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Abstract

Background Since buildings are one of the largest

sources of energy consumption in most cities of the

world, energy management is one of the major concerns

in their design. To ameliorate this problem, buildings

are becoming smarter by the incorporation of intelligent

supervision and control systems. Data captured by the

sensors can be interpreted and processed by rule-based

computation methods of biological inspiration (such as

genetic fuzzy systems, GFS) for predicting the future

behavior of the building in a knowledge-based inter-

pretable human-like manner. GFS are computational

models inspired in human cognition which use evolu-

tionary computation (inspired in the natural evolution)

to automatically learn fuzzy rules which contain explicit

imprecise knowledge about a system or process. This
knowledge, represented using fuzzy rules that involve

fuzzy linguistic variables and values, is used to perform

approximate reasoning on the input values for obtaining

inferred values for the output variables. In energy man-

agement of buildings, these rules allow a smart control

of the system actuators to reduce the building average

energy consumption. However, the large amount of data

produced on a per second basis complicates the gener-

ation of accurate and interpretable models by means of

traditional methods.

Methods In this paper we present an evolutionary

computation based approach, namely a genetic fuzzy

system, to build scalable and interpretable knowledge

bases for predicting energy consumption in smart build-
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ings. For accomplishing this task, we propose a cogni-

tive computation system for multi-step prediction based

on S-FRULER, a state-of-the-art scalable distributed

genetic fuzzy system, coupled with a feature subset se-

lection method to automatically select the most rele-

vant features for different time steps. S-FRULER is able

to learn a fuzzy rule-based system made up of Takagi-

Sugeno-Kang (TSK) rules that are able to predict the

output values using both linguistic imprecise knowledge

(represented by fuzzy sets) and fuzzy inference.

Results and Conclusions Experiments with real data

on two different problems related with the energy man-

agement revealed an average improvement of 6% on ac-

curacy with respect to S-FRULER without feature se-

lection, and with knowledge bases with a lower number

of variables.

Keywords Regression methods for Big Data · Feature

Selection · Fuzzy TSK Rules

Introduction

Energy efficiency is becoming a major worldwide con-

cern. It is estimated that buildings account for 40% of

the total energy use in the EU [28], with a global con-

sumption that has been facing a steadily increasing year

after year. Concretely, it is estimated that almost half

of the consumption is entirely used for heating and cool-

ing. For this reason, improving the energy efficiency in

buildings and especially the performance and manage-

ment of the heating systems is key for environmental

sustainability.

Advanced energy management in buildings can be

achieved through a smarter control of their heating sys-

tems. This requires the use of sensors and actuators that

can act accordingly to turn on or off the systems or to



2 Pablo Rodriguez-Mier et al.

regulate the amount of heat needed at each moment.

For example, heating usage can be optimized by taking

into account multiple factors that affect the consump-

tion, such as the thermal dynamics of the building, cur-

rent and future weather conditions, in order to decide

in a smarter way how to regulate the heating. Build-

ings that incorporate such level of automation through

the use of supervision and control devices are called

Smart Buildings. Cognitive systems can play an impor-

tant role in Smart Buildings, not only from the perfor-

mance point of view but, also, from the interpretability

perspective, as they can assist human operators in their

decision-making process. Interpretability is a key issue

here, since the linguistic representation of variables in-

cluded in the rules, together with its simplicity, usually

allow human users a better understanding of the pro-

cesses, providing them with valuable knowledge about

the system behaviour. Smart building technologies en-

able greater opportunities for the development of more

sophisticated methods for improving energy manage-

ment. Concretely, one of the current challenges is how

to manage the information produced by the building

to improve the overall energy consumption. This prob-

lem requires: 1) the use of automatic methods for ex-

tracting and interpreting relevant knowledge from the

big amounts of data collected by multiple sensors over

time; and 2) the generation of predictions of the fu-

ture state of the system to design better energy policies

[7,39,12,47]. These challenges can be tackled from the

perspective of cognitive computation by generating ac-

curate and interpretable models that learn from data,

in a way that experts can understand the interaction

and the impact of the variables in the model.

Current methods for energy prediction [15,46] are

mostly based on physical model simulations [41,22] and

cognitive computation methods that learn black-box

models from data [38,25,40,42,12,32]. Physical mod-

els describe the building behavior by solving theoretical

equations that describe to a certain extent the differ-

ent dynamics and interactions between the variables.

Although these methods are very powerful to simulate

the different dynamics of a building, especially when

there is no real data available, in general they are: 1)

very time-consuming since they require many simula-

tion hours, which prevents their application for short-

term forecasting; and 2) complex to formulate, since

it is very difficult to produce a detailed model of a

complex building, especially when there are many un-

known factors that can affect the thermal dynamics. A

cognitive computation approach can overcome some of

these limitations by developing methods that are able

to learn the behavior from real data. However, current

techniques, which are mostly black-box models [21,6,5,

11], are hard to interpret and, thus, the interaction of

the different variables of the system are hard to under-

stand and explain to experts.

Fuzzy rule-based systems are one of the most well-

known cognitive computing techniques, due to its linguistic-

based orientation. They have been extensively used with

great success in many fields and, particularly in sys-

tems supervision and control [27] since they are able to

provide both accurate and interpretable models that in

many cases can be directly understood by human users.

Biologically-inspired approaches such as Genetic Fuzzy

Systems (GFS) mimic the process of natural evolution

to automatically build fuzzy rule bases from data. Al-

though GFS have proved their validity in many fields

of applications, there are some challenges associated,

such as the impact of the problem size, which has a

huge influence in the performance of these algorithms

[10,18]. As the number of variables increases, the com-

putational cost of generating accurate rules for the data

grows exponentially.

