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Abstract—The reduction of energy consumption in buildings
is one of the goals to improve energy efficiency. One way to
achieve energy savings in buildings is to develop intelligent
control heating strategies that are able to reduce the power
consumption by predicting the behavior of the thermal dynamics
under different control schemes. One way to accomplish this is
by means of learning fuzzy rules using the data collected from
different sensors installed in buildings to generate regression
models that are accurate and interpretable, so the generated
models can be understood by the experts who approve the energy-
saving schemes. However, one important issue is the generation
of accurate knowledge bases of fuzzy rules for regression that
can scale with the large amount of information generated by
the many sensors installed in buildings, which will continue to
grow in the coming years. For this purpose, in this paper we
evaluate the scalability of two genetic fuzzy systems, FRULER
and S-FRULER in the domain of thermal dynamics in buildings,
using real data from a residential college at the USC.

I. INTRODUCTION

Buildings account for 40% of the total energy consumption
in the EU, according to European Directive 2010/31/EU on
energy efficiency in buildings. Because of the expansion this
sector is currently experiencing, a rise of that percentage will
be inevitable. Therefore, it seems clear that the reduction of
energy consumption and the use of energy from renewable
sources in the building sector will play a key role in future
measures to reduce emissions of greenhouse gases. One way
to achieve energy savings in buildings is by reducing the total
working hours of heating systems. However, a decrease in the
total usage may lead to important decreases of indoor tem-
peratures that can affect thermal comfort. In order to prevent
this, automatic heating control systems must predict the future
indoor temperature for a particular control policy in order
to find the best strategy that minimizes power consumptions
while keeping thermal comfort. Current methods for indoor
temperature prediction [6] are mostly based on physical model
simulations [19] and black-box machine learning methods
[17], [9], [18], [20]. Physical models describe the building
behavior by solving theoretical equations that describe to a cer-
tain precision the different dynamics and interactions between
the variables. Although these methods are very powerful to
simulate the different dynamics of a building, especially when
there is no real data available, in general they are: 1) very
time-consuming since they require many simulation hours,
which prevents their application for predicting temperatures in
small temporal windows; and 2) complex to formulate, since

it is very difficult to produce a detailed model of a complex
building, especially when there are many unknown factors
that can affect the temperature dynamics. Machine learning
models can overcome some of these limitations by learning
the behavior from real data. However, current techniques,
which are mostly black-box models based on neural networks,
are hard to interpret and thus the interaction of the different
variables of the building remains unknown. In this sense, the
generation of accurate and interpretable models for thermal
dynamics in smart buildings is fundamental 1) for modeling
the thermal dynamics of the building to simulate the behaviour
of the system to find better control strategies to reduce the
energy consumption; and 2) to allow experts to interpret how
the different variables of the system interact.

In this sense, fuzzy rule-based systems are well suited to this
kind of applications thanks to their interpretability. However,
there are some challenges associated with the automatic gen-
eration of rule-bases. Particularly, in Genetic Fuzzy Systems
(GFS), the size of the problem has a huge influence in the
performance of the algorithm [4], [7]. The rule bases learned
suffer from exponential explosion as the number of variables
increases and therefore the convergence time towards precise
and simple models rises. Moreover, evolutionary algorithms
are computationally expensive due to the large number of
evaluations needed to reach convergence, and so the evaluation
process to obtain the fitness may take a long time.

One way to cope with scalability issues from a Big Data
perspective is to adopt the distributed computing paradigm for
scaling GFS [11]. However, there is a lack of works –with only
a few exceptions [5]– that use Big Data frameworks, such as
Spark [22] or Hadoop [21] to deal with the scalability issues
for regression problems. Concretely, the use of Spark is closely
related to the success of Hadoop, which enables the processing
of vast amounts of data in parallel on large clusters, usually
implemented using the Hadoop Distributed File System. Spark
adds to the Hadoop ecosystem the capability to use advanced
data-flow computations with an improvement of in-memory
computing and high-level functions that facilitate to build
parallel applications.

