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Abstract—Visual object tracking is of great interest in many
applications, as it preserves the identity of an object throughout a
video. However, while real applications demand systems capable
of real-time-tracking multiple objects, multi-object tracking so-
lutions usually follow the tracking-by-detection paradigm, thus
they depend on running a costly detector in each frame, and
they do not allow the tracking of arbitrary objects, i.e., they
require training for specific classes. In response to this need, this
work presents the architecture of SiamMT, a system capable
of efficiently applying individual visual tracking techniques to
multiple objects in real-time. This makes it the first deep-
learning-based arbitrary multi-object tracker. To achieve this,
we propose global frame features extraction by using a fully-
convolutional neural network, followed by the cropping and
resizing of the different object search areas. The final similarity
operation between these search areas and the target exemplars is
carried out with an optimized pairwise cross-correlation. These
novelties allow the system to track multiple targets in a scalable
manner, achieving 25 fps with 60 simultaneous objects for VGA
videos and 40 objects for HD720 videos, all with a tracking
quality similar to SiamFC.

I. INTRODUCTION

Visual object tracking is a major component in many
computer vision systems such as video surveillance [1] or
autonomous vehicles [2] since it maintains the identity of an
object throughout the frames of a video. Despite the recent
advances in the field, there are still difficulties in dealing
with factors such as deformations or fast motions. Arbitrary
object trackers are class-agnostic, namely, they are capable
of following objects regardless of their category, without
requiring retraining or knowing the class to which they belong.
This is very useful in situations where the objects of interest
are defined through techniques like background subtraction [3]
or visual attention models [4]. Moreover, the tracking of
multiple simultaneous objects arises new challenges, such as
total occlusions or identity switches. That is why, nowadays,
the adopted approaches to address multiple-object and single-
object tracking differ.

The most straightforward approach to tackle multi-object
tracking is to instantiate many individual trackers in parallel.
However, this is very inefficient and is only feasible when there
are few targets on the scene. For that reason, for a few years
now, multi-object tracking is done through the association of
detections [5], [6]. However, since tracking by association
of detections tends to be slow and requires the detector to
be pretrained with the categories to be tracked —arbitrary

targets are not allowed—, other techniques are often used
when tracking individual objects.

Individual visual trackers work by establishing the appear-
ance model of an arbitrarily defined object, for its comparison
with each one of the frames in the video. This model can
be generated from the video itself, using its own frames as
examples, or in a general manner, using large databases of
labeled videos. Two alternatives have dominated the state of
the art in individual tracking: those based on Discriminative
Correlation Filters (DCF) and those employing deep learning
techniques. Generally, individual visual trackers stand out for
their accuracy and speed. However, their architectures do not
allow to track multiple targets, so an independent tracker
must be instantiated for each followed object, causing an
exponential decrease in the speed of the system.

To enable the online visual tracking of multiple arbitrary
objects at real-time, this paper presents SiamMT, a novel
method that extends the SiamFC [7] framework. The main
novelty of our technique lies in that we set aside the current
formulations in multiple object tracking through association
of detections in favor of a pure tracking paradigm. Thus, dif-
ferently from current state-of-the-art multiple object tracking
techniques, there is no need to run a detector in each frame of
the sequence, and we can apply the latest advances in single
object tracking to multiple object scenarios. To the best of our
knowledge, SiamMT is the first deep-learning-based arbitrary
multi-object tracker. The main contributions of this work are
summarized as follows:
• We propose SiamMT, a Siamese Convolutional Neural

Network capable of real-time-tracking multiple arbitrary
objects in a scalable manner. Its design would allow
its application in SiamFC-based architectures, either by
training it end-to-end or by maintaining their learned
weights via a network-based transfer learning proce-
dure [8].

• In order to allow the tracking of different sized objects
in the same frame, we establish a reformulation of the
RoIAlign operation [9], making it capable of cropping
and resizing features extracted with a fully-convolutional
backbone without padding.

• We define a new similarity operation which, based on
the properties of depthwise cross-correlation, enables the
efficient pairwise comparison of multiple feature maps.

