
Automatic web service composition with a heuristic-based search algorithm

Pablo Rodriguez-Mier∗, Manuel Mucientes∗, Manuel Lama∗

∗Centro de Investigación en Tecnologı́as de la Información (CITIUS)

Universidad de Santiago de Compostela, E-15782 Spain

{pablo.rodriguez.mier,manuel.mucientes,manuel.lama}@usc.es

Abstract—Service Oriented Architectures and web service
technology are becoming popular in recent years. As more
web services can be used over the Internet, the need to find
efficient algorithms for web services composition that can
deal with large amounts of services becomes important. These
algorithms must deal with different issues like performance,
semantics or user restrictions. In this paper we present an A*
algorithm which solves the problem of semantic input-output
message structure matching for web service composition. Given
a request, a service dependency graph with a subset of the
original services from an external repository is dynamically
generated. Then, the A* search algorithm is used to find a
minimal composition that satisfies the user request. Moreover,
in order to improve the performance, a set of dynamic
optimization techniques has been implemented over the search
process. A full experimental validation with eight different
public repositories has been done showing a good performance
as in all tests as the algorithm finds a valid solution with
minimal number of services and execution path.

Keywords-Heuristic search; A* algorithm; Web services com-
position;

I. INTRODUCTION

Web Services are self-contained modular applications

described by a collection of operations that are network-

accessible through standardized web protocols, and whose

features are defined using a standard XML-based language

[1], [2]. Among the characteristics of the Web Services,

there are functional features that indicate the inputs and

outputs required to invoke the execution of a web service;

non-functional features such as cost, reliability, robustness,

etc.; interaction features that describe how a client dialogs

with the service in order to consume its functionality; and

structural features that model how the internal components

of the service are combined to execute it.

One of the advantages of the web services is to enable

greater and easier integration and interoperability among

systems and applications. This advantage is partly given

by the ability of web services to communicate their data

efficiently and effectively over the network. Hence, if this

communication fails or there is no way to respond a user

request with a single web service (i.e., there is no service

with the required inputs and outputs), there should be the

possibility to combine existing services in order to fulfill

the request. This combination consists of a set of services

that are executed in a sequence or in a set of workflow-like

structures that control the execution of the services (specified

through web services composition languages as OWL-S [3]

or BPEL4WS [4]).

In the last years several papers have dealt with compo-

sition of web services. Some approaches, such as [5]–[10]

treat the service composition as a planning problem, where

a sequence of actions lead from a initial state (inputs and

preconditions) to a goal state (required outputs). However,

most of these proposals have some drawbacks: high com-

plexity, high computational cost and inability to maximize

the parallel execution of web services.

Other approaches, such as [11]–[17], consider the problem

as a graph/tree search problem, where a search algorithm is

applied over a web service dependency graph in order to find

a minimal composition. These proposals are simpler than

the AI planners and also many of them can exploit parallel

execution of web services. However, most of these ap-

proaches rely on very complex dependency graphs that have

not been optimized to reduce data redundancy (equivalent

services and equivalent combination of services). Therefore,

the scalability of these algorithms may also be adversely

affected when the interaction among services and data is

huge due to the redundancy of the repository.

This paper addresses the problem of the web service com-

position as a graph search problem without consideration of

non-functional properties. The novelties of our proposal are:

1) We describe some optimization techniques to reduce

the graph size by eliminating redundancy.

2) We present a heuristic search algorithm based on the

well-known A* which finds an optimal composition

with a minimal number of services and execution path

(i.e., maximizes the parallel execution of services).

3) We define a method to reduce dynamically the pos-

sible paths to explore during the search by filtering

equivalent compositions.

Furthermore, a full validation has been done in eight public

repositories proposed for the 2008 Web Service Challenge

of the IEEE conference [18]. The behavior of the algorithm

shows a great performance, as in all the cases the best

composition was found.

The rest of the paper is organized as follows: Section II

describes the different approaches that have already been

proposed. Section III introduces the basis of web service

composition. Section IV illustrates the proposed A* algo-

rithm for web service composition. Section V presents some

2011 IEEE International Conference on Web Services

978-0-7695-4463-2/11 $26.00 © 2011 IEEE

DOI 10.1109/ICWS.2011.89

81

optimization techniques to improve the performance of the

algorithm. Section VI analyzes the algorithm with eight

different repositories. Section VII concludes the paper.

