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Abstract— In this paper we present Hipster: a free, open source
Java library for heuristic search algorithms. The motivation of 
developing Hipster is the lack of standard Java search libraries
with an extensible, flexible, simple to use model. Moreover, most
of the libraries for search algorithms rely on recursive
implementations which do not offer fine-grained control over the
algorithm. Hipster provides a wide variety of classical search
algorithms implemented in an iterative way like Dijkstra, A*,
IDA*, AD* and more. In order to facilitate the use and
integration with most research, commercial and non-commercial 
projects, the software is developed under the open source Apache
2.0 License. Hipster was successfully applied in two different
research projects in the areas of Web service composition and
motion planning. Source code, documentation, binaries and
examples can be found at https://github.com/citiususc/hipster.

Keywords: heuristic search; uninformed search; informed
search; local search; Java library.

I. INTRODUCTION

Many areas in Computer Science, such as robotics,
planning, bioinformatics or web intelligence use heuristic
search techniques to provide efficient solutions to common
problems. State space search is widely used in Artificial
Intelligence to model and solve general and specific problems
in which the search space is divided into states that represent a
particular configuration of the problem [1][2]. In this model,
the search is performed from an initial state —the initial
configuration to the problem— to a goal state, applying
different actions in order to find a solution to the problem.
Algorithms are often classified into two categories, depending
on the information they use. These categories are uninformed
and informed search. Uninformed search refers to those
algorithms that do not have information about what state to
expand next. Examples in this category are Depth First Search,
Breadth First Search, Dijkstra or Bellman-Ford among others.
On the other hand, informed algorithms are those techniques
that use problem-specific knowledge —usually heuristics—
that are used to estimate the distance to the goal in order to
improve the performance by reducing the number of explored
states. Informed search can in turn be divided depending on
whether they exploration is over the whole state space —global
search— or only over a part of the search space —local search.
Examples of the first category are: Best First Search (BFS) [2],

A* [3], IDA* [4] or D* [5], including the specific path search
algorithms with re-planning capabilities such as ARA* [6] or
AD* [7], whereas most common local search strategies are
Beam Search [2], Hill Climbing [2], Enforced Hill Climbing
[8], Tabu Search [9] or Simulated Annealing [10].

One of the common problems is the lack of generic search
libraries with a flexible model that can be directly applicable to
any problem. This forces developers to program domain-
specific solutions based on generic algorithms for each new
problem. Furthermore the use of restrictive or viral licenses in
the current libraries makes even harder to reuse generic
algorithms.

As a response to these problems, in this paper we present
Hipster, a generic Heuristic Search library for Java. Hipster
relies on a flexible model with generic operators to change the
behavior without modifying the internals. All algorithms are
also implemented in an iterative way, avoiding recursion. This
has many benefits: full control over the search, access to the 
internals at runtime or a better and clear scale-out for large
search spaces using the heap memory. Hipster also comes with
a permissive Apache 2.0 license that allows the library user the 
freedom to use and modify it for any purpose.

At its current state, Hipster implements the following
algorithms of these families: uninformed search —DBS, BFS, 
Dijkstra and Bellman-Ford—, informed search —A*, IDA*
and AD*— and local search —Hill Climbing (HC) and
Enforced Hill Climbing (EHC). More implementations will be
added in the near future, but it is easy for any user implement
any other algorithm using the Hipster model.

II. PROJECT GOALS

The library was implemented following some guidelines to
achieve the following goals:

Iterative algorithms. We implemented the algorithms in
Hipster as iterative processes. The reason behind this is that
most search libraries provide very simple interfaces which only
require the initial and goal state, and once the search is
executed the control is not recovered until the processing
finishes. This makes unfeasible to modify the behavior of the 
algorithm —add new goals, extend the search process after
finding the goal, etc.— and to monitor the search.
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Flexible, extensible, reusable. We are aware that solving a
search problem requires to combine several pieces —state
definition, transitions, the algorithm, a cost function, heuristics,
etc.—, and in many occasions some of these pieces may
change. The development of Hipster is based on the 
encapsulation of these pieces in separate components so each 
one can be changed without affecting the others, maximizing
the flexibility of the model. It also facilitates to reuse and
extend previously implemented components.

Powerful but simple API. The key insight the API of
Hipster is to provide an easy way to solve simple search
problems using the default components —which also reduces 
the barrier of entry for new users— and separate the most
advanced options that allow the complete customization of the
algorithms.

