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Abstract. This paper focuses on a cuneate-based network (CBN), a
connectionist model of the cuneate nucleus that shows spatial and tem-
poral filtering mechanisms. The circuitry underlying these mechanisms
were analyzed in a previous study by means of a realistic computational
model [9,10] of the cuneate. In that study we have used experimental
data (intracellular and extracellular recordings) obtained in cat in vivo
[2,3] to guide and test the model. The CBN is a high-level description
of the realistic model that allows to focus on the functional features and
hide biological details. To demonstrate the CBN capabilities we have
applied it to solve a filtering problem in mobile robotics.

1 Introduction

The cuneate nucleus is a part of the somato-sensory system and constitutes,
in conjunction with the gracile nucleus, the dorsal column nuclei (DCN). Its
afferent inputs, called Primary Afferent Fibers (PAF), are originated in both
cutaneous and proprioceptive receptors of the upper body. The input signals are
processed by a circuitry composed mainly by two different types of cells: pro-
jection neurons, also called cuneothalamic or relay neurons, and local neurons,
also called interneurons.

Intracellular recordings obtained under cutaneous and lemniscal stimulation
show that the afferent fibers can establish excitatory and inhibitory synaptic
connections with the cuneothalamic neurons [2]. In addition, distinct types of
recurrent collaterals with the capability of either exciting or inhibiting both
cuneothalamic neurons and interneurons were also discovered [3]. With these
data we can generate hypothesis about which circuits are implicated and also
elaborate computational models to study their processing capabilities [9, 10]. The
Cuneate-Based Network (CBN) is a connectionist model that describes the local
circuitry of the cuneate, that means the circuitry without considering cortico-
cuneate inputs. Our studies show that such circuit can detect dynamic patterns
(10]. The CBN will be introduced in section 2.
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To test the CBN capabilities we have applied it in a filtering problem in
mobile robotics. The CBN performs a spatio-temporal filtering which goal is to
improve the perceived trajectory made by a mobile obstacle. Section 3 explains
that problem and how the network is integrated in a system that performs the
task of collision avoidance of mobile obstacles [8]. The results, obtained in an
experiment with a real robot, are shown in section 4.

2  Cuneate-Based Network

The Cuneate-Based Network focuses on the functional features of a realistic
model previously developed. In that model we have studied: (1) the spatial fil-
tering capabilities of the center-surround receptive fields and the recurrent lateral
connections, and (2) the temporal filtering capabilities provided by presumed au-
toinhibitory connections. Figure 1 shows how the CBN architecture integrates
these different connectivity in a single circuitry.

The output y;(t) of j-th neuron is calculated after applying a threshold func-
tion ¥ to the total input. This value is the result of adding, at a given time t, the
contribution of: (1) afferent input v;(t), inhibitory lateral connections u;(t—At),
and the output from the corresponding inhibitory neuron o;(t — At). u; and o;

o,(t-At) Interneurons

Fig. 1. CBN architecture.
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are weighted by constant parameters o and 3, respectively, that determine the
strength of both types of connections:

yi(t) = ¥(2(t) = ¥ (v; (t) + au;(t — At) + fos(t — At)) j =1,2,...,M (1)
where ¥ is defined as follows,

oy Jzi(t)siz; > U

w0 = {50552 ] @
The contribution of afferent input to the j-th neuron is computed considering

that middle inputs are excitatory and lateral inputs are inhibitory.

v =Y wam i=1,2,.. M (3)

i=n;—C

where v; denotes the total afferent input to the j-th neuron, 2C+1 denotes the
width of the receptive field, w;; denotes the strength of the connection between
the i-th input and the j-th output neuron (such that w;;=0, if 4 <0 or i > N),
and z; is the value of i-th input.