It was not until recently that the use of GFS for solving
large scale regression problems has started to attract attention
in the field [2], [3], [13], [14]. However, the size of the
training data used in these works is not large enough to
be considered Big Data. Among the different approaches,



FRULER [14] obtains Takagi-Sugeno-Kang 1-order (TSK-1)
fuzzy rule bases with high accuracy and the lowest number
of rules. Although the runtime of this approach is acceptable
for the most simple datasets, it does not scale properly when
solving large scale problems and may not converge to a good
solution in reasonable time. These problems motivated the
development S-FRULER, the distributed version of FRULER.

The main goal of our work is to address the problem
of building accurate and interpretable models of thermal
dynamics in buildings. One of the major issues is the large
amount of data that will be generated in the following years,
which will require the use of scalable learning algorithms –
such as S-FRULER– to be able to improve the models over
time with a reasonable computational effort. To do so, we use
both FRULER and S-FRULER to learn accurate and simple
TSK rules [15], and we compare them using the available
current data on two different cases: 1) generation of indoor
temperature models for different floors of the building and
2) generation of models for predicting the evolution of the
temperature in a set of buffer tanks that are used store hot
water. These models will be used later in the EU LIFE-OPERE
project [1] to predict the behaviour of the building under
different conditions in order to find new control strategies that
lead to even further energy savings.

II. FRULER: FUZZY RULE LEARNING THROUGH
EVOLUTION FOR REGRESSION

FRULER (Fuzzy RUle Learning through Evolution for
Regression) [15] is a novel GFS that obtains accurate and
simple linguistic TSK-1 fuzzy rule base models for regression
problems. FRULER (Fig. 1) is composed of a new instance
selection method for regression, a novel multi-granularity
fuzzy discretization of the input variables, and an evolutionary
algorithm that uses a fast and scalable method with Elastic Net
regularization to generate accurate and simple TSK-1 rules.

1) Instance selection.: The objective of the instance se-
lection module is to reduce the variance of the models,
focusing the generated rules on the representative examples.
The instance selection method for regression is an improve-
ment of the CCISR (Class Conditional Instance Selection
for Regression) algorithm [12], which is an adaptation for
regression of the instance selection method for classification
CCIS (Class Conditional Instance Selection) [8].

2) Multi-granularity fuzzy discretization.: In a multi-
granularity proposal, each granularity has a different fuzzy
partition. The generation of the fuzzy linguistic labels can be
divided into two stages. First, the variable must be discretized
to obtain a set of split points Cg for each granularity g. Then,
given the split points, the fuzzy labels can be defined for
each granularity. In regression problems (TSK-1 in our case),
the discretization process must search for the split point that
minimizes the error when a linear model is applied to each of
the resulting intervals.

3) Evolutionary algorithm.: The evolutionary algorithm
learns a linguistic TSK model. The integration of the evo-

lutionary algorithm with the preprocessing stage is as follows
(Fig. 1):
• First, the instance selection process is executed over the

training examples Etra in order to obtain a subset of
representative examples ES .

• Then, the multi-granularity fuzzy discretization process
obtains the fuzzy partitions for each input variable.

• Finally, the evolutionary algorithm searches for the best
data base configuration using the obtained fuzzy parti-
tions, generates the entire linguistic TSK rule base using
ES and evaluates the different rule bases using Etra.

The chromosome is codified with a double coding scheme
(C = C1 + C2). C1 represents the granularity of each input
variable. C2 represents the lateral displacements of the split
points of the input variables fuzzy partitions.