Highly-tested code. One of the project goals of Hipster is to
provide well tested algorithms and hence a robust 
implementation. The quality of the code is guaranteed by
automatic unit testing and continuous integration tools.

Permissive Apache 2.0 license. Most of the available Java
libraries are released under restrictive licenses that are not
compatible with many research and commercial projects. To
minimize these conflicts and to maximize the adoption of the 
library, we chose a very permissive Apache 2.0 free software 
license. This license grants the freedom to use the library for
any purpose, to modify it, and to distribute modified versions
under the terms of the license, without concern for royalties.

III. IMPLEMENTATION DETAILS

A structure of a search problem is formally defined by
several components: the state space of the problem —all states 
reachable by applying any sequence of actions—, the transition
model used to navigate between states, the initial state and,
optionally, one or more goal states. Executing a search
algorithm to solve the problem and find the optimal solution
implies to build a search graph, where the nodes correspond to
the states and the arcs are the transitions between them. The 
information generated during the search is stored in these 
nodes. Although different algorithms store different 
information in the nodes, these elements are always present:

 State: State in the state space that corresponds to the
current node.

 Parent: Node in the graph that generated the current
one.

 Transition: Action applied to move from the parent
node to the current one.

This information is enough to execute simple algorithms
like BFS or DFS. Nevertheless, most search algorithms
evaluate the transitions to obtain the path with the minimum
cost. This requires to store in each node the information about
the cost, g(n), of the path between the initial state and the 

current one. Moreover, algorithms that execute an informed
search store an additional element, the score, which
accumulates the cost from the beginning and the estimated cost
to the goal according to a heuristic function, h(n). Figure 1
shows how Hipster captures all these elements. Node is a
generic interface that defines the common operations for all
node types described above. An abstract implementation of
Node, AbstractNode, is provided and can be extended to obtain
custom defined node types to use with the search algorithms.
The interface Node is extended by CostNode and
HeuristicNode, which respectively manage the cost and score
operations required by some algorithms, as described before.
By default, Hipster uses two different implementations for the
nodes, namely SimpleNode and HeuristicNodeImpl. These two
implementations are enough for the included algorithms, but
more sophisticated nodes can be created by extending
AbstractNode without affecting the implementation of the 
algorithms. As all implementations extend the Node interface,
the internal data type used in the algorithm is not required to be
known, and the compatibility between them is guaranteed.

Figure 1. Data model of Hipster. The graph search is built using States, 
Transitions and Nodes, and the search algorithms may use heuristic and
cost functions to evaluate the cost of the paths. The information generated
during the search is stored in the Node elements, which are instantiated by
a NodeFactory component.
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Depending on the type of nodes, the algorithm uses an
implementation of NodeFactory that instantiates the required
node type. If the algorithm requires using CostNode elements,
this component is also responsible of aggregating the cost from
the beginning state associated to each node. Moreover, if
HeuristicNode is used, it also computes the score by
aggregating the cost of the node and the heuristic provided by
the HeuristicFunction component. Hipster provides two
different factories used for informed and uninformed search
algorithms: HeuristicNodeFactory and SimpleNodeFactory
respectively. These implementations are enough to work with
most search strategies and it is possible to extend these 
components although it is not the most common scenario.

The algorithms implemented in Hipster rely on different
components that encapsulate independent operations in the
search process, such as generating the outgoing transitions of a 
state (TransitionFunction), evaluating the cost of the generated
transitions (CostFunction) and estimating the cost between a 
state and the goal (HeuristicFunction):

 TransitionFunction: This interface provides a function
that takes a state as an argument and returns its
outgoing transitions, according to a transition model
that depends on the problem.

 CostFunction: Evaluates a Transition object and
returns its corresponding cost. The cost is a generic
type which may be a numeric value or have a more
complex definition.

 HeuristicFunction: Estimates the cost of the path
between the input State object and the goal State. The
type returned by this component must be consistent
with the CostFunction implementation used so they
can be aggregated.

As follows from Figure 2 Hipster uses a generic definition
for the cost. This is motivated by the need of using complex
definitions for the cost that can be a composition of several
attributes that cannot be easily summarized in a single value.
This is something that other search libraries do not contemplate
and it is an important limitation when dealing with complex
real problems. To manage an abstract definition for the cost we
need to define the components to operate with the custom cost
objects. In order to operate with these costs we define a binary
function over the domain of the costs:



This corresponds with the interface BinaryFunction (Figure
2) that accepts two generic costs as input and returns the
resultant transformation in the same domain, which allows to
define generic operators as addition, scaling, etc. These are
used in the NodeFactory to operate with the costs as detailed
above. Hipster implements some common operators to work
with Double cost types that are used, for example, to
accumulate the costs when performing a Dijsktra search or to
compute the score of a node as g(n) + h(n) in the A* algorithm.