One way to cope with scalability issues from a Big

Data perspective [44,29,20,14] is to adopt the distributed

computing paradigm for scaling GFS [30]. However,

there is a lack of approaches –with only a few excep-

tions [13]– that use Big Data frameworks, such as Spark

[45] or Hadoop [43] to deal with the scalability issues

for regression problems. Concretely, the use of Spark is

closely related to the success of Hadoop, which enables

the processing of vast amounts of data in parallel on

large clusters, usually implemented using the Hadoop

Distributed File System (HDFS). Spark adds to the

Hadoop ecosystem the capability to use advanced data-

flow computations with an improvement of in-memory

computing and high-level functions that facilitate to

build parallel applications.

It was not until recently that the use of GFS for

solving large scale regression problems has started to at-

tract attention in the field [3,4,24,34,35]. However, the

size of the training data used in these works is not large

enough to be considered Big Data. Among the differ-

ent approaches, FRULER [35] obtains 1-order Takagi-

Sugeno-Kang (TSK-1) fuzzy rule bases with high accu-

racy and the lowest number of rules. Although the run-

time of this approach is acceptable for the most simple

datasets, it does not scale properly when solving large

scale problems and may not converge to a good solution

in reasonable time. These problems motivated the de-

velopment S-FRULER [36], the distributed version of

FRULER.

In this work, we address the problem of generat-

ing knowledge bases for the prediction of energy con-

sumption in smart buildings in a big data setting. Our

proposal is based on cognitive computing techniques
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to generate both accurate and interpretable knowledge

bases. We extend our previous research using evolution-

ary computation methods [37] to improve the genera-

tion of the models by coupling the S-FRULER Genetic

Fuzzy System with a feature selection mechanism. We

observed that when in combination, S-FRULER gener-

ates consistently more accurate knowledge bases for the

two prediction problems related with the energy man-

agement of the building considered in this work. These

models have been used in the EU LIFE-OPERE project

[1] to predict the behaviour of the building under dif-

ferent conditions in order to find new control strategies

that lead to even further energy savings.

FRULER: Fuzzy RUle Learning through Evolu-

tion for Regression

FRULER (Fuzzy RUle Learning through Evolution for

Regression) [35] is a novel GFS that obtains accurate

and simple linguistic order-1 TSK fuzzy rule base mod-

els for regression problems. FRULER (Fig. 1) is com-

posed of a new instance selection method for regression,

a novel multi-granularity fuzzy discretization of the in-

put variables, and an evolutionary algorithm that uses

a fast and scalable method with Elastic Net regulariza-

tion to generate accurate and simple TSK-1 rules.

Instance selection

The objective of the instance selection module is to re-

duce the variance of the models, focusing the generated

rules on the representative examples. The instance se-

lection method for regression is an improvement of the

CCISR (Class Conditional Instance Selection for Re-

gression) algorithm [33], which is an adaptation for re-

gression of the instance selection method for classifica-

tion CCIS (Class Conditional Instance Selection) [23].

Multi-granularity fuzzy discretization

In a multi-granularity proposal, each granularity has a

different fuzzy partition. The generation of the fuzzy

linguistic labels can be divided into two stages. First,

the variable must be discretized to obtain a set of split

points Cg for each granularity g. Then, given the split

points, the fuzzy labels can be defined for each granu-

larity. In regression problems (TSK-1 in our case), the

discretization process must search for the split point

that minimizes the error when a linear model is applied

to each of the resulting intervals.

Evolutionary algorithm

The evolutionary algorithm learns a linguistic TSK model.

The integration of the evolutionary algorithm with the

preprocessing stage is as follows (Fig. 1):

– First, the instance selection process is executed over

the training examples Etra in order to obtain a sub-

set of representative examples ES .

– Then, the multi-granularity fuzzy discretization pro-

cess obtains the fuzzy partitions for each input vari-

able.

– Finally, the evolutionary algorithm searches for the

best data base configuration using the obtained fuzzy

partitions, generates the entire linguistic TSK rule

base using ES and evaluates the different rule bases

using Etra.

The chromosome is codified with a double coding

scheme (C = C1 +C2). C1 represents the granularity of

each input variable. C2 represents the lateral displace-

ments of the split points of the input variables fuzzy

partitions.

FRULER uses the Wang & Mendel algorithm to cre-

ate the antecedent part of the rule base for each indi-

vidual. The consequent part of the rules is learned using

the Elastic Net method [48] in order to obtain the coef-

ficients of the degree 1 polynomial for each rule. Elas-

tic Net combines the `1 (Lasso regularization) and `2
(Ridge regularization) penalties of the Lasso and Ridge

methods, minimizing the following equation:

β̂ = arg min
β

||Y −X ·β||2+λ·α·‖β‖2+λ·(1−α)·‖β‖1 (1)

where β is the coefficients vector, Y is the outputs vec-
tor, X is the inputs matrix, λ is the regularization pa-

rameter and α represents the trade-off between `1 and

`2 penalization. In order to solve the minimization prob-

lem of Elastic Net (Eq. 1), we used Stochastic Gradient

Descent (SGD).

The rule base is generated using only those exam-

ples in Es. In this manner, those examples that are not

representative are not taken into account, the method

avoids the generation of too specific rules, and reduces

the time needed to create the rule base. The fitness

function is:

fitness = MSE (Etra) =
1

2 · |E |

|E |∑
i=1

(F (x i)− y i)2 , (2)

where Etra is the full training dataset and F (xi) is the

output obtained by the knowledge base for input xi.

Using all the examples for evaluation can be seen, in

some way, as a validation process, as the rule base was

constructed with a subset of them (ES).
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Fig. 1: FRULER architecture. Dashed lines indicate flow of datasets, dotted lines multigranularity information

and solid lines represent process flow.

