
An optimal and fast algorithm for web service
composition

Pablo Rodriguez-Mier, Manuel Mucientes, and Manuel Lama

Centro de Investigación en Tecnoloǵıas de la Información (CITIUS)
Universidad de Santiago de Compostela, Spain

{pablo.rodriguez.mier,manuel.mucientes,manuel.lama}@usc.es

Abstract. Automatic composition is not a trivial problem, especially
when the number of services is high and there are different control struc-
tures to handle the execution flow. In this paper, we present an A* algo-
rithm for automatic service composition that obtains all valid composi-
tions from a extended service dependency graph, using different control
structures (sequence, split, choice). A full experimental validation with
eight different public repositories has been done, showing a great perfor-
mance as the algorithm found all valid compositions in a short period of
time.

Keywords: Heuristic search; A* algorithm; Web services composition

1 Introduction

Service-oriented computing plays an important role in the development of many
areas, such as the improvement of business processes, internet marketing or social
networks, and this trend is expected to continue in the coming years as more
resources become available. Web services are software components that define
formally machine readable interfaces for accessing data through the network.
This feature allows to enable greater and easier integration and interoperability
among systems and applications.

As a result, in the last year several papers have dealt with composition of
web services, which consists in the automatic combination of services in order
to combine the functionality of different modules. Some approaches, such as
[2, 1], treat the composition problem as a planning problem. In general, these
approaches have important drawbacks: high complexity, high computational cost
and inability to maximize parallel execution of web services.

Other approaches [4, 6, 3], consider the problem as a search problem, where a
search algorithm is applied over a graph or a tree in order to find a minimal com-
position. These proposals are simpler and more effective than the AI Planners,
and also many of them can exploit parallel execution of web services.

This paper is an extension of a previous work [5] that presents a heuristic-
based search algorithm to address the problem of the automatic web service
composition, which the main contributions are: (1) A optimization techniques
to optimize the graph size; (2) A heuristic search based on the A* algorithm

P. Rodŕıguez Mier, M. Mucientes Molina y M. Lama Peńın

Jornadas de Ciencia e Ingenieŕıa de Servicios (JCIS)
A Coruña, 5–7 Septiembre 2011

3



that finds an optimal1 composition over a service dependency graph and (3) a
method to reduce dynamically the possible paths to explore during the search
by filtering equivalent compositions. The novelties of our proposal in relation
to [5] are: (1) We extended the definition of the service dependency graph to
find all solutions with minimal number of services and minimal runpath and (2)
we included the use of the choice control to support the selection of different
alternatives, where more than one service has equivalent services. The rest of
the paper is organized as follows: Section 2 explains the service composition
algorithm. Section 3 analyzes the algorithm with eight different repositories.
Section 4 concludes the paper.

2 Algorithm for web service composition

A web service can be described as a software component that produces a set
of outputs given a mandatory set of inputs. Given a request, the composition
problem consists in finding a set of services which once executed, produces the
desired outputs.

A web service composition, then, can be formulated as a set of web ser-
vices whose execution is coordinated by a workflow-like structure. This workflow,
therefore, has services and a set of control structures that define both the be-
havior of the execution flow and the inputs/outputs related to those structures.
The automatic web service composition algorithm presented in this paper can
handle three different control structures: sequence, split and choice.

The present paper is an extension of a previous work [5], in which a heuristic-
based algorithm to obtain only the best compositions was presented. Unlike the
previous work, the algorithm presented herein is aimed at obtaining all optimal
web service compositions in a very short period of time. Our proposal, based on
A* algorithm, follows the next steps: 1) Compute a service dependency graph
with a subset of services from repository that solves a request and 2) apply the
A* search over the generated graph to obtain all valid solutions.

Given a request, an extended service dependency graph (SDG) is dynamically
generated. This graph contains a subset of services from the repository that
generates the wanted outputs, and it is organized in layers (splits) connected
in sequence. Each layer contains one or more services in parallel that can be
executed with the outputs generated by the previous layers. The expression for
a layer can be defined as follows:

Li = {Si : Si /∈ Lj(j < i) ∧ ISi ∩Oi−1 �= ∅ ∧ ISi ⊆ IR ∪O0 ∪ . . . ∪Oi−1}
where, for each layer Li: Si is a service on the ith layer, Oi is the set of outputs
generated in the ith layer, ISi is the set of inputs required for the execution of
service Si and IR is the set of inputs provided by the requester.