In addition to the BinaryFunction interface we need to
fulfill some properties to define a valid cost algebra [1] to work

with generic costs. A cost algebra is defined as a 5-tuple {A, x,
≼, Cid, Cmax} such that {A, x, Cid } is a monoid, ≼ is a total
order between the elements of the domain and Cid and Cmax are
the identity and greatest elements of our cost. In order to define
a monoid {A, x, Cid }, the binary function (x) over the domain
(A) must be associative and have an identity element (Cid).
Hipster provides implementations for the addition and
multiplication of Doubles using this strategy, which are the 
most common scenarios in a great variety of search problems.
It is worth to note that all these details are hidden to the user
and it is not necessary to work at that level of abstraction
unless a custom definition of the cost is used.

Following this design each component has a separate
function. This encapsulation allows changing the 
implementation of each component without affecting the
others. This facilitates reusing and extending them, and also
makes the basic structure of the algorithms fully reusable.

The algorithms currently implemented in the library are
divided in three different categories according to their features.

Uninformed algorithms:

 Depth First Search (DFS) [2]: It is a blind algorithm
that performs an exploration of the graph in a way that 
always reaches the deepest node before backtracking.
The Hipster implementation is a graph-based search
that can handle cycles. It uses SimpleNode instances
because it does not compute costs. This algorithm is
complete (it always finds a solution if it exists) but not
optimal (with the minimum cost).

 Breadth First Search (BFS) [2]: It is similar to DFS
but in this case the exploration is done visiting all the
successors of a certain level from the beginning state
before going deeper. As DFS, it also uses SimpleNode
instances and it is complete but not optimal.

 Dijkstra [1]: It is an optimal and complete graph
search algorithm for non negative costs that visits the
nodes in the order given by the minimum cost of the
path from the beginning state. As it involves evaluating

Figure 2. Class diagram showing the cost algebra used to manage custom
type cost elements.
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the transitions between nodes, and tracks the cost from
the start, it requires the usage of CostNode instances.

 Bellman-Ford [1]: It is an algorithm very similar to
Dijkstra that can handle negative costs but at the price
of a worse computational complexity.

Informed algorithms:

 A* [3]: It is a heuristic search algorithm widely used in
path finding. It uses a HeuristicFunction to estimate
the distance between each HeuristicNode and the goal.
It is complete, and optimal if the heuristic is admissible
and consistent. The nodes are visited in a best-first
search strategy where the nodes are ordered by their
score, namely f(n) = g(n) + h(n).

 IDA* [4]: This algorithm is similar to A* but uses 
iterative deepening to limit the memory usage to the
minimum. It uses the score f(n) as the maximum depth
bound to cut-off the search. This bound is recomputed
iteratively, taking the minimum f(n) score of all of
those nodes that exceeded the previous bound.

 AD* [7]: It is an advanced state-of-the-art algorithm
with replanning capabilities commonly used in path
planning. It is able to compute sub-optimal bounded
solutions inflating the value of the heuristic, so the cost
of the solution can be adjusted depending on the time 
available to compute it. The solution can be improved
iteratively reusing previous computation efforts and
managing changes in the costs of the transitions. The
order in which the nodes are visited is similar to A*,
but taking into account the inflation of the heuristic.
This difference requires using a different
implementation of Node, ADStarNode.

Local search:

 Hill Climbing (HC) [2]: This algorithm starts the
exploration in an arbitrary state and iteratively selects
the successor state with the lowest heuristic value (the
HeuristicNode that is closer to the goal) in order to
find a local optimum. The algorithm is neither optimal
nor complete, but can provide good solutions in very
fast way in some search problems.

 Enforced Hill Climbing (EHC) [8]: Is a variation of
HC that uses a BFS exploration when the algorithm
gets stuck in a local optimum. The algorithm is only
complete when the problem has not dead-ends,
otherwise it can fail without reaching the goal.

Although these algorithms are enough to solve search
problems in a huge variety of fields, it is easy for any user to
implement more algorithms based on this model.