S-FRULER

S-FRULER [36] (Scalable Fuzzy Rule Learning through

Evolution for Regression), is the distributed version of

FRULER designed to improve the current scalability is-

sues that hampers the use of FRULER with large-sized

problems. To cope with these limitations, S-FRULER,

instead of processing the entire dataset, divides the

original problem into a set of smaller problems that

are more tractable using a distributed approach (Map

phase). Each of these divisions is then independently

solved in the Map phase using the FRULER algorithm,

as described in the previous section. Finally, the solu-

tions obtained in each Map are combined in the Aggre-

gation phase in order to obtain a final solution for the

original problem.

The algorithm structure is shown in figure 2. The

first step is the multi-granularity fuzzy discretization

process of FRULER, and it is performed using the whole

training dataset. Then, the training dataset is splitted

into n partitions during the Map phase. Those parti-

tions generated during the Map phase correspond with

the tasks that are distributed as independent sets of

processes to be processed in the worker nodes using

Apache Spark. For each partition, only a subset of ran-

domly selected variables is taken into account. The prob-

ability of selecting a particular input variable Xj in a

dataset partition is:

P (Xj ∈ Xi
s) =

pm
p
, (3)

where Xi
s is the selected subset of input variables in

the dataset partition i, pm is the subset size of selected

input variables and p is the total number of input vari-

ables. Thus, the probability that a particular input vari-

able is not selected for all the dataset partitions is:

P (Xj 6∈ Xi
s,∀i = 1, . . . , n) =

(
p− pm
p

)nmap

. (4)

where nmap is the total number of dataset partitions.

Each partition is solved using FRULER, considering

each partition as an independent problem, where only

the instance selection and the genetic algorithm are exe-

cuted. Finally, each independent solution for each sub-

problem is combined in the Aggregation phase, where

the missing variables that were not selected in some of

the partitions are combined with the information of the

other partitions to produce the final knowledge base.

Smart Building Energy Management

In this section, we describe in detail the problem of

the energy management in smart buildings in the con-

text of the LIFE-OPERE EU project [1]. This project

aims to reduce the environmental impact derived from

the high energy consumption of the University of Santi-

ago de Compostela by implementing a series of actions

that span from the installation of new control and sen-

sor systems to the fine-tuning of the different programs

and actuators. Concretely, one of this actions consists

of the intelligent optimization of the thermal and elec-

trical energy grids, following a data-driven approach for
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modeling the complex behavior of the system. This im-

plies the generation of predictive models using the data

collected from the sensors to simulate the behavior of

the building but also for understanding how the dif-

ferent variables affect the power consumption. For this

purpose, in this work we focus our study in the The

Monte da Condesa, located in the University of Santi-

ago de Compostela (USC), which was selected as the

first pilot plant with the aim of validating this proposal

for its use in other smart buildings with similar charac-

teristics.

The complex of Monte da Condesa, located in the

Campus Vida of the USC comprises the facilities of 4

different buildings: the Faculty of Optics, the Faculty

of Physics, the University Residence of Monte da Con-

desa and the Institute of Orthopaedics. Particularly,

the University Residence is one of the largest build-

ings in the complex, with a building area of 25,000 m2

distributed in six floors, ground floor and basement,

and with an annual power consumption of around 5,700

MWh. Previous analysis reported that most of the en-

ergy produced is used for heating either the university

residence or the domestic hot water. This highlights the

importance of improving the heating system to reduce

the total energy consumption.

The Monte da Condesa complex shares a centralized

heating system that combines the use of two gas boil-

ers with a power of 2615 kW and a cogenerator plant.

The complex has also five thermally stratified hot wa-

ter storage tanks that are used to store the hot water

produced by the boiler and to recover also the residual

heat produced by the cogenerator plant. The hot water

in the tanks is distributed for heating across the dif-

ferent buildings, and it is regulated by different pumps

in each building that mix cold and hot water at dif-

ferent proportions. When there is no enough hot water

in the tanks to fulfill the demand, the gas boilers start

heating water, which is costly. In this setting, there are

two main strategies to reduce the power consumption:

1) optimizing the schedule of the cogenerator to turn it

on earlier or later depending on the predicted demand;

and 2) improve the regulation of the hot water pumps

to reduce the heating without affecting the comfort.

Thermally stratified hot water storage tanks

The complex is equipped with five thermally stratified

hot water storage tanks that are used to store the hot

water produced by the boiler and to recover also the

residual heat produced by the cogenerator plant. This
is represented in Figure 3. The water in the top of the

tank is hotter than the water in the bottom, and it is

used for different purposes. The water of the bottom

is mainly used to refrigerate the cogenerator (using a

heat exchanger), whereas the water in the top is used

to heat either the buildings or the domestic hot water

(DHW). When this water is consumed, the tanks are re-

filled with cold water pumped at the bottom, and when

the temperature at the top decreases below a certain

established threshold, the gas boilers are pumped with

cold water from the bottom to be heated and pumped

back in the upper part of the tanks. This process usu-

ally occurs in moments of high demand, for example at

mornings when the students are using the showers or

at night when the temperature inside of the building

decreases and needs to be heated.

The water in the tanks can be heated as well by the

cogenerator plant. When the cogenerator plant is pro-

ducing electricity, part of the heat is transferred to the

top of the tank. Thus, deciding when to switch on or off
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Fig. 3: Representation of the five thermally stratified hot water storage tanks attached to the cogeneration plant

and the gas boilers

the cogenerator has a direct impact on the temperature

of the water stored in the tanks. On one hand, if the

cogenerator is switched on when the tanks are at its

maximum capacity (with no cold water at the bottom)

the waste heat produced cannot be recovered, and the

cogenerator is at risk of overheating since there is no

enough cold water to refrigerate it. On the other hand,

if the cogenerator is switched off before a period of high

demand, the gas boilers need to be used to compen-

sate the lack of enough hot water. Since the schedule

has to be decided in advance (due to operational is-

sues), a good schedule of the cogenerator is critical for

the optimization of the energy consumption. Currently,

this schedule is decided by the operator in charge, who

designs it 2h hours in advance, based on his own ex-

perience. In order to improve this, in the next Section

(“Scalable multi-step prediction using S-FRULER with

Feature Selection”) we present a model that is able to

predict the upper temperature of the tanks as a func-

tion of the cogenerator status (and other variables) for

different time windows.