The lateral inhibition mechanism can be implemented with the popular
Mexican-hat function. The contribution of these connections is the following:

K .
Uj =D ke i Cij+kYith, § = 1,2, M (4)

with K denoting the semi-width of the Mexican-hat and ¢; ;1) the value of
the lateral connections between j-th and i-th neuron. Following the Mexican-hat
distribution, c; ;1 is positive, i.e excitatory connection, for first-order neigh-
bours, and negative, i.e inhibitory connection, otherwise (again, ¢j; =0, if i <0
or ¢ > M).

The temporal filtering mechanism relies in the inhibition of neurons of the
output layer if the inputs persist in time. To implement this mechanism we have
used the results from Koch et. al [7], that explain how the time constant of a
biological neuron can vary as a function of the input activity. In our approach
we have computed the difference AY between the current and the last input
vector:

BY = g7 1) — (¢ 1) %)

The time constant 7 will be a function of the variable AY:

_Jr+AOr i AY ~0
T(AY)‘{T~KATifAY¢o (6)
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The time constant 7 can take any value from a range between Ty, =1 and
some maximum Tqz. The time constant defines the temporal window to inte-
grate the inputs, which in turn, determines the total input sum to the interneuron

g (t):

gi(t) = ST g ), i = 1,2, M (7)

Finally, the output of interneurons will depend on the result of a threshold
function similar to the one that was introduced for the output layer.

3 The problem of collision avoidance of mobile obstacles

As it was explained before, we want to demonstrate the functional capabilities of
the CBN by applying it on a real problem. We found a suitable one in the domain
of mobile robotics. The task consists on filtering sonar data to improve the
trajectory estimation of a mobile obstacle detected in the environment. This task
is one of the subproblems encountered in the design of behaviours for collision
avoidance of mobile obstacles [8]. This task can be decomposed in three different
phases (figure 2): the perception of mobile objects, the appropriate decision-
making to avoid them, and the execution of a certain motor action. Because
the robot has to react dynamically to changes in the environment, the main
challenge of this task is to achieve real-time performance.

PERCEPTION DECISION ACTUATION

Detection module
Filtering module (CBN)

Trend estimation
module

Fig. 2. Modules of the mobile obstacle avoidance task.

In the perceptual phase, the detection operation takes the raw data provided
by aring of sonar sensors and indicates a set of locations with high probability of
being occupied by a mobile object. Unfortunately, this processing is not enough
to estimate accurately both the direction and the speed of the obstacle. Some
problems arose after the detection process:

1. Estimation of motion direction. Because of the motion of both robot and
obstacle, the sonar shows a irregular trajectory of mobile obstacle points.
Even if the trajectory tendency is clearly linear, in a local region the points
seem to follow a random pattern (figure 3).
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2. Estimation of speed. If the mobile obstacle is detected by a number of dif-
ferent ultrasound sensors, the data entries associated to that obstacle show
space discontinuities, also called “jumps”. These “jumps” appear when the
sonar that tracks the motion changed. These discontinuities, abrupt in most
cases, can be understood as important changes in the mobile obstacle speed
(figure 3).

To solve these problems we have introduced the CBN after the detection op-
eration (see figure 2). The overall system can detect obstacles, perceive obstacles
trends and act accordingly to avoid collisions. With these features, the system
is robust and can operate in real time.

4 Results

Before integrating the CBN with the architecture shown in figure 2, we have
tested its individual performance with off-line simulations. For testing we have

(A) (B)

Fig. 3. Issues in the detection of mobile obstacles. (A) Set of points associated with a
mobile obstacle. Arrows indicating the perceived direction at any given time is shown.
Although the global trend is linear, the local trend is irregular and shows continuous
changes in direction. (B) An example with data groupings is shown. These groupings
are originated when there is a change in the ultrasound sensor that is performing the
detection. These groupings impede an accurate speed estimation.
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used real data obtained from the sensors and preprocessed by the detection stage.
The goal of the simulations was to test if the CBN would be able to remove noise
and improve the estimation of the trajectory of the mobile obstacles. The CBN
was implemented in NSL (Neural Simulator Language) and the simulations were
run on the NSL environment for Unix platforms.