IV. CASE STUDY I: OPTIMALWEB SERVICE COMPOSITION

Web services are network-accessible software components
whose functional features are mainly defined by the inputs that 
consume and the outputs they produce. One of the advantages
of Web services is to enable greater and easier integration and
interoperability among systems through Web service

composition. This advantage allows Web services to be
composed mainly by connecting their inputs and outputs to
create larger composite services reusing the existing ones.
Thus, the goal of Web service composition is to construct new
services from existing Web services in order to satisfy some
goals which cannot be achieved by single Web service.

There are multiple problems related to the automatic
composition of Web services that are still under active
research. One of the problems that we tackled in our research
[11, 12, 13] is the automatic input/output driven composition of
semantic Web services, optimizing both the number of services
and the total length of the composition. Concretely, the 
problem consists of finding the optimal service composition
using only the information of their inputs and outputs that 
solves an input/output request. That is, the optimal composition
must use some of the inputs provided and must provided at
least all the outputs expected by the user.

To solve one part of this problem, we used Hipster to
develop a backwards A* algorithm that searches for the best 
composition among all possible combinations of services. 
Given an input-output request, a service graph with all the 
relevant services for the request is dynamically generated.
Then, the backwards A* search algorithm is used to find the
minimal service composition that satisfies the request, from
the goal outputs to the initial inputs. We also developed
different optimizations to reduce the graph size and to
dynamically compact functional equivalent nodes to further
improve the search speed.

Figure 3 shows an example of a service graph with one 
optimal composition which consists of 4 services (S1,1 , S2,1 ,
S3,1 and S3,2). Services are connected by their inputs and
outputs, generating longer compositions. In order to find the
optimal composition in the graph, the search navigates state by
state from the last layer to the first layer, selecting N services at
each layer. This works as follows: The first state contains only
the dummy service Do, whose inputs are the goal outputs of the 
request (j,k). When the algorithm expands the initial state, it
generates two new possible states. Each successor state
consists of those services from the previous layer that provide j 
and k. In this example there are two different successors that
satisfy them, one contains the services S3,1 and S3,2 and the other
the services S3,3 and S3,4. Both successor states have the same
cost (2 services) and are located at the same distance to the

Figure 3. A graph example with 6 layers two different compositions of
different sizes.
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goal (3 layers), so in the next step the algorithm selects any of
them (for example, the first one) and expands it. Now, the
successor states are the combination of those services from the
previous layer that satisfy the inputs of the current state, which
are f and g. There is only one state that contains one service
(S2,1) that covers both. This is repeated, using the cost (number
of services) and the heuristic (number of layers to the goal) to
decide which is state expanded next, until the service that 
contains the goal state Di is selected.

From the point of view of the search problem, there are
different problem-specific components that we need to
implement to perform the backwards A* over the graph,
namely: 1) the search states that represent the services selected
in each step; 2) the transition function, which is the function
that computes the possible successors of each state ; 3) the cost
function that calculates the cost of each state and 4) the 
heuristic function that computes the distance from one state to
the goal state.

 Search states. For this case, we implemented a class
that contains a set of services, the layer index, and
some helper methods. The only thing that the state
must guarantee is that two state instances with the 
same services at the same layer must be the same state.
To do this, we have to override the methods from the 
Object Java class equals and hashcode accordingly.
Otherwise, the algorithm cannot differentiate between
successors states that are the same and hence the search
is turned into a tree search instead of a graph search.

 Transition function. This function returns the set of
the successor states for a concrete state. This was done
by implementing the TransitionFunction interface. The
function computes the minimum set of all possible
combinations of services from the previous layer that
provide all the unresolved inputs of the current state
(that is, the union of the inputs of each service in the
current state).

 Cost function. We used the CostFunction interface to
implement our strategy. The implementation is
straightforward: it takes a state as input and returns the
number of services that are in the state as output.
Hipster has standard implementations for the informed
search algorithms to work with double cost types.
Since we used doubles to compute the cost, we did not
need to implement anything else to work with the
default implementation of the A*.

 Heuristic function. We created a heuristic strategy
that implements the HeuristicFunction interface. This
function computes an admissible and consistent
heuristic, which is the number of layers to the goal, and
returns a double value. Again, as we use the default
cost type, we do not need anything else. The default
implementation knows how to aggregate the cost and
the heuristic to guide the search towards the goal.

All these elements (plus the initial state) are provided to the
A*, which is then instantiated as an iterator. By iterating over
the A* iterator, we can obtain the next expanded node until the
current node contains our goal state. An advantage of the 

iterative model is that we can keep running the algorithm in
order to find more than one composition in ascending order
according to its size in number of services and length. Results
obtained in this work proved the efficiency of the library.