Indoor temperatures & heating

In order to heat the different buildings in the complex,

the water is independently pumped from the top of the

water storage tanks to each facility. For the case of the

university residence, the water is regulated by two inde-

pendent pumps and valves, one for the first two floors,

and the other one for the remaining floors, as repre-

sented Figure 4. The mixture of the pumps is regulated

by a pre-programmed heating curve using the tempera-

ture outside the building as a reference. When the tem-

perature is cold, the pump mixes more hot water to

heat the building, and when it is hot, it mixes more

cold water. This is very inefficient, because it does not

take into account the different factors that affect the

temperature inside the building, including the current

temperature. In Section “Scalable multi-step prediction
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Fig. 4: Schema of the Monte da Condesa residential

college with the related variables.

using S-FRULER with Feature Selection” we present

a model that is able to predict the temperature inside

the building as a function of the pump status and other

weather variables.

Sensors & Data

In order to measure and control the different parts of

the system, each building in the complex is equipped

with a set of sensors and actuators connected to a PLC

(Programmable Logic Controller), one per smart build-

ing. These PLCs are in turn connected to a central con-

trol system using the BACnet protocol. All these sen-

sors and actuators are supervised by a SCADA system

that allows experts to visualize and control the heat-

ing production and the radiators, among others. In to-

tal, more than 450 sensors and actuators related to the

primary heating circuits and power generation system

are connected and supervised by the SCADA platform.

All this data is stored in a distributed database. This

database stores two types of signals:

– Synchronous signals: these signals are recorded at a

constant rate of 10s. This is the case for the tem-
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perature sensors installed in the water tanks and

across different parts of the system, and also for the

mixture of hot and cold water for each pump.

– Asynchronous signals: these signals are recorded when

a change of value above a prefixed threshold is de-

tected. Examples of these signals are the indoor

temperatures, error signals, and binary status of

many low level parts of the system, like pumps,

valves, engine status, and so on.

In addition to these SCADA variables, we also col-

lect the humidity (H), solar radiation power (R), and

pressure (P ) from Santiago-EOAS, a weather station

of the Galician Meteorological Agency (Meteogalicia)

situated approximately 100 meters from the building

[26]. These variables give relevant information about

weather conditions that may directly affect the indoor

temperatures. We also collect the temperature (T̄o), rel-

ative humidity (H̄) and pressure (P̄ ) predictions from

MeteoSIX, a numerical weather prediction service by

Meteogalicia that provides hourly predictions for the

next four days.

All these variables are also stored in a distributed

database for its posterior analysis. For the generation

of the predictive models, synchronous measures were

downsampled to 1 h bins and asynchronous measures

were converted into time series by appling linear inter-

polation and 1 h resampling.

Scalable multi-step prediction using S-FRULER

with Feature Selection

In order to optimize the power consumption in the

building, we need to build predictive models to sim-

ulate the future state of the building at different time

horizons, given its current state, the local weather in-

formation, the weather predictions and the schedule for

the systems to be controlled (the cogenerator and the

pumps). The models for long-term prediction we need

to generate for this problem are of two types: one to pre-

dict the evolution of the temperature in the upper part

of the tanks, and other to predict the evolution of the

temperatures inside the building. The purpose of these

models is two-fold: 1) to make accurate predictions of

the future states of the building, in order to simulate

and optimize the management of the building; and 2)

to interpret the effect and interaction of the different

variables in order to help the experts understand the

dynamics of the building and to prepare future actions

to improve the efficiency.

The implementation of the system also requires up-

dating the models over time, using the new acquired

data. This means that, every year, the training set in-

creases by 8,760 hours of new data, which makes it nec-

essary to use scalable machine learning techniques to

prevent the whole system suffering from scalability is-

sues over time as the training set grows. Given these re-

quirements, we adopted a direct prediction forecasting

strategy [8] using S-FRULER to generate fuzzy knowl-

edge bases in an scalable fashion that are both inter-

pretable and accurate. The direct strategy learns inde-

pendently N models, one for each hour, and the fore-

casting is generated by joining the predictions of each

model. This has many advantages: 1) since the models

are independently learned, estimations of models are

not propagated and thus is not prone to accumulation

of errors; 2) the generation of the models for each time

horizon can be distributed, which increases the level of

parallelism; and 3) models are also easy to interpret

for the experts as they can choose to focus on just one

model, for example to explore the effect of the vari-

ables in the prediction of the temperatures for the next

24 hours, ignoring the rest of time lags.

Figure 5 shows the long-term prediction framework

proposed for the generation of the tank temperature

and indoor temperature models. Starting from the avail-

able data from the sensors, the weather station and the

MeteoSIX service, we identified a subset of variables

of interest in successive talks with the experts in the

energy domain involved in the project. With this vari-

ables, we generate N different datasets, one for each

hour we want to predict. Then, we reduce the set of

initial features using a wrapper-based feature subset se-

lection method by combining Recursive Feature Elimi-

nation (RFE) with Gradient Boosting Trees (GBTs).

After that, we build models for each hour using S-

FRULER to generate interpretable and accurate fuzzy

knowledge bases. Finally, a multi-step prediction is gen-

erated by using the first model to predict t+1h, the

second model to predict t+2h, and so on.

Definition of the variables

After a discussion with the experts in the domain of

energy involved in the project, we ended up with a list

of the relevant features for the prediction of the indoor

temperatures and tank temperatures. Table 1 summa-

rizes the list of selected variables. Among all the vari-

ables selected, there are two important variables, CogNM
and PumpNM , that are related with the explicit control

of the system.