• Our approach is able to track 60 simultaneous objects in



VGA video and 40 objects in HD720 video at 25 fps,
all with a robustness and accuracy comparable to other
single-object trackers.

II. RELATED WORK

A. Multiple object tracking

As previously stated, the most adopted approach to multiple
object tracking is the association of detections [5]. These
methods, which generally lack speed due to the detectors’
runtimes and do not allow the tracking of arbitrary objects,
are divided into offline and online tracking systems.

Offline tracking by detection. Offline trackers by detection
stand out for their accuracy and tolerance towards detector
errors, with processing speed being their greatest disadvan-
tage. Within this category, the most popular methods today
are those based on graph probabilistic algorithms [10], joint
probabilistic data association models [11], and appearance
discrimination [12]. Here we can also find the so-called multi-
class trackers [13], which can consider several types of objects
at once. However, they still require additional training for each
category or need to know the object’s class, so they cannot be
considered truly arbitrary.

Online tracking by detection. On the other hand, on-
line trackers by detection can process streaming video using
techniques of a more local nature. This allows them to
achieve near-real-time processing speeds, but at the cost of
decreasing their accuracy. Within this category, it is possible
to find systems that make use of graph partitioning [14] or
multiple hypotheses [15]. Additionally, recent deep learning-
based techniques are demonstrating potent detection associ-
ation capabilities with very interesting approaches, either by
applying deep appearance matching models [16], by regressing
the detections on the previous frame [17], or by embedding
the association model in the target detector itself [18]. These
types of trackers show promising for many applications, but
still rely heavily on having accurate detections in all frames,
thus they do not support arbitrary objects.

B. Single object tracking

Single object visual trackers define the appearance model
of an object, whose location and dimensions are provided for
the first frame of the sequence. This model is then compared,
frame by frame, with the search region in which the target
is expected to be found, in order to update its coordinates
and size. This allows this kind of trackers to be very precise
and fast and, as they usually implement a generic similarity
function or learn it online, most of them are class-agnostic,
without requiring continuous detections or retraining.

Discriminative Correlation Filters for single object
tracking. DCF-based trackers predict the position of the object
by training a filter that distinguishes between the element
of interest and the background of the scene. Early versions
focused on a single feature and represented an arbitrary target
with a single filter [19]. Following this, improvements in
accuracy were made with the incorporation of multidimen-
sional features [20] and other extensions such as non-linear

kernels [21]. However, these techniques have been somewhat
displaced by more accurate approaches that train a similarity
function offline through deep learning models.

Deep learning for single object tracking. On the other
hand, deep learning-based trackers employ deep convolutional
neural networks (CNNs) to train a similarity function which,
starting from the initial appearance of the object, indicates its
position in each frame’s search area. One of the first architec-
tures based on this concept, and the forerunner of the current
state of the art, is SiamFC [7]. It uses a convolutional Siamese
network for the extraction of images features, followed by a
cross-correlation operator to locate the object’s position. The
main appeal of this concept is that it is a straightforward
and accurate solution that allows high-speed tracking of an
arbitrary object. This is why several contributions have been
made to the original architecture, enabling the online update
of the model [22], allowing the regression of the object’s
bounding-box [23], or even incorporating segmentation infor-
mation [24]. However, most of these new approaches tend to
add considerable complexity or are made at the expense of
decreasing the tracking speed, so they are less suitable for
extension towards multiple object tracking systems.

In summary, single object visual tracking is being dominated
by deep learning and becoming more robust and accurate, yet
more complex and slow. This is why we have developed our
approach around SiamFC, because it is fast, simple, effective,
and is the basis of most of the VOT-2019 [25] top trackers.
Therefore, present and future SiamFC-based architectures can
benefit from our proposal.

III. SIAMMT NETWORK ARCHITECTURE

The design of SiamMT’s network architecture is based on
the SiamFC [7] tracker, which uses deep-learning similarity
metrics to track individual objects at a high number of frames
per second. The network architecture has been modified to
allow the efficient tracking of multiple simultaneous objects.

