

lighting conditions. These sequences are recorded with both

overhead fixed cameras and low-angle mobile cameras, which

increase the amount of prolonged total occlusions. SiamFAST

performs very well in these situations thanks to its RoI ex-

tractor (+3.2 points in accuracy and +2.8 points in robustness

@25 fps when compared to SiamMT), generating semantically

similar features capable of describing an object no matter if it

is far away or covers a large part of the scene. Additionally

our multi-object penalization module is able to resolve several

uncertainties found in the displayed crowded environments.

UAVDT features numerous intersections and highways from

a zenithal point of view, showing a huge variety of vehicles

with few occlusions but plenty of small objects. Thanks to

SiamFAST’s PD-RPN we can vary the aspect ratio of the

bounding-boxes —something very necessary in this kind of

aerial videos—, which results in a great improvement of the

tracking quality, especially in accuracy (+2.9 and +1.1 points

in accuracy and robustness @25 fps when compared to the

best state-of-the-art approach). Furthermore, our RoI extractor

obtains meaningful features from the smallest objects without

having to resize the images fed to the network —unlike

SiamMT or SiamRPN do, for example.

VisDrone is composed of multiple videos captured with

drone-mounted cameras in urban and city environments, cov-

ering many different weather conditions both during day and

during night. The camera is in motion, the categories cap-

tured are very different —e.g., cars, awning-tricycles, people,

bicycles— and occlusions are very common. To minimize

identity switches and increase the robustness, the multi-object

penalization module becomes critical in this type of crowded

environments. This, coupled with the fact that the videos depict

a large number of objects with very different sizes —our RoI

extractor is able to correctly extract their features— and that

perspective changes are very frequent —our PD-RPN is able to

efficiently vary the aspect ratio of the bounding-boxes—, gives

SiamFAST the biggest advantage in this benchmark over the

other approaches (we outperform the state-of-the-art by +3.7

points in accuracy and +6.1 points in robustness @25 fps).

C. Ablation Study

We assess the contribution of each component in Table II.

Baseline is a version of SiamMT [7] with a ResNet-18 [23] as

the backbone. It lags behind SiamMT as it does not dynami-

cally modify the size of the frame. R is the region-of-interest

extractor (Section III-A), which increases the accuracy and

robustness by an average of +5.7 and +8.2 points, respectively.

S is the similarity operation (Section III-B), whose better

bounding boxes yield an average improvement of +3.3 and

+0.9 points in accuracy and robustness, respectively. P is the

multi-object penalization module (Section III-C) and increases

accuracy by an average of +1.2 points and robustness by an

average of +0.6 points. Overall, the proposed novelties provide

an improvement over the baseline of +10.2 and +9.6 points

in average accuracy and robustness, respectively. An extended

ablation study can be found in the supplementary material.

V. CONCLUSIONS

We have presented a new real-time MVOT (multiple visual

object tracker) named SiamFAST. The main novelties it intro-

duces are an RoI extractor that generates quality features, a

PD-RPN that efficiently produces bounding-boxes for several

dozens of objects and a multi-object penalization module that

refines predictions in crowded scenarios. We have assessed the

performance of SiamFAST in different real-time benchmarks

under very different conditions, outperforming the best state-

of-the-art tracker by an average of +3.3 points in both average

accuracy and robustness at 25 fps.
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