Variable CogNM refers to the total number of hours

the cogenerator is working between [t+M, t+N ]. This

variable is known in advance and provided by the oper-

ator in charge of the schedule of the cogenerator plant.
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able construction of the predictive models for multi-step

prediction

This allows us to use the model to simulate the tem-

perature in the upper part of the tanks for different

schedules of the cogenerator with the aim to find the

best schedule that guarantees that the temperature of

the tanks is not too hot or too cold.

In the same way, the variable PumpNM refers to the

total number of hours the pump was pumping hot wa-

ter to the building, which is equivalent to say that the

heating of the building was working. Again, we can use

these variables to simulate the indoor temperature for

different working hours of the heating in order to find

the best schedule that minimizes the total usage with-

out affecting the thermal comfort.

Since all variables are sampled at 1h interval, we

decided to apply the same criteria for these two con-

trol variables. Concretely, we use the hourly informa-

tion of the previous 24h. The main drawback of this

approach is that we need to use 24 features, one for

each hour. This increases the complexity of the dataset

but requires almost no domain knowledge. A better way

would be to compact the representation by taking larger

groups and summing up the total hours in each group.

However, this requires domain knowledge and is not

generalizable for other buildings.

Figure 6 shows the linear correlation analysis of the

variables initially included for the tank problem (left)

and indoor temperature (right) for the time horizon

of 12h. Variables CogNM and PumpNM are represented

as cogenerator status N M and z8 pump N M respec-

tively. There are some interesting observations that can

be derived from this graph. For example, the amount of

hot water consumed in the previous 24h is negatively

correlated with the temperature of the water in the mid-

dle part and the lower part of the tank (left figure).

This makes sense since the domestic water is heated

with the water in the middle of the tank. There is also

a strong correlation between the usage of the cogener-

ator and the tank temperature. Weather variables, like

radiation, pressure and temperature are also correlated

with the temperature of the tanks and with the indoor

temperatures. This confirms the importance of these

variables for its inclusion in the initial set of features.

Feature selection

After training each model for each hour, we perform

a wrapper-based feature subset selection using GBTs

[16]. GBT is a supervised learning algorithm that gen-

erates a predictive model in the form of an ensemble

of weak prediction models using in this case regression

trees. After training a GBT model, the importance of
each feature can be calculated by averaging the impor-

tance of the features within each tree by the weight

of each decision tree used as a weak learner. This can

be used to produce a list of features ranked by their

predictive power. Wrapper methods for feature selec-

tion use the machine learning algorithm of interest as

a black box function that produces a ranking of fea-

tures given the training data. Then, a search algorithm

is used to find a subset of features that perform well for

a particular problem. Algorithm 1 shows the pseudo-

code of the approach used to find a subset of features

for the temperature prediction. Starting with the full

set of features, the algorithm trains a GBT using the

training data, and removes the worst feature according

to its importance. This process is repeated after a total

of max feats is selected.

In order to select the number of max feats, we grad-

ually increase the number of features selected from 1 to

the number of available features in each dataset, and

we plotted the cross validation error curves. We finally
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Fig. 6: Diagonal correlation matrix of the features selected for the upper temperature of the tanks (left image)

and the indoor temperature of the first floor (right image), for a time horizon of 12h, measured using the Pearson

correlation. The target variable y in the left image corresponds with y=Tupt+12, and the target variable on the image

on the right corresponds with y=TP1
t+12.

selected the number of features for each dataset by ob-

serving the curves and selecting the number of features

from which the error no longer improves significantly.

A more detailed explanation of this is offered in Section

“Experimental study”.

Although wrapper methods are commonly used with

the same machine learning technique selected for the fi-

nal model, a combination of different techniques is also

common in the literature and usually with better re-

sults [17]. Although S-FRULER can be also used as

the base model for wrapper feature subset selection, a

combination of GBT and S-FRULER is preferred since

it is less computationally demanding.

Model for prediction of indoor temperatures

Given the set of features described before, the problem

of one-step forecasting for the indoor temperatures of

the i-th floor is formulated as a regression problem:

T̂Pit+k = fk(TPit , T ot , T̄
o
t+k, Ht, H̄t+k, Pt, P̄t+k, ¯DHW,Rt,

Pumpkk−1, Pump
k−1
k−2, . . . , Pump

k−23
k−24)

Then, a RFE process is performed using GBTs as

the estimator for each fk, trained with the whole train-

ing set, to retain a different number of features. After

Algorithm 1 Recursive feature elimination

1: function RFE(GBT, dataset, Feats, max feats)

2: # Train the model with all features

3: model← train(GBT, dataset, Feats)

4: # Rank features by importance

5: Rank← ranking(model, Feats)

6: while size(Feats) > max feats do

7: # Remove the worst performing feature

8: Feats← Feats− {worst(Rank)}
9: # Re-train the model with the new set

10: model← train(GBT, dataset, Feats)

11: Rank← ranking(model, Feats)

that, we apply S-FRULER to learn a knowledge base

for each fk using the selected subset of features.

Model for the water storage tanks

For the case of the average upper temperature of the

water in the tanks, we define the base model as:

T̂upt+k = fk(Tupt , Tmidt , T lowt , T ot , T̄
o
t+k, Ht, H̄t+k, Pt, P̄t+k,

¯DHW,Rt, Cog
k
k−1, Cog

k−1
k−2 , . . . , Cog

k−23
k−24)
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Table 1: List of features

Name (Abbrev.) Description

Pi temp (TPi) Indoor temperature in the

i-th floor.

outdoor temp (T o) Outdoor temperature.

upper tank (Tup) Average temperature of the

tanks (measured at the

top).

mid tank (Tmid) Average temperature of the

tanks (measure in the mid-

dle).

lower tank (T low) Average temperature of the

tanks (measure in the bot-

tom).

humidity (H) Relative humidity (%).

pressure (P ) Air pressure (hPa).

radiation (R) Global solar radiation

power (W/m2).

outdoor temp pred

(T̄ o)

Predicted outdoor temper-

ature.

humidity pred (H̄) Predicted relative humidity

(%).

pressure pred (P̄ ) Predicted air pressure

(hPa).

cogenerator status N M

(CogNM )

Total number of hours the

cogenerator was ON be-

tween [t + M, t + N ], M <

N .

z8 pump N M

(PumpNM )

Total number of hours the

heating pump was pumping

hot water to the first and

second floors of the build-
ing, between [t+M, t+N ],

M < N .

acs consumption N M

( ¯DHW )

Estimation of the previous

N −M h of hot water con-

sumption, using data from

the previous week as the es-

timation.