A. SiamFC’s network architecture
The network architecture of SiamFC is described in Fig. 1a.

It obtains the target’s current position by comparing its exem-
plar image with the current frame. Therefore, the first action
required for tracking is the creation of such an exemplar image
through a crop and resize operator κ. This image is extracted
from the first frame where the object can be recognized, and
consists of the bounding box containing the target plus a
context margin, all scaled to an area of 127 × 127 pixels.

Once the exemplar image has been obtained, the frame-by-
frame tracking begins, which is performed over a search area
centered on the target’s last known position. The extraction of
this area is carried out in a very similar way to obtaining the
first frame’s exemplar image, but covering a larger area and
scaling it to 255×255 pixels. Thus, this rescaled image always
has the same proportion with respect to the size of the object,
which is a key factor in this kind of architectures.

Therefore, starting from the exemplar and search area
images, their features are extracted employing ϕ, a fully-
convolutional —without padding— siamese network based
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Fig. 1. SiamFC (a) and SiamMT (b) network architectures during the inference phase. SiamMT first extracts the features of the entire frame via a ϕ backbone.
After this, the features of the various search areas are cropped and resized using the κ̃ operator, which is based on RoIAlign [9]. Finally, these features are
combined with those of their respective exemplars through an optimized pairwise cross-correlation Ẽ, obtaining score maps that indicate the new positions
of the N objects.

on AlexNet [26]. The 256 channels obtained as a result are
compared using a cross-correlation operator E, generating
a score map of size 17 × 17 that states the probability of
the object being in each region of the search area. The fact
that padding is not included in any of the convolutions is
particularly relevant since, otherwise, the strict translation
invariance property of these operations would be lost [27].

To improve the interpretation of the score map, it is upsam-
pled to 272×272 pixels via bicubic interpolation, followed by
the penalization of the regions furthest from the center. In this
way, by selecting the element with the highest value from the
matrix and transferring its coordinates to the input frame, it is
possible to obtain the new position of the object. To allow the
detection of changes in the object size, this process is carried
out using a search area at 3 different scales.

B. Modifying the SiamFC architecture to multiple objects

SiamFC’s network architecture was modified to support
efficient multiple object tracking, as shown in Fig. 1b, giving
rise to SiamMT. Its most relevant features are described below.

Global features extraction. The first modification consists
of the removal of the image crop and resize module κ. This
change, although it results in a greater overall computational
cost for a single object —since the frames are usually larger
than 255 px2— it allows the reuse of features when there are
multiple objects to follow. Such reuse is crucial for the system
scalability since the computation of the features is the most
expensive operation in the whole architecture and its execution
per target would be unfeasible for many objects on the scene.

Cropping and resizing of features. After the global fea-
tures extraction, it becomes necessary to arrange the different
tensors —exemplars and frame features— for the comparison
through the similarity operator. At first glance, a direct corre-
lation of the whole frame features with those of each exemplar
might seem sufficient. However, this is not feasible in an
environment where the objects to be followed undergo changes
of scale. The reason for this is that the main trackers through
similarity [7], [22]–[24] have a relatively low tolerance for
discrepancies between the object size in the exemplar image
and in the search area —supporting a maximum difference
of up to a 15%—. This is why the region represented in
the search area must be gradually adjusted with each step of
inference, increasing or decreasing it so that the size of the
object is always constant. Although this is an issue that often
goes unnoticed in the formulations of the different trackers,
it enables them to maintain progressive changes of scale
throughout a video.