The Alg. 1 explains with pseudocode the construction of the graph itera-
tively. Lines 1-4 initialize the variables used throughout the algorithm. Note
that newOutputs (outputs generated in the last layer that have not been gen-
erated previously) and Ia (available inputs for the current layer) are initialized

1 A composition with minimal number of services and execution path (runpath).

An optimal and fast algorithm for web service composition

4 Jornadas de Ciencia e Ingenieŕıa de Servicios (JCIS)
A Coruña, 5–7 Septiembre 2011



��

����

����

����

����

�	


� 
� 
� 
�

����

����

����


�



�����������

��

�

�

���

�	����	�����������������������������������

�	����	�����������������������������������

Fig. 1. Example of two solutions with different runpath and different number of ser-
vices: sequence(S1,1, S2,1, split(S3,1, S3,2)) and sequence(split(S1,2, S2,3), S2,2)

with the same value IR, as the provided inputs are the first available inputs to
the composition and have not been used yet by any service. The main loop starts
at line 5. Inside this loop, each layer is calculated following these steps:

1. Obtain all outputs from the previous layers. This outputs are the available
inputs to the current layer (L. 7-9).

2. For each service in the repository:
(a) Check if the service has not appeared in previous layers (L. 12).
(b) Check if the service can be invoked (i.e. Receives all their inputs from

previous layers) (L.13).
(c) Check if the services uses at least one output that has not been used

previously (L. 14).
(d) If (a), (b) and (c) are true, then the service is added to the current layer.

3. Once all services are selected for the ith layer, newOutputs is updated by
adding the outputs of the ith layer and deleting the outputs generated in
previous layers. Note that with this operation, only the outputs that have
not been used before will remain for the next iteration (L. 19).

With the generation of the graph, the problem of handling splits and sequences
is solved, as the services in the same layer can be invoked in parallel and the
connection between layers implies a sequence connection. In order to introduce
the choice control, we use the advantages of the optimization technique called
“Offline service compression” defined in [5]. This technique allows to reduce the
dimensions of the SDG by detecting equivalents services from each layer. Using
this feature, we can replace all equivalent services by a virtual service. This vir-
tual service holds a reference to each equivalent service, allowing the algorithm
to explore less number of solutions. Once the A* algorithm has extracted all
solutions, virtual services are replaced by a choice control with all equivalent
services.

Fig. 1 shows an example of a service dependency graph with five layers and
two different solutions. The dark gray services correspond with the services of the

P. Rodŕıguez Mier, M. Mucientes Molina y M. Lama Peńın

Jornadas de Ciencia e Ingenieŕıa de Servicios (JCIS)
A Coruña, 5–7 Septiembre 2011

5



Algorithm 1 Extended service dependency graph algorithm
1: newOutputs := IR
2: Ia := IR
3: i := 0
4: Layers := ∅
5: repeat
6: Li := ∅
7: for Lj (j < i) do
8: Ia := Ia ∪Outputs{Lj}
9: end for
10: for Service Si ∈ Repository do
11: Os := Outputs{Si}
12: isNewService := Si /∈ Lj(j < i)
13: hasInputsAvailable := Inputs{Si} ⊆ Ia
14: usesNewInputs := Inputs{Si} ∩ newOutputs �= ∅
15: if isNewService ∧ hasInputsAvailable ∧ usesNewInputs then
16: Li := Li ∪ Si

17: end if
18: end for
19: newOutputs := newOutputs ∪Os − Ia
20: Layers := Layers ∪ Li

21: i = i+ 1
22: until Li �= ∅

solution with the largest runpath (the first and the last layers are not computed
for the runpath). The two solutions uses parallelism (split) as in both cases,
services > runpath. Ri and Ro are dummy services. Ri is a service that provides
the request inputs, and Ro is a service that requires as inputs the requested
outputs.

Once the SDG is generated, a search over it must be performed in order to
find all optimal solutions. For this purpose, we implemented the search using
the well-known A* search algorithm. This algorithm will traverse the graph
backwards, from the solution (the service whose inputs are the outputs wanted
by the requester), to the initial node (the service whose outputs are the provided
inputs) handling one service or more in each layer. A detailed explanation of the
composition search can be found in [5].

3 Experiments

In order to evaluate the correctness and the performance of the algorithm, a
full validation has been done with eight public repositories from Web Service
Challenge 2008 (WSC’08)2. The repositories have different degree of complexity,
having from 158 to 8119 services. The solutions3 provided by the WSC’08 are

2 http://cec2008.cs.georgetown.edu/wsc08/downloads/ChallengeResults.rar
3 The data provided by WSC’08 are not optimal in all cases, as can be seen in the chal-
lenge results: http://cec2008.cs.georgetown.edu/wsc08/downloads/WSCResult.pdf

An optimal and fast algorithm for web service composition

6 Jornadas de Ciencia e Ingenieŕıa de Servicios (JCIS)
A Coruña, 5–7 Septiembre 2011



showed in Table 1. The second column indicates the number of services of the
repository. The third column shows the minimum number of services required
to reach the solution while the fourth column indicates the minimum solution
path that can be obtained (according to WSC’08), and the fifth column shows
the number of solutions. As can be seen, the complexity of the selected datasets
is enough for a complete validation of our proposal.