V. CASE STUDY II: MOTION PLANNING

Autonomous vehicles rely on a motion planner to
determine the sequence of actions to reach one or more
objectives from a starting position. Discretizing the state space
of the vehicle has proved to be a successful approach to reduce
the computational complexity of the problem. The state lattice
is a regular sampling strategy that introduces important
benefits: it allows working with a set of actions extracted from
the vehicle motion model to connect the discrete states, and
because of the regularity these actions are position-
independent, so they can be replicated for every pair of states
equally arranged (Figure 4). The discrete states and the actions
connecting them are expressed as a directed graph, so it is
straightforward to obtain the optimal path using a search
algorithm. As the motions between states are extracted from
the motion model, the path returned by the algorithm is
guaranteed to fulfill the maneuvering restrictions of the vehicle.

The planners described in [14, 15] were implemented using
the forward implementation of Anytime Dynamic A* (AD*)
included in Hipster. AD* has proved its efficiency in the
motion planning field, and manages replanning and the 
obtention of sub-optimal bounded solutions anytime; these
solutions can be improved iteratively reusing previous
computation effort. Several components of Hipster were
implemented taking into account the problem-specific
constraints:

 States: Are defined by a 5-tuple that contains the
vehicle pose and the linear and angular speeds:



 Transitions: The problem requires to store the action
used to connect each pair of states, the followed path
and the predicted uncertainty along it. To do this we 
use a custom implementation of the Transition object
provided with the library, and our TransitionFunction
implementation returns objects of our custom-defined

Figure 4. Regular arrangement of the states using the state lattice
strategy. The actions connecting the states (in black) are position-
independent so they can be used to connect the equally arranged states.

CISTI 2014  |  485



transition type. Extending these components in Hipster
does neither affect the definition of Node used by AD*
nor the algorithm itself.

 Cost function: We evaluate each transition to obtain
the probability of avoiding collisions, the time length
of the action and the uncertainty at the final state.
These measures are stored in a custom-defined cost
element. We use an implementation of CostFunction
that receives objects of our custom transition type and
returns this type of cost elements. Most search libraries
do not allow custom definitions for the cost of the
paths and they assume a numeric value, which limits
their usability in cases like this, where complex
evaluations cannot be summarized numerically.
Nevertheless, one of the benefits of using Hipster is the
possibility of using a custom-defined value type,
defining the operations of addition —to accumulate the
cost of the path from the starting state—, and scaling
—to inflate the heuristic value and obtain sub-optimal
solutions anytime.

 Heuristic function: As heuristic we used the cost of
the path without taking into account the vehicle
motion model. It is obtained executing a 2D search
with the Dijkstra search algorithm implementation
provided in Hipster. The search needs to be performed
backwards, and it uses a custom-defined stop
condition: it explores 1.5 times the cost of the optimal
path between the goal and the beginning position. As
Hipster algorithms are implemented in a iterative way,
which grants total execution control, we could vary
the stop condition of the algorithm as detailed in
Algorithm 1. This heuristic only depends on the
environment so it is executed at the beginning of the
planning process. After executing this search the
closed queue of the algorithm contains the cost of the
2D path between all the explored positions and the 
goal. As Hipster provides full access to the internals of
the algorithm, accessing these values does not require 
additional operations For this search our State objects
are 2D positions. The TransitionFunction returns the
8-connected positions neighbors and the CostFunction
returns the euclidean distance between states. This
search problem did not require neither a custom
definition for the cost nor transitions, so using Hipster
with the default components was straightforward. The
HeuristicFunction component of the motion planner
executes the described 2D Dijkstra search in its
initialization.

The library design keeps separated the implementation of
the operators from the algorithm, isolating the problem-specific 
constraints and resulting in a simpler yet efficient planner.

VI. CONCLUSIONS

In this paper we presented Hipster, a heuristic search library
for Java. The main goal of Hipster is to provide robust and
flexible implementations of the most widely used uninformed
and informed search algorithms. Hipster relies on a common
data model that is shared among all the implementations, so it
is easy to reuse, extend and understand. It comes with
implementations of common search algorithms such as Dijkstra
or A*, but also with more advanced techniques that are not
usually implemented in open source libraries, like the AD*
algorithm for path planning. Hipster is licensed under a
permissive open source Apache 2.0 license to facilitate the
integration in any type of educational, commercial and research
projects. The library was successfully integrated in two
representative research projects with different requirements and
problem-specific operators. As future work, we plan to extend
the library with other algorithms such as ARA*, D* or
bidirectional search, but keeping the same simple model.
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