II. RELATED WORK

The use of graph-based and tree-based search algorithms

to solve the composition problem has been studied before

[16]. Although there are similarities among all proposals,

they differ in many concepts, such as performance, informa-

tion handling, graph/tree encoding, solution quality, etc. In

this section, a brief analysis of some approaches is presented.

Shiaa et al. [11] present an approach to automatic service

composition with semantic matching. Given a request (goals,

inputs and outputs), a set of matching services are discovered

from the repository, applying semantic matching between

service properties and the composition request. Then, a

graph is created dynamically by connecting semantically

similar nodes (single services) to each other. Once the graph

is created, a search over it is performed building acyclic

tree structures from goal nodes to start nodes. One major

drawback of this proposal is that it does not take into account

the use of heuristics in order to speedup the search, so

searching for an optimal composition in large repositories

may be infeasible. Moreover, there are no experimental

results to validate the model.

Kona et al. [19] propose a simple but effective approach

for semantic web service composition. In this work, a

composition is generated as a directed acyclic graph from

a user request. The graph (divided in a set of layers)

is calculated iteratively, starting with the input parameters

provided by the requester. In each step, all possible services

from the repository that can be invoked are added to the

current layer. Although the useless services are filtered, the

algorithm cannot find an optimal composition. A heuristic

search over the graph is required in order to minimize the

number of services in the composition.

Yan et al. [15] present an automatic service compo-

sition algorithm using AND/OR graph. In this proposal,

an AND/OR graph is created from a request, connecting

services by their inputs and outputs. Then, a search over

the graph is performed using the AO* search algorithm.

Although this proposal shows a great performance over large

repositories, the autors have not implemented optimization

techniques in order to improve the scalability of the algo-

rithm.

Oh et al. [17] propose a Web-Service Planner using the A*

search algorithm (WSPR*), an improvement of the WSPR

planner. In this approach, the use of the A* algorithm allows

finding an optimal composition based on some heuristic

costs. The heuristic function is defined as the set of required

parameters found by the algorithm. This heuristic function

has an important drawback: it is not able to guide the search

when only the last services of a composition produce all

the required parameters. On the other hand, the transition

function only allows the addition of a single service in

each step. In contrast, our approach uses an optimistic

heuristic based on the distance from the current composition

to the initial node. Furthermore, the search is performed

backwards, handling more than a single web service in each

step, which allows to exploit parallelism during the search.

We can conclude that the main differences between our

proposal and other approaches are:

• The construction of a non-redundant service depen-

dency graph at the first stage by removing unused

services and combining the equivalent ones. Other

approaches use simple filtering techniques that do not

remove all data redundancy.

• The use of the A* algorithm backwards, handling

multiple services in each step in order to maximize the

execution in parallel of the web services.

• The use of dynamic optimization during the search,

that reduces the number of possible paths to explore

by combining equivalent combination of services.

In the following sections we describe in detail the compo-

sition problem and how can it be solved with our proposal.

III. WEB SERVICES COMPOSITION

In order to compose web services, we must define the

relationship among services. From a simplistic point of

view, a web service is a software component that receives

a set of inputs and generates a set of outputs after the

execution. Thus, a web service w can be described by

a set of inputs Win = {I1, I2, ...} and a set of out-

puts Wout = {O1, O2, ...}. Outputs from a service can

be provided as inputs to other service only if there is a

semantic relationship between them. In our approach, we

have modeled this restriction as a hierarchical class/subclass

relationship between concepts, so we consider that an output

of a service Oso matches the input of other service Isi when
Oso is a subclass of Isi. In general, when a concept Ci is a

subclass of a concept Cj (Ci ⊆ Cj), then there is a semantic

matching between Ci and Cj .

Another important concept is a web service request.

A request R is composed by a set of inputs (Rin =
{I1in, I

2
in, ...}) provided by the requester, and a set of out-

puts (Rout = {O1
out, O

2
out, ...}) that the requester expects

to obtain. Given a request Ruser = {Rin, Rout}, where
Rin = {I1R, I

2
R, ...} and Rout = {O1

R, O
2
R, ...}, and given a

web service S = {Sin, Sout} where Sin = {I1S , I
2
S , ...} and

Sout = {O1
S , O

2
S , ...}, the web service S can be invoked

only if Rin ⊇ Sin, i.e., for each input IS ∈ Sin there

exists an input IR ∈ Rin such that IR is equal or subclass

of IS (IR ⊆ IS). Also, Rout will be satisfied only if

Rout ⊆ Sout, i.e., for each output OR ∈ Rout there exists

an output OS ∈ Sout such that OS is equal or subclass of

OR (OS ⊆ OR).