Table 1. Web Service Challenge: Repository size & provided solutions

Test Repo. services Min. #services Min.exec.path (runpath) #solutions

WSC’08-1 158 10 3 3

WSC’08-2 558 5 3 4

WSC’08-3 604 40 23 1

WSC’08-4 1041 10 5 2

WSC’08-5 1090 20 8 2

WSC’08-6 2198 40 9 2

WSC’08-7 4113 20 12 2

WSC’08-8 8119 30 20 2

Table 2 shows the results4 obtained and it is organized as follows: The second
column indicates the number of services in the service dependency graph. The
third column shows the number of solutions obtained by our algorithm. The
fourth column indicates the number of steps executed by the A* search algorithm
until the solution was reached. In the fifth column we show the elapsed time until
a solution was found (including the time spent in the generation of the service
dependency graph). The sixth indicates the number of services obtained by the
algorithm and the last one shows the length of the execution path of the solution
(runpath). Columns from 4 to 7 are duplicated to show the same information
for the solutions with minimal runpath.

As can be seen, in all cases (except in WSC’08-6) the solution with minimal
number of services is the solution with minimal runpath too. The first thing
that must be noticed is that the solutions obtained by our algorithm are the
best for all datasets (according to the solutions provided by WSC’08, see Table
1), except in the case of the dataset WSC’08-6, where our algorithm finds a
solution with less number of services (35 vs 40) and a solution with less runpath
(7 vs 10), as well as the offered by the WSC’08. Moreover, the algorithm finds
all possible solutions for all datasets, showing a great performance as in all cases
the bests solutions were found in a very short period of time. This feature is an
important advantage over the other approximations since it is the first time that
all solutions from the WS-Challenge 2008 (and not only the best solutions) are
obtained.
4 The algorithm was implemented using JavaTM JDK 1.6. All the experiments
were performed under an Ubuntu 64-bit server workstation (kernel 2.6.32-27) with
2.93GHz Intel R© Xeon R© X5670 and 16GB RAM DDR-3.

P. Rodŕıguez Mier, M. Mucientes Molina y M. Lama Peńın

Jornadas de Ciencia e Ingenieŕıa de Servicios (JCIS)
A Coruña, 5–7 Septiembre 2011

7



Table 2. Algorithm results for the eight datasets

Solution with min. Services Solution with min. Runpath

Test Gr.serv #Sol. Iter. Time(ms) #Serv Runpath Iter. Time(ms) #Serv Runpath

WSC’08-1 54 7 20 88 10 3 20 88 10 3

WSC’08-2 55 4 19 161 5 3 19 161 5 3

WSC’08-3 60 1 24 440 40 23 24 440 40 23

WSC’08-4 31 2 11 109 10 5 11 109 10 5

WSC’08-5 81 6 54 498 20 8 54 498 20 8

WSC’08-6 162 12 107 2328 35 14 110 2338 42 7

WSC’08-7 124 2 33 3375 20 12 33 3375 20 12

WSC’08-8 92 3 71 3636 30 20 71 3636 30 20

4 Conclusions and Future Work

In this paper we have presented an extended version of the heuristic-based search
algorithm for automatic web service composition. The proposed algorithm allows
to find all optimal compositions, with a minimal number of services and minimal
runpath. Moreover, a full validation has been done using all datasets provided
by the WS-Challenge’08, showing a great performance as our algorithm finds all
optimal compositions in a very short time.

As future work we plan to improve our algorithm by including non-functional
properties in our model, such as cost, reliability, throughput, etc. Quality of Ser-
vices (QoS) characteristics are important criteria for building real world compo-
sitions. Our algorithm can be easily adapted to handle these features.

Acknowledgment

This work was supported in part by the Dirección Xeral de I+D of the Xunta de
Galicia under grant 09SIN065E. Manuel Mucientes is supported by the Ramón
y Cajal program of the Spanish Ministry of Science and Innovation.

References

1. K. Chen, J. Xu, and S. Reiff-Marganiec. Markov-htn planning approach to enhance
flexibility of automatic web service composition. In ICWS 2009, pages 9–16.

2. J. Hoffmann, P. Bertoli, and M. Pistore. Web Service Composition as Planning, Re-
visited: In Between Background Theories and Initial State Uncertainty. In AAAI’07.

3. W. Jiang, C. Zhang, Z. Huang, M. Chen, S. Hu, and Z. Liu. QSynth: A Tool for
QoS-aware Automatic Service Composition. In ICWS 2010, pages 42–49.

4. S.C. Oh, J.Y. Lee, S.H. Cheong, S.M. Lim, M.W. Kim, S.S. Lee, J.B. Park, S.D. Noh,
and M.M. Sohn. WSPR*: Web-Service Planner Augmented with A* Algorithm. In
2009 IEEE Conference on Commerce and Enterprise Computing, pages 515–518.

5. P. Rodriguez-Mier, M. Mucientes, and M. Lama. Automatic web service composition
with a heuristic-based search algorithm. In ICWS 2011. (Accepted).

6. Y. Yan, B. Xu, and Z. Gu. Automatic service composition using and/or graph. In
CEC 2008, pages 335–338.

An optimal and fast algorithm for web service composition

8 Jornadas de Ciencia e Ingenieŕıa de Servicios (JCIS)
A Coruña, 5–7 Septiembre 2011