Again, we repeat the same procedure as before to

select a subset of features and, then, we use S-FRULER

to learn the final models.

Experimental study

In this section we analyze the performance of our pro-

posed approach with real data collected from the build-

ing. In total, we collected 8,760 hours of training data

from 1 February 2016 to 31 January 2017 for the indoor

temperature models, and 6,161 hours from 19 May 2016

to 31 January 2017 for the tank models. We generate

models for a total of six time horizons k ∈ {1, 2, 4, 8, 12, 24}
(hours).

We also compare how well S-FRULER performs with

feature selection in terms of accuracy against two black

box models, which produce accurate results with low in-

terpretability, and two state of the art fuzzy rule-based

systems, which produce more interpretable models at

the expenses of the accuracy. For the black-box models,

we chose a Multi Layer Perceptron (MLP) as a super-

vised parametric model, and Support Vector Machine

for regression (SVR) as a non-parametric model. MLPs

are feedforwad artificial neural networks which have the

ability to learn very complex non-linear relationships

with good accuracy, but they do not produce inter-

pretable models. For this comparison, we used a MLP

with only one hidden layer, as in our preliminary tests

we did not observe any benefit on adding more layers.

The number of neurons in the hidden layer of the MLP

was tuned using grid search with 10-fold cross valida-

tion for each time horizon, searching for values between

[5, 2 ·max features] in 5-step increments. The training

was performed for a maximum of 20,000 epochs using

the L-BFGS quasi-Newton optimization algorithm for

backpropagation. SVR is an extension of the classical

Support Vector Machines for regression problems. For

training the SVR, a Radial Basis Function kernel was

used, and the C and γ parameters were adjusted using

grid search with 10-fold cross validation.

For the fuzzy rule-based methods, we chose GFS.LT.RS

[2], a genetic lateral tuning and rule selection method

for linguistic fuzzy systems, and FS.HGD [19], a TSK

fuzzy rule generation method using heuristics and gra-

dient descent. Both implementations are available in

the FRBS library [31] for R programming language.

The selection of those algorithms was done based on

their performance on a set of preliminary tests. As the

methods implemented in FRBS are computational de-

manding, instead of performing a grid search for the

selection of the hyperparameters, we started with very

low values for the number of iterations and the num-

ber of individuals in the population. Algorithms that

did not make any progress after a few hours or meth-

ods that produced execution errors in the process were

discarded. These hyperparameters were gradually in-

creased to improve the accuracy of the methods until

the training time exceeded 1h. Also, methods that were

not able to obtain models with reasonable accuracy in

a small version of the dataset were also filtered out.

After this process, only GFS.LT.RS and FS.HGD were

selected. The following parameters were used for train-

ing:
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– GFS.LT.RS: population size = 5, num. labels =

5, mutation = 20%, max. generations = 3, tuning

mode = local, t-norm = minimum, s-norm = maxi-

mum, implication = minimum, defuzzifier = center

of gravity.

– FS.HGD: num. labels = 5, max. iterations = 10, step

size = 0.1, alpha heuristic = 1, t-norm = minimum,

s-norm = maximum, implication = minimum.

Increasing further the number of individuals or iter-

ations resulted in prohibitively computation times for

a very modest decrease in errors. Those parameters re-

mained fixed for all the tests. It should be noted that

we did not perform any hyperparameter optimization

for S-FRULER. Default parameters across all tests were

used for S-FRULER as well.

Indoor temperatures

Figure 7 shows the estimated error using a shuffled 10-

fold cross validation for different number of selected fea-

tures and for different time horizons using RFE with

GBTs. For training the trees we used XGBoost [9] and

we optimized the hyperparameters with Grid Search

and cross validation. The hyperparameters selected were:

– Learning rate: 0.05. Shrinkage factor for the contri-

bution of each tree.

– Max depth: 6. Maximum depth of the individual

regression estimators.

– Number of boosting stages: 600. Number of weak

learners used.

– Column sample by tree: 0.8. Sub-sample ratio of fea-

tures when constructing each tree.

Fig. 7: Model score (negative MSE) estimated with 10-

fold cross validation for different number of features,

selected with RFE, for the prediction of the indoor tem-

perature for each time horizon k.

As expected, the easier problem was the prediction

of the indoor temperature for the next hour (k = 1).

In this case, the performance does not improve signif-

icantly after selecting the top 5 most performing fea-

tures. The top 5 features selected to predict the indoor

temperature for k = 1, sorted by decreasing weight im-

portance, are: TP1, T o, H, P and T̄ o. The most impor-

tant features are the current indoor temperature and

the current outdoor temperature as expected. It should

be highlighted that the current humidity and pressure

are also relevant for the prediction of the indoor tem-

perature.

As the time horizon increases, the number of fea-

tures needed to improve the error also increases. For

the time horizon k = 24h, the estimated error stabilizes

around 10 features. The top 10 features for k = 24h se-

lected by RFE are shown in Figure 8.

Fig. 8: Top-10 features selected by RFE for k = 24h for

the indoor temperature problem.