To allow the correct management of the objects’ scale, the
approach taken in SiamMT consists of the cropping and resiz-
ing of the frame features that represent the search area of each
target. These operations, while straightforward in images, are
particularly challenging when carried out on features. The first
proposal for carrying out this task comes with RoIPool [28],
which creates an area of discrete coordinates delimiting the
region of interest and divides it in sections (bins). Finally,
each bin is assigned the value corresponding to the highest
value of the pixels it contains, obtaining a fixed-size feature
map —e.g. 6 × 6— from the nonuniform sized input.
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Fig. 2. Conversion between pixel coordinates and features coordinates using
RoIAlign (colored red) and our proposal (colored green). Our crop-and-resize
operator κ̃ provides correct coordinates for backbones without padding (ϕ),
while the computation generated by RoiAlign [9] results in an off-centered
bounding-box. Therefore, to obtain the correct coordinates, we first calculate
the translation of the object when clipping the image (step 1)), and then
we transform those coordinates as RoiAlign would normally do (step 2)).
For instance, for a 1280 × 720 frame (N ′ = 1193 × 633), an object centered
in xi = (300, 380), and a backbone as in SiamMT (K = 87, S = 8, and
without padding), with κ̃ we get a position in features of x f = (32, 42), while
RoiAlign gives x f = (38, 48).

As an RoIPool successor, aiming for higher precision,
RoIAlign [9] arises, which prevents misalignments by avoid-
ing quantizations and computes the values of each bin by
aggregating —maximum or average— 4 bilinearly interpolated
sampling points. Following this approach, the κ̃ operator, in-
troduced in SiamMT for the cropping and resizing of features,
is an RoIAlign variant with only one sampling point per bin
and a different region delimitation —see below. This allows κ̃
to maintain the inference speed while obtaining more precise
and representative values than with RoIPool.

Features coordinates calculation. For the correct deter-
mination of the regions of interest, it is necessary to apply
an additional modification to the features crop operation κ̃.
In RoIPool and RoIAlign, the transformation between image
coordinates xi and features coordinates x f is done by sim-
ply dividing the pixel coordinates by the backbone’s global
stride S. This, whilst it works when the feature extractors are
architectures such as VGG [29], ResNet [30] or DarkNet [31],
is incorrect if the backbone has no padding, as is the case for
the AlexNet in [7] (Fig. 2, in red). Thus, in order to calculate
the region coordinates for backbones without padding, it is
necessary to apply transformations considering the effective
size of the input tensor.

Let T be an input tensor of size N that produces an output of
size M after passing through a fully-convolutional backbone
ϕ without padding. We define N ′, the effective size of T with
respect to ϕ, as the size of the minimum subtensor of T that
produces an output of size M after passing through ϕ applying
padding in all its operations —we denote this configuration of

the backbone as ϕp . It is possible to prove that every tensor
T would have an effective size of:

N ′ =
⌈

N − K + 1
S

⌉
· S − (S − 1) (1)

where K and S are the receptive field and the global stride of
ϕ, respectively.

This implies that T generates an M-sized tensor after pass-
ing through ϕ, and T ′ (the N ′-sized clipping of T) generates
a tensor with exactly the same size M after passing through
ϕp (Fig. 2, in green). By defining N ′ in this way, we can use
T ′ as an intermediate step to transform coordinates extracted
with a backbone without padding. Therefore, we first transfer
the object coordinates (xi) to its coordinates in T ′ (xi ′) —
as seen in Fig. 2, step 1)—, and then we apply the standard
RoIAlign transformation in order to obtain its correct position
in the feature map (Fig. 2, step 2)). Consequently, given some
input coordinates in pixels xi , their respective coordinates in
features extracted with the fully-convolutional backbone ϕ
without padding are calculated as follows, by concatenating
transformations 1) and 2):

x f =
1
S
·

(
xi −

N − N ′

2

)
(2)

Similarity operation. Finally, of particular interest is the
reformulation of the features comparison operation applied at
the end of the architecture. This is because, in SiamFC and
its derived architectures, it is defined as a cross-correlation
operation between the exemplar features and the search area
features tensor. In the case of SiamMT, as it is necessary to
cross-correlate pairs of tensors, this operation would have to be
replicated throughout the batch size, which is computationally
inefficient. As a solution, taking advantage of the properties
of GPGPU architectures, we propose the use of a pairwise
cross-correlation Ẽ.