The real experiments were performed with a NOMAD 200 robot in the De-
partment of Electronics and Computer Science, of our university. Initially we
located the robot in one of the sides of the entrance. The robot begins its move-
ment following a linear trajectory with the goal of reaching the other side avoid-
ing mobile obstacles that would imply collision or impede the goal achievement.
Figure 4 shows how a mobile obstacle is detected from the left side of the robot
during three cycles. In the two following cycles the ultrasound sensors do not

=

Fig. 4. Label A indicates the position of both the robot and the mobile obstacle at the
time when robot begins to avoid the obstacle. The cross density in the robot trajectory
indicates its speed at any given time. The less the speed, the more number of crosses,
and vice versa.
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provide new object information and the robot temporarily loose the trajectory.
When the detection is retaken, the trend module perceives a collision situation.
The object trend is, initially, indifferent, because no change in motion or angle is
detected. As a result, the robot decides to implement the observe behavior and
it will wait to detect either changes in the object behavior or a decrease of the
collision time. In the next cycles, the mobile obstacle reduces its speed, from 41
to 34 cm/s, and so the parameter collision time increases. As a consequence,
the control system selects the cross first behavior even though the mobile obsta-
cle trend is still indifferent. The robot executes this behavior by turning right
30 degree and accelerating from 17.5 to 22.5 cm/s. Both actions are enough to
avoid the possible collision and to continue the trajectory to achieve the initial
goal.

5 Discussion

The three local mechanisms of the cuneate nucleus discussed in this paper
(center-surround receptive fields, lateral recurrent connections and autoinhibitory
connections) can be found in many other nucleus of the brain and have been used
independently to develop other bio-inspired connectionist models. At this stage,
the purpose of the CBN is not to provide a novelty general-purpose artificial neu-
ral network, but to integrate all mentioned mechanisms in a single architecture
and analyze the functional capabilities of it.

The lateral inhibition, for example, is a well-known mechanisms to accomplish
competitive computation. A reference model that captures this computational
feature is the Didday model [4]. The goal here was to analyze competitive mech-
anism to understand the circuitry underlying the capturing process in frogs. The
CBN architecture is though different in two aspects: (1) the number of required
interneurons, and (2) the degree of inhibition exerted over each neuron in the
output layer. The Didday model shows only one interneuron that, in turn, de-
termines the same level of inhibition over the neurons in the output later. On
the other side, the CBN shows an interneuron per neuron in the output layer
and the degree of inhibition on each neuron is different.

Similarly, the center-surround receptor fields have also been a source of in-
spiration for other connectionist models. Buonomano and Merzenich [1] have
developed a hierarchical network with this type of receptive field. This arrange-
ment induces a response in the neurons of the output layer, whose temporal
codification allows input pattern recognition. Other classical example can be
found in the Neocognitron network [5]. This network was inspired by Hubel and
Wiesel ideas about the hierarchical organization of the visual receptive fields.

Recently, autoinhibitory mechanisms have been used in attentional models
in the visual system [6]. In this study, the autoinhibition is called inhibition-of-
return and allows the system to change the focus of attention if new remarkable
features appears in the environment. The functionality, very similar to the one
presented in the CBN, consists on inhibiting, after some period of time, those
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winner neurons in the previous iteration with the aim to allow new incoming
events to be detected.

From a functional point of view, the cuneate-based network performs a kind
of spatial and temporal filtering, which was clearly showed by applying it on
a collision avoidance of mobile obstacles problem. Center-surround receptive
fields and lateral inhibition select salient maximal locations in local regions of
the trajectory of the mobile obstacle. With this mechanism, CBN sends the
most salient group of points of the mobile obstacle trajectory to subsequent
processing modules. The temporal filtering removes the persistent objects, so it
permits that other processing modules would consider those points relevant to
the trajectory of the mobile obstacle. As a conclusion, the CBN has demonstrated
the cuneate capabilities to perform an spatio-temporal filtering over incoming
sensory information. As far as we know, this is the first connectionist model
about the cuneate nucleus.
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