Again, weather related variables were among the top

most informative features, including now also the radi-

ation. Unfortunately, MeteoSIX does not offer a pre-

dicted radiation value, but from this analysis we can

expect that the predicted radiation at t + 24h would

be also an interesting feature to include in the model.

Only two variables related with the status of the heat-

ing were included, corresponding with the status be-

tween [t + 2h, t + 3h] and [t + 8h, t + 9h]. Although at

first glance it may seem that the heating system does

not affect the indoor temperature, a closer look to the

correlation matrix (Figure 6) reveals that the heating

status is strongly correlated with the weather variables.

This is reasonable since the heating system of the build-

ing is used only when needed, i.e., when the building

is cold, and so there is a strong causal-effect relation-
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ship. Collecting more data could help to leverage the

true influence of the heating independently of weather

conditions. This also highlights the importance of up-

dating the models with more building data collected in

the coming years.

Using the features of Figure 8, we learned differ-

ent predictive models with S-FRULER, the SVR and

the MLP. Figure 10 shows the average error (RMSE)

using shuffled 10-fold cross validation without feature

selection and with feature selection including the top-

10 features for all time horizons. We decided to use the

top-10 features based on the observation that, after the

first ten features, there is no substantial change in the

error model.

A first look at the curves reveals that the perfor-

mance of S-FRULER improves when coupled with the

feature selection mechanism for all time horizons, with

an average gain in accuracy of 6.8% when compared

with S-FRULER without feature selection. Also, it can

be seen that both the SVR and the MLP decrease in

accuracy when using feature selection. We hypothesize

that the proposed feature selection method is not effec-

tive for SVR and MLP but works fine for S-FRULER as

it is based on trees, which partition the input space in

a way that is very similar to that of a fuzzy rule base. If

we compare the best results achieved by the MLP and

the SVR (i.e., without FS) against S-FRULER with

FS, we observe that the error of the SVR is 3.7% bet-

ter than S-FRULER with FS (an average of 0.015 oC,

which is negligible), but at expenses of generating a

non-interpretable model. On contrast, the MLP is 6.9%

worse on average (an average of 0.034 oC). Table 2

shows the average RMSE and the average number of

rules for each time horizon in detail. One interesting

outcome is that S-FRULER achieves a consistent in-

crease in accuracy with an average of 4.2 rules for the

knowledge bases generated by S-FRULER and 8.5 for

S-FRULER with Feature Selection.

Figure 9 shows an example for the prediction of the

indoor temperatures for the training period and for a

holdout dataset of unseen data (from 1 February 2017

to 31 May 2017, separated by the vertical red line),

using a knowledge base generated by S-FRULER with

feature selection for k = 4h. We focus only on the first

floor (P1), as the same analysis applies for the remain-

ing floors.

As can be seen, the accuracy on both training and

test is similar, with no signs of overfitting. This is better

shown in Figure 11. It should be noted that the predic-

tion on the holdout set is especially difficult, since there

is no data for the same period of time on previous years

in the training set. Thus, a smaller error in the predic-

Table 2: Comparative between S-FRULER and S-

FRULER with Feature Selection (FS, 10 features) for

the indoor temperatures. Values are averaged across all

folds.

S-FRULER S-FRULER w/FS 10

Dataset RMSE Rules Time (s) RMSE Rules Time (s)

P1 (1h) 0.189 2.6 658.3 0.180 6.8 719.7

P1 (2h) 0.298 4.2 644.8 0.281 5.5 703.5
P1 (4h) 0.451 4.5 645.6 0.429 8.3 736.8
P1 (8h) 0.652 3.5 639.7 0.605 9.6 693.3
P1 (12h) 0.758 7.6 678.5 0.681 11.4 731.7

P1 (24h) 0.749 2.7 799.3 0.705 9.5 738.8

Table 3: Comparative between GFS.LT.RS and

FS.HGD with and without feature selection for the in-

door temperatures.

GFS.LT.RS FS.HGD

RMSE Time (s) RMSE Time (s)

P1 - 1h N/A N/A N/A N/A
P1 - 1h (FS 5) 0.56 4290.7 0.45 2096.2

P1 - 1h (FS 10) 4.87 1178.4 6.25 1223.5
P1 - 8h N/A N/A N/A N/A
P1 - 8h (FS 5) 0.89 6179.6 0.71 2417.7
P1 - 8h (FS 10) 5.04 301.9 6.37 409.7

tions is expected in the following years, as more data is

used to train the models.

We also evaluated the selected FRBS algorithms

GFS.LT.RS and FS.HGD with and without feature se-

lection (FS). These results are shown in Table 3. As

we found during the experimentation that the methods

had problems for learning, we also included tests with

only 5 features to measure the effect that the number

of features has in the learning process. Given the large

amount of time taken by these methods, we performed

only a 5-fold cross validation for the estimation of the

errors, and we limited the tests only to t+1h and t+8h.

For datasets P1 - 1h and P1 - 8h without feature

selection, we could not get any result as the methods

terminated with errors. In all the other cases, the av-

erage RMSE and time of the methods are higher than

the results obtained by S-FRULER. It should be noted

that the performance of the methods is very sensible to

the number of features, as the errors were lower using

5 features instead of 10. Also, in theory, those errors

might be further improved by increasing the number

of individuals in the population and the generations

(for GFS.LT.RS), and the number of iterations (for

FS.HGD). However, in our tests, increasing those num-

bers above the values we used resulted in prohibitive

times.
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Fig. 9: P1 indoor temperatures vs. predicted temperatures, using one knowledge base generated by S-FRULER for

the time horizon k = 4h. The vertical red line separates the data used for cross validation (left) from the hold-out

test data (right).

Fig. 10: Performance of the models (10-fold estimation

of the test RMSE) for different time horizons using S-
FRULER, MLP and SVR for the indoor temperatures,

with and without feature selection. Note that the S-

FRULER w/FS curve (blue curve) is occluded by the

SVR w/FS curve (purple curve) as they have a very

similar performance.