Pairwise cross-correlation (Fig. 3) is made possible by
the properties of two-dimensional depthwise cross-correlation.
The latter takes as inputs a three-dimensional tensor TY and a
set of two-dimensional filters TZ , and applies a different filter
to each of the c channels of TY . The input of Ẽ will be a
TA tensor containing the features of N search areas and a TE

tensor containing the features of N exemplars. Therefore, by
appropriately stacking the objects in TA and TE , it is possible
to obtain the TY and TZ tensors, which are the inputs to the
depthwise cross-correlation operation. After this operation, an
output with N · c channels will be generated. Finally, this
output is reshaped and aggregated for each object, which
would correspond to the sum of the c channels of each filter
in a standard correlation.

C. System training

Since SiamMT’s architecture maintains the foundations of
SiamFC, it is possible to reuse its weights through a network-
based transfer learning procedure [8] for the tracking of
multiple objects. This process consists in collecting all the
parameters learned by a previously trained SiamFC network
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—backbone and similarity operation’s final biases— and copy-
ing them into their respective SiamMT operations. This in
itself provides good results, as can be seen in Section IV-B,
hinting at the extensibility of SiamMT to other SiamFC-based
architectures. However, due to the use of the crop and resize
operation κ̃, it is convenient to fine-tune the last layers of
the network. This fine-tuning is very similar to an end-to-end
training of the network, but freezing the first 3 convolutional
layers, and with a lower learning rate.

Regardless of whether the training is performed end-to-end
or just fine-tuning, SiamMT’s training error is calculated as
the sigmoid cross-entropy loss

loss =
m∑
j=1

n∑
i=1

max(lgi j, 0) − lgi j · gti j + log(1 + e−|lgi j | ) (3)

where lg and gt are the m× n-size matrices for the prediction
score map and the ground truth, respectively. This ground
truth is defined as in [7]. Also, to prevent the network from
learning to detect objects rather than distinguishing among
targets, negative examples are introduced during the training.
Additionally, in order to gain tolerance against object scale
changes, a random component is applied to the search area
dimensions.

IV. EXPERIMENTS

This section evaluates SiamMT under different scenar-
ios. The experiments were conducted on a computer with
an Intel Core i7-9700K, 16 GB of DDR4 RAM and an
NVIDIA TITAN Xp. The chosen deep learning framework
was TensorFlow.

TABLE I
LAYER STRUCTURE OF THE FEATURE EXTRACTOR

Layer Kernel Filters Stride Channels Size

input ×3 1280 × 720
conv1 11 × 11 96 2 ×96 635 × 355
pool1 3 × 3 2 ×96 317 × 177
conv2 5 × 5 128 (×2) 1 ×256 313 × 173
pool2 3 × 3 2 ×256 156 × 86
conv3 3 × 3 384 1 ×384 154 × 84
conv4 3 × 3 192 (×2) 1 ×384 152 × 82
conv5 3 × 3 128 (×2) 1 ×256 150 × 80

A. Implementation details

Feature extractor. SiamMT uses the AlexNet-inspired [26]
feature extractor described in Table I, as it offers a low
computational cost. It is particularly important to note that no
padding is introduced into the network, as this would result
in it no longer being translation invariant [27]. It incorporates
non-linear Leaky ReLU activation functions and batch normal-
ization after each intermediate convolutional layer. Moreover,
convolutions in layers 2, 4 and 5 are grouped, as it makes
training faster and helps in learning better representations of
the data [32].

Exemplar and search area sizes. For the formulation of
the exemplar and search area sizes, a similar approach to
SiamFC [7] is taken. However, since SiamMT calculates these
regions over the frame features, the rescaling is performed to
tensors of size 6×6 and 22×22, respectively, and without the
need for additional context. Nevertheless, if the weights of the
original SiamFC architecture are directly reused, the context
value must be adjusted in order to reproduce its field of view.

Training process. The system was trained using the video
database provided by the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) [33]. The initial parameters are
generated following the Kaiming method [34]. During training,
Stochastic Gradient Descent (SGD) with a momentum of
0.9 is used to minimize the error function over 100 epochs,
starting from a learning rate of 10−4 that is geometrically
annealed to 10−7. Each epoch consists of 65,000 pairs of
frames —one for the exemplar and the other for the search
area, containing the same object and spaced no more than 100
frames for the positive samples— arranged in size-8 batches.
Lastly, in order to reduce the generalization error, we utilize
data augmentation (translations, scale changes, rotations, color
variations, motion blur and noise addition) and apply L2
regularization (λ = 10−4) to the learned weights. The best
model is selected based on the validation error of the last 60
epochs.