FRULER uses the Wang & Mendel algorithm to create
the antecedent part of the rule base for each individual. The
consequent part of the rules is learned using the Elastic Net
method [23] in order to obtain the coefficients of the degree 1
polynomial for each rule. Elastic Net combines the `1 (Lasso
regularization) and `2 (Ridge regularization) penalties of the
Lasso and Ridge methods, minimizing the following equation:

β̂ = argmin
β

||Y −X ·β||2+λ·α·‖β‖2+λ·(1−α)·‖β‖1 (1)

where β is the coefficients vector, Y is the outputs vector,
X is the inputs matrix, λ is the regularization parameter and
α represents the trade-off between `1 and `2 penalization. In
order to solve the minimization problem of Elastic Net (Eq.
1), we used Stochastic Gradient Descent (SGD).

The rule base is generated using only those examples in Es.
In this manner, those examples that are not representative are
not taken into account, the method avoids the generation of
too specific rules, and reduces the time needed to create the
rule base. The fitness function is:

fitness = MSE (Etra) =
1

2 · |E |

|E |∑
i=1

(F (x i)− y i)2 , (2)

where Etra is the full training dataset and F (xi) is the output
obtained by the knowledge base for input xi. Using all the
examples for evaluation can be seen, in some way, as a
validation process, as the rule base was constructed with a
subset of them (ES).

III. S-FRULER

S-FRULER [16] (Scalable Fuzzy Rule Learning through
Evolution for Regression), is the distributed version of
FRULER designed to improve the current scalability issues
that hampers the use of FRULER with large-sized problems.
To cope with these limitations, S-FRULER, instead of process-
ing the entire dataset, divides the original problem into a set
of smaller problems that are more tractable using a distributed
approach (Map phase). Each of these divisions is then indepen-
dently solved in the Map phase using the FRULER algorithm,
as described in Sec. II. Finally, the solutions obtained in each



Genetic Algorithm

EvaluationEvolutionary Process

D
at

as
et

 P
ar

tit
io

n Instance
Selection

e2: x1,..., xp, y2
✘

e1: x1,..., xp, y1
✓

...

en: x1,..., xp, yn
✓

Final Knowledge Base

Initialization

Crossover
& MutationSelection

Replacement

Evaluation

TSK 1-order
Rule Generation

Data Base

Rule Base

Local Search

Repeat

Stop

Variable
Selection

x1,..., xp

✓ ✘

Fig. 1: FRULER architecture. Dashed lines indicate flow of datasets, dotted lines multigranularity information and solid lines
represent process flow.

Map are combined in the Aggregation phase in order to obtain
a final solution for the original problem.

The algorithm structure is shown in figure 2. The first step
consists of a multi-granularity fuzzy discretization process
that is performed using the whole training dataset. Then,
the training dataset is splitted into n partitions during the
Map phase. Those partitions generated during the Map phase
corresponds with the tasks that are distributed as independent
sets of processes to be processed in the worker nodes using
Apache Spark. For each partition, only a subset of randomly
selected variables is taken into account. Each partition is
solved using FRULER, considering each partition as an in-
dependent problem, where only the instance selection and
the genetic algorithm are executed. Finally, each independent
solution for each sub-problem is combined in the Aggregation
phase, where the missing variables that were not selected in
some of the partitions are combined with the information of
the other partitions to produce the final knowledge base.

IV. MODELING THERMAL DYNAMICS IN BUILDINGS

The main goal of the LIFE-OPERE European project [1] is
to implement efficient management systems in both thermal
and electrical energy grids in existing installations with large
energy consumption. Particularly, in this project the study
focuses on the residential college of Monte da Condesa, a
building located at the University of Santiago de Compostela.
Monte da Condesa comprises a set of centers that act as
separate buildings, which nevertheless maintain thermal in-
teraction through their conditioning circuits connected to a
common cogeneration plant. The building is about 25,000 m2

and reached in 2013 a total power consumption of 5,747 MWh.
The set of all centers is supervised by a SCADA system
that has 469 input and output variables that are associated
with signals from the primary heating circuits and power
consumption. Signals are collected in two different ways:
synchronous (sync) and asynchronous (async). Synchronous
signals are sequentially sampled at a fixed interval of 10 s,

whereas asynchronous signals are registered by detecting a
change of a value above a prefixed threshold. These signals
include information about the indoor temperature of each floor,
the outside temperature, the pumped water temperature of the
heating systems, plus many other low level variables.