Upper tank temperatures

Figure 12 shows the estimated error with shuffled 10-

fold cross validation for different number of selected

features for the upper tank temperature models, using

GBT with the following hyperparameters:

– Learning rate: 0.05

– Max depth: 12

– Number of boosting stages: 600

– Column sample by tree: 0.8

Figure 13 shows the feature ranking of the top-20

selected features with RFE. Again, weather variables

Fig. 11: Observations vs predictions for k = 4h for one

of the models generated with S-FRULER, for the train-

ing set and for a hold-out set with unseen data from 1

February 2017 to 31 May 2017.

are among the top most informative features. This is in

line with the expected behavior, since more hot water

is used when the temperatures are colder. Cogenera-

tor status features are also among the top-20 features,

which is a good indicator that the use of the cogenera-

tor is indeed affecting the behavior of the temperatures

in the upper tank.

We performed the same comparison as before, with

and without feature selection, using in this problem the

top-20 features (Figure 13). As can be seen in Figure 14,
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the performance keeps improving with the number of

features, but only slightly after the 20 most informative

ones.

Fig. 12: Model score (negative MSE) estimated with

shuffled 10-fold cross validation for different number of

features, selected by RFE, for the prediction of the up-

per tank temperature.

Fig. 13: Top-20 features selected by RFE for k = 24h

for the upper tank temperature.

Comparing the results of the SVR and the MLP

against S-FRULER with FS, we observe that the SVR

achieves an error 5.1% better on average than S-FRULER

w/FS (an average of 0.15 oC), and the MLP an error

2.5% better on average (an average of 0.10 oC). Both

improvements are negligible for the prediction of the

upper tank temperatures which are, on average, around

70oC.

For this problem, the analysis of the performance

of S-FRULER represented in Figure 14 also reveals a

greater advantage for the version of S-FRULER with

Table 4: Comparative between S-FRULER and S-

FRULER with FS (20 features) for the upper tank tem-

peratures.

S-FRULER S-FRULER w/FS

Dataset RMSE Rules Time (s) RMSE Rules Time (s)

Tank (1h) 1.521 3.100 409.4 1.422 6.200 534.0
Tank (2h) 2.117 3.800 406.8 1.962 7.100 501.2
Tank (4h) 2.813 7.000 385.2 2.658 7.900 408.6

Tank (8h) 3.570 6.600 398.3 3.413 7.400 398.4
Tank (12h) 4.054 7.200 388.2 3.840 8.500 410.1
Tank (24h) 4.610 5.400 392.7 4.372 8.000 424.0

feature selection for all time horizons (Table 4), with an

improvement of 6.1%. Again, results for the SVR and

the MLP with feature selection are worse than with-

out feature selection. Comparing the results of the SVR

and the MLP against S-FRULER with FS, we observe

that the SVR achieves an error 5.1% better on average

than S-FRULER w/FS (an average of 0.15 oC), and

the MLP an error 2.5% better on average (an average

of 0.10 oC). Both improvements are negligible for the

prediction of the upper tank temperatures which are,

on average, around 70oC. Figures 15 and 16 show, as

in the previous problem, the observed temperatures vs.

the predicted ones for the 4h model, with a similar be-

havior for the training and test data.

Fig. 14: Performance of the models (10-fold estimation

of the test RMSE) for different time horizons using S-

FRULER with feature selection (FS), without FS, the

MLP and the SVR.

As in the case of the indoor temperatures, we per-

formed the same experiment with GFS.LT.RS and FS.HGD.

We observed the same behavior as before. The algo-

rithms were not able to learn when all or a large set

of features were used. Using only 5 features, the algo-

rithms were able to learn with relatively low RMSE

errors (3.93 and 2.03 for 1h, 5.42 and 4.61 for 8h, for
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Table 5: Comparative between GFS.LT.RS and

FS.HGD with and without feature selection for the up-

per tank temperatures.

GFS.LT.RS FS.HGD

RMSE Time (s) RMSE Time (s)

Tanks - 1h 20.00 1759.0 25.69 3373.2

Tanks - 1h (FS 5) 03.93 3088.2 02.03 1442.8

Tanks - 1h (FS 20) 19.81 1327.0 25.67 1843.5

Tanks - 8h 20.01 2990.8 25.71 3008.4

Tanks - 8h (FS 5) 05.42 2577.4 04.61 1381.5

Tanks - 8h (FS 20) 19.74 1974.7 25.54 3097.6

GFS.LT.RS and FS.HGD respectively), although the

errors obtained with the two methods were larger than

the errors obtained by S-FRULER, both with and with-

out FS.

Fig. 15: Observations vs predictions for k = 4h for one

of the models generated with S-FRULER, for the train-

ing set and for a hold-out set with unseen data from 1

February 2017 to 31 May 2017.

Conclusions

In this work we presented a novel cognitive computa-

tion approach based on genetic-fuzzy systems (GFS)

for scalable prediction of energy consumption in smart

buildings. This method is applied in a large building

of the University of Santiago de Compostela with more

than 450 sensors and actuators that monitor and con-

trol different parts of the building. One of the main

issues is the generation of interpretable and accurate

fuzzy models in reasonable time, given the large amount

of data generated in the building, a problem that is go-

ing to grow year after year as more data is available.

This requires the use of scalable techniques to be able

to cope with the increase in complexity. For this pur-

pose, we used the S-FRULER GFS coupled with a fea-

ture selection mechanism that automatically selects the

most informative features for each time horizon. The

experiments with real data on two different problems

related with the energy management revealed an av-

erage improvement of 6% on accuracy with respect to

S-FRULER without feature selection, and with knowl-

edge bases with a lower number of variables. Moreover,

the generated rules are interpretable, allowing the man-

agers of the building to make decisions for the reduction

of energy consumption.
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