B. Tracking quality evaluation

SiamMT has to be evaluated within multiple-object environ-
ments. However, as tracking by detection is deeply rooted in
the field of multi-object tracking, all their benchmarks focus on
data association metrics [5], so they provide a set of detections



TABLE II
TRACKING QUALITY IN SINGLE-OBJECT BENCHMARKS

SiamMT SiamMT-W SiamFC

O
T

B
-1

5 Precision 73.52 72.37 77.12

AUC 53.32 51.04 58.27

fps 32.64 31.26 96.20

V
O

T-
15

Accuracy 50.78 48.38 53.35

Robustness 84.67 84.79 88.67

fps 31.99 29.98 93.43

in all the frames of the video as a basis and the challenge
is to associate them correctly. Since SiamMT is not based
on the association of detections across frames, by itself it is
not MOTChallenge-compatible [35], and thus, it cannot be
evaluated with its protocols and metrics.

With this in mind, in order to evaluate SiamMT and
provide meaningful and comparable results, we have decided
to address the problem by reporting individual tracking metrics
within single and multiple object videos. This serves a twofold
purpose: (i) it allows us to highlight the implications of
adopting this new architecture, compared to the performance
of the single object tracking network on which it is based; (ii) it
provides a clear idea of how the network performs in scenar-
ios with multiple objects, where interactions and occlusions
are frequent. For the evaluation, we compare SiamMT with
SiamFC [7] and SiamMT-W, i.e., SiamMT with its weights
and parameters obtained from a previously trained SiamFC
network through a transfer learning procedure [8].

Single-object-tracking benchmarks. The chosen single-
object tracking benchmarks are those featured in [7] (OTB-
2015 [36] and VOT-2015 [37]), whose results are shown
in Table II. As can be seen, the precision and robustness
scores for SiamMT are very similar to those of SiamFC, with
a difference of less than 9%. This shows that the features
generated by the feature resizing operator, while different from
those obtained from a previously rescaled image, are still
appropriate to discriminate between different objects. More-
over, SiamMT obtains slightly better scores than SiamMT-W,
but the latter are still remarkably good considering that they
have been obtained with no need for retraining or fine-tuning,
highlighting the versatility of SiamMT’s paradigm. In terms
of speed, SiamMT and SiamMT-W have to process the entire
frame, unlike SiamFC which considers a crop size of 255 px2.

Multi-object-tracking benchmarks. To faithfully repre-
sent multiple-object-tracking scenarios, the public datasets
for MOT-2015 [35], MOT-2016 [38] and MOT-2020 [39]
were employed. As none of the evaluated trackers follow the
tracking-by-detection paradigm, nor they consider detections
during tracking, following the MOTChallenge protocol and
reporting its metrics is not feasible. Therefore, we have opted
for applying the VOTChallenge methodology [40], considering
each object in each video as an individual sequence at the time
of computing the metrics. All the results are listed in Table III,

TABLE III
TRACKING QUALITY IN MULTI-OBJECT BENCHMARKS

SiamMT SiamMT-W SiamFC

MOT-15 Accuracy 50.05 51.77 55.39

1125 × 679 Robustness 68.31 62.04 69.24

7.3 ob/im fps 31.02 30.51 7.89

MOT-16 Accuracy 51.01 51.18 50.68

1718 × 986 Robustness 69.24 66.33 68.17

20.8 ob/im fps 15.42 14.53 2.74

MOT-20 Accuracy 46.91 48.63 49.68

1620 × 1026 Robustness 76.27 71.37 71.17

149.7 ob/im fps 6.11 5.56 0.53

which also includes the average frame resolution and average
number of objects per frame for each dataset.