All these signals can be used not only to monitor and
control the building but also to predict the behaviour of
the system by observing its dynamics over time. Predicting
the dynamics of the building is useful to perform a smart
adjustment of the heating systems based on the predicted state
of the building. In this context, three goals have been set
out in this project: 1) prediction of indoor temperatures for
each floor, taking into account future weather predictions to
improve the current heating control scheme; and 2) modeling
of the thermal dynamics in the buffer tanks, a set of five hot
water storage systems for Domestic Hot Water (DHW) that
are directly affected by the operation of an electric generation
system.

The implementation of the system also requires the update
of the models over time, using the new collected data. This
implies that, every year, the training set increases by 8,760
hours of new data, which makes it necessary to use scalable
machine learning techniques to prevent the whole system
suffering from scalability issues over time as the training set
grows.

To achieve these goals, in this work we propose a method
that automatically learns scalable, accurate and interpretable
non-linear models using S-FRULER.

A. Models for indoor temperature

In order to predict the indoor temperatures of each floor,
we focus on the variables that may directly affect the tem-
perature dynamics. These variables are represented in Fig. 3,
which shows a high-level representation of the building. Tnin,
where n = 0, . . . , 5, corresponds with the indoor temperature
sensors of the building. Thus, there are 6 different sensors
(T 0
in, . . . , T

5
in), one for each floor, which are the response
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Fig. 3: Schema of the Monte da Condesa residential college
with the related variables.

variables we aim to predict. Each floor is heated with hot
water pumped from one of the two hot water pumps (Pump1
and Pump2). Pump1 corresponds with the status of the pump
of the heating system that feeds both floors 0 and 1, whereas
Pump2 corresponds with the status of the second pump that
feeds the remaining floors. Note that, for the sake of clarity,
in the following we will refer to Pump instead of Pump1
and Pump2, where Pump = Pump1 for floors 0 and 1 and
Pump = Pump2 for floors from 2 to 5.

In addition to these SCADA variables installed in the build-
ing, we also obtained the humidity (Hr), solar radiation power
(P ), and pressure (Pa) from Santiago-EOAS, a Meteogalicia
[10] weather station situated approximately 100 meters from
the building. These features give relevant information about
weather conditions that may directly affect the indoor temper-
atures. Moreover, the temperature (TMS

out ), relative humidity
(HMS

r ) and pressure (PMS
a ) predictions are obtained from

MeteoSIX, a Galician numerical weather prediction service that
provides hourly predictions from the current day to four days
in ahead. MeteoSIX predictions provide information about
future weather conditions at a given instant of time.

Synchronous measures were downsampled to 1 h bins and
asynchronous measures were converted into time series by

appling linear interpolation and 1 h resampling. To summarize,
the selected signals, sampled at 1 h interval (t) are:

• Tnin(t): indoor temperature at t of floor n (°C, async).
• Tout(t): outside temperature at t (°C, async).
• Pump(t): binary status (1-on, 0-off) of the water heating

pump at t (sync).
• Hr(t): relative humidity (%, sync, Meteogalicia).
• P (t): global solar radiation power (W/m2, sync, Meteo-

galicia).
• Pa(t): air pressure (hPa, sync, Meteogalicia).
• TMS

out (t): outdoor temperature prediction (°C, MeteoSIX).
• HMS

r (t): relative humidity prediction (%, MeteoSIX).
• PMS

a (t): air pressure prediction (hPa, MeteoSIX).

The variable Pump is one of the most important features
of the model, since pumping hot water to the building has a
direct impact on both the indoor temperature and the energy
consumption. Thus, this variable can be controlled to simulate
different heating control schemes to maximize energy savings
while keeping thermal comfort. For this purpose, we use the
information of the previous 24 hours, but instead of using 24
binary features (1-Pump ON, 0-Pump OFF for each hour), we
generate 4 features grouping the last 24 hours into 4 groups
of 6 hours:

• Pump0(t): total ON hours from t to t− 6.
• Pump1(t): total ON hours from t− 6 to t− 12
• Pump2(t): total ON hours from t− 12 to t− 18
• Pump3(t): total ON hours from t− 18 to t− 24.

We constructed a rule-based regression model F with S-
FRULER to predict each variable response T̂nin(t, k), n ∈ [0, 5]
for different values of k (period lags), where T̂nin is the
predicted indoor temperature on floor n at time instant t+ k.

T̂nin(t, k) = F [Tnin(t), Tout(t), Hr(t), P (t), Pa(t),

TMS
out (t+ k), HMS

r (t+ k), PMS
a (t+ k),

Pump0(t+ k), . . . , Pump3(t+ k)]

In order to train the models, several values of k could be
set. In this case, k = {2, 4, 8, 16, 32, 64}h are proposed.



B. Buffer tanks temperature prediction

In addition to the gas-fired boilers installed in the building
that are used for heating water, the heating system also has a
cogeneration system that provides thermal energy to the buffer
tanks and produces electricity. The residual heat produced by
the engine is transferred to a set of five buffer tanks. These
tanks are used to store the hot water not used during periods
where the electrical engine is working, so that it can be used
later during periods of high demand (basically, heating and
DHW consumption). Predicting the thermal dynamics in the
buffer tanks is important in order to draw a better schedule of
the cogeneration operation.

Figure 4 shows the five buffer tanks. Each tank has three
thermal sensors to monitor the water temperature at three
different levels (lower, middle and upper positions). For this
problem, only the upper and lower temperature is taken into
account, since it is a reliable indicator of the available thermal
energy in the tanks. Besides, the temperature in all tanks has a
similar behaviour, so that we can consider Tuptank as the average
upper temperature and T lowtank as the average lower temperature.

In addition to the weather features used for predicting the
indoor temperature, we selected the following features to be
included in the final model:

• T
up|low
tank (t): average upper/lower temp. at t (°C, sync).

• DHW (t): estimated 24 hours of domestic hot water
consumption, using the values of the previous week as
an estimation (m3, async).

• Cog(t): cogeneration system status (1-ON, 0-OFF), (bi-
nary, async).

Cog(t), as in the case of the Pump(t) variable used in
the indoor temperature models, is the control variable that
can be used to optimize the cogeneration scheme. Cog(t) is
also grouped into 4 groups of 6 hours (Cog0 . . . Cog3). The
predicted temperature in the tanks is modelled as:

T̂tank(t, k) = F [Ttank(t), Tout(t), Hr(t), P (t), Pa(t),

TMS
out (t+ k), HMS

r (t+ k), PMS
a (t+ k),

DHW (t+ k), Cog0(t+ k), . . . , Cog3(t+ k)]

V. RESULTS

In this section we compare the performance of FRULER
vs S-FRULER [16]. We collected a total of 8,760 hours of
training data from 2016-02-01 to 2017-01-31 for the indoor
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Fig. 4: Buffer tanks and cogeneration engine schema.

temperature models, and a total of 6,161 hours from 2016-05-
19 to 2017-01-31 for the buffer tank models. For each run,
the dataset was randomly divided into training (80%) and test
(20%). Both FRULER and S-FRULER have been used with
the default settings. In the case of S-FRULER, models were
generated using the multithread mode with 8 threads on an
Intel® CoreTM i7-3770 CPU at 3.40GHz.

1) Indoor temperature models: We generated a total of
36 models, one for each k ∈ {2, 4, 8, 16, 32, 64}h and for
each floor of the building, with 12 input variables, using both
FRULER and S-FRULER. Table I and II show the RMSE,
number of rules, and total time for each approach for the
models of the floor 0 and 1 respectively. We omitted the
results of the remaining floors due to lack of space. We only
include the RMSE of the test error since both training and test
errors were very close and no overfitting problems have been
identified.