As shown, SiamMT obtains accuracy results not less than
10% of SiamFC’s, and displays an elevated robustness that
surpasses SiamFC for MOT-2016 and MOT-2020. This em-
phasizes the benefits of SiamMT for multiple-object tracking
since in this field it is more important to minimize identity
switches than to accurately adjust the bounding-boxes. With
respect to SiamMT-W, in spite of having a lower robust-
ness than SiamMT, it achieves a slightly higher accuracy,
which even surpasses SiamFC’s for MOT-2016. These results
suggest that the SiamMT paradigm can be straightforwardly
applied to other SiamFC-based architectures with a minimal
effort in training. As for the tracking speed, both SiamMT
and SiamMT-W widely outperform SiamFC. For instance, in
MOT-2020, with an average of 150 objects per frame, SiamMT
is more than 10 times faster than SiamFC.

C. Tracking speed evaluation

We have designed two different test sets to represent the
most typical multiple object tracking scenarios: the MT-VGA
benchmark, composed of videos with a size of 640×480 pixels,
and the MT-HD benchmark, with 1280 × 720-pixel videos.

To demonstrate the scalability of the proposed solution, the
SiamMT architecture will be compared against the multiple
instantiations of SiamFC [7] and SiamFC-MI. SiamFC-MI is
a modified version of the SiamFC algorithm that is specially
optimized for multiple instantiations since it stacks objects
along its batch size to maximize GPU parallelization. How-
ever, it does not reuse features computations.

MT-VGA benchmark. The results for the MT-VGA bench-
mark are shown in Fig. 4a. For a single object, all three
architectures offer speeds above 80 frames per second, with
SiamFC being the fastest due to its simplicity, reaching
102 fps. SiamMT tracks one object at 92 fps and SiamFC-MI
is the slowest with 81 fps, due to its batch management.

As more objects are added, the SiamFC and SiamFC-MI
tracking speeds are reduced exponentially to just 11 and 16 fps
for 10 objects, respectively. Meanwhile, the scalability of the
SiamMT architecture becomes evident, dominating the rest of
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Fig. 4. Speed results for MT-VGA (a) and MT-HD (b) benchmarks with
respect to the number of tracked objects.

the graph and allowing to track 10 objects at 60 fps. This is
possible because SiamMT has to run the backbone only once
per frame and because its final similarity operation exploits
the properties of the depthwise cross-correlation to optimize
pairwise tensor comparisons on GPU.

Thus, SiamMT scales almost linearly with the number of
objects, being able to track 60 targets at 25 fps and reaching
the benchmark limit —100 objects— with a speed of 17 fps.
By contrast, even though SiamFC-MI offers higher speeds
than SiamFC, its performance is far below SiamMT’s, tracking
100 objects at only 3 fps.

MT-HD benchmark. The results for the MT-HD bench-
mark are shown in Fig. 4b. Since SiamMT has to perform the
global features extraction of the 1280 × 720-pixel frames, it
has a more noticeable overhead for a low number of objects,
tracking 1 object at 50 frames per second while SiamFC and
SiamFC-MI do it at 84 and 66 fps, respectively. The latter
are virtually unaffected by the resolution of the frame, as they
only process a crop of the image.

However, once above 5 objects, SiamMT outperforms the
other architectures, and its computational cost remains almost
constant due to its reuse of features computations. Thus,
SiamMT is capable of tracking 40 objects at 25 fps and reaches
a speed of 15 fps for 100 objects. Meanwhile, SiamFC and
SiamFC-MI do not exceed 2 fps with 100 objects, evidencing
the scalability offered by the SiamMT architecture.

V. CONCLUSIONS

We have proposed SiamMT, the first deep-learning-based
arbitrary multi-object tracker. It applies individual visual track-
ing techniques to multiple objects in an efficient and scal-

able manner, on account of its global features extraction, its
RoIAlign reformulation, and its optimized similarity operation.
In experiments, SiamMT provides remarkable speeds, tracking
60 simultaneous objects in VGA video, and 40 objects in
HD720 video, both at 25 fps. Additionally, it provides a
tracking quality similar to SiamFC, and it is able to reuse the
weights learned for SiamFC, suggesting that this paradigm can
be straightforwardly applied to other SiamFC-based architec-
tures.
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