TABLE I: Indoor temperature models for floor 0

FRULER S-FRULER

k RMSE #Rules Time (s) RMSE #Rules Time (s)

2h 0.27 53 4781 0.32 6 687
4h 0.41 25 9074 0.45 11 708
8h 0.54 21 8247 0.69 5 581

16h 0.60 24 8681 0.78 4 699
32h 0.70 21 9408 0.85 2 698
64h 0.75 15 2159 0.96 6 724

TABLE II: Indoor temperature models for floor 1

FRULER S-FRULER

k RMSE #Rules Time (s) RMSE #Rules Time (s)

2h 0.26 39 8432 0.33 6 913
4h 0.42 33 9122 0.49 9 810
8h 0.55 86 25212 0.72 6 786

16h 0.71 13 4552 0.78 4 826
32h 0.77 54 6234 0.87 6 800
64h 0.84 37 11967 1.01 16 839

As can be seen, FRULER always generates models with
lower errors (≈20% lower RMSE) but at expenses of a
higher computational cost and complexity. In the worst case,
FRULER takes 7h to generate a model of the floor 1 for
k = 8h (Table II), using a total of 86 rules, which clearly
goes against the interpretability goal. Most part of this time
is spent on the evaluation of the individuals by the EA (see
[14] for more details). On contrast, S-FRULER is on average
12 times faster than FRULER using the same computer (all
models were generated in less than 15 min) with rule bases
that are 6 times smaller on average.

2) Buffer tank temperature models: In this case, we gener-
ated two types of models: one for the average temperature of
the upper part of the tanks and the other for the lower part,
using in total 13 input variables. Again, we observe a similar
behavior as in the case of the indoor temperatures. Errors are
again larger for the models generated with S-FRULER (≈



TABLE III: Lower tank temperature models

FRULER S-FRULER

k RMSE #Rules Time (s) RMSE #Rules Time (s)

2h 2.36 3 1259 2.45 2 480
4h 2.72 6 2693 3.78 4 560
8h 3.69 16 3376 4.45 6 535

16h 3.89 16 2285 4.61 12 506
32h 4.72 23 2430 6.10 12 505
64h 4.96 48 3423 6.08 4 532

TABLE IV: Upper tank temperature models

FRULER S-FRULER

k RMSE #Rules Time (s) RMSE #Rules Time (s)

2h 2.23 8 2333 2.27 6 448
4h 2.45 12 2450 3.16 6 464
8h 2.83 30 5704 4.31 4 456

16h 3.69 24 2721 4.57 6 440
32h 3.91 19 5974 5.32 3 430
64h 3.77 21 5174 4.98 6 485

25% larger), but using much smaller rule bases (4x smaller
on average) and much faster (7x faster on average).

VI. CONCLUSION

In this paper we presented a novel approach for modeling
the thermal dynamics of buildings using the information of
different sensors to automatically generate a knowledge base
of fuzzy rules for regression. To do so, we focus on Monte
da Condesa, a building of the University of Santiago de
Compostela with 469 sensors that provide information of
the different parts of the system. One of the main issues is
the generation of interpretable and accurate fuzzy models in
reasonable time, given the large amount of data generated in
the building, a problem that is going to grow year after year as
more information is available. This requires the use of scalable
techniques to be able to cope with the increase in complexity.
For this purpose, we used S-FRULER, a distributed algorithm
for learning fuzzy rules that can scale with the size of the
problem, and we compare its performance against FRULER,
the original non-distributed version of the algorithm.Results
proved that S-FRULER clearly improves FRULER in terms
of number of rules and runtime, obtaining rule bases 6 times
smaller on average and an average speedup of 11.7, with only
a 21% increase of the average RMSE.
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FRULER: Scalable Fuzzy Rule Learning through Evolution for Regres-
sion. Knowledge-Based Systems 110 (2016), 255 – 266.

[17] RUANO, A., CRISPIM, E., CONCEICAO, E., AND LÚCIO, M. M. Pre-
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