Considering this description for web services, the compo-

sition problem can be formulated as the automatic construc-

82

� � � � �

��

��

��

��

��

m

m
2

m
3

������� �������� ��� ������

�
�
�
��
�
�
�
�
�
�
�
��
�

Figure 1. Search space size for n=1, n=2 and n=3 (1, 2 and 3 inputs per
service) in the first expansion (d=1).

tion of a workflow that coordinates the execution of a set of

services that interact among them through their inputs and

outputs (applying the semantic matching). This workflow,

therefore, has services and a set of control structures that

define both the behaviour of the execution flow and the

inputs/outputs of the services related to those structures.

Despite the amount of different control structures defined

in composition languages like BPEL4WS, we take into

account only two of the most important ones: sequence and

split. These structures allow to build most of the possible

compositions and they work as follows:

• Sequence structure: the output of a service is the input

of one of the following services of the sequence. This is

the basic control structure of the workflow languages.

• Parallel (split): two or more services are executed in

parallel and, as result, produce several and different

ouputs.

Regarding to the complexity analysis of the search space,

the number of combinations to be analyzed using a brute-

force algorithm grows very fast. To demonstrate this, we can

assume that, given a service, each of its inputs is provided

by a different service (worst case). The complexity in this

scenario is O(mnd), where m is the average number of

services in the repository that generate the same output, n
is the average number of inputs from web services and d
is the depth at which all inputs are resolved. Since there

are m services that provide each required input, the number

of possible choices in order to resolve all inputs from a

service is mn. Each of these combinations represent a set

of services executed in parallel, that can be expanded again.

Fig. 1 shows the size of the search space for d = 1, with
n = 2 and n = 3 (two and three inputs respectively for each
service in repository).

As can be seen, this kind of compositions have an

exponential growth of paths to explore. The search space

size in the case of a repository of services with three inputs

on average (n) and four possible choices to provide an input
to a service (m), where the solution has a runpath of 10

(i.e, d=10 splits connected in sequence), reaches the value

of 43·10 = 1.1529 × 1018 possible paths to explore. Given

the large number of combinations, the problem of searching

an optimal execution path is not trivial, and it is therefore

necessary to reduce the number of combinations. In order to

reduce the search space size, our algorithm includes some

optimization techniques, which are described in Sec. V.

IV. A* ALGORITHM FOR WEB SERVICES COMPOSITION

As previously discussed, given the large number of pos-

sible paths to explore, a fast algorithm is required in order

to find an optimal solution in a reasonable period of time.

Although the high space complexity makes the use of tra-

ditional search algorithms unpractical for large repositories,

the problem can be solved by using a good heuristic in the

search and applying some optimization techniques and data

preprocessing.

The A* Algorithm, developed by Hart et al. [20], is one

of the most popular pathfinding algorithms. This algorithm

uses a heuristic function h(n) to estimate the cost from

the current node to a goal node, and a function g(n) to

calculate the cost from the starting node to the current node.

Therefore, the search cost is defined as f(n) = g(n)+h(n).
Choosing a good h function has an important impact on the

search process. The better this function is, the faster the

solution will become. However, there is a restriction on it:

h cannot overestimate the cost to reach the goal, otherwhise,

the algorithm could find a solution with higher cost than the

optimal one.

Our proposal, based on A* algorithm, follows the next

steps: first, a web service dependency graph is computed,

based on the method described in [19]. Then, a reduction

on the number of services is performed by eliminating

unused services and combining equivalent services. Finally,

the A* search is applied over the reduced graph, which finds

an optimal service composition, with minimal number of

services and execution path. These steps will be described

in the following sections.

A. Web service dependency graph

Web services composition requires the combination of

many atomic services that can be executed in sequence

or in parallel as previously mentioned. Given a service

request, a service dependency graph with a subset of the

original services from an external repository is dynamically

generated. This subset contains the solutions that meet the

request and consists of a set of layered services (splits)

connected in sequence. Each layer contains all services from

the repository that can be executed with the outputs of the

previous one. The general expression for a layer can be

defined as follows:

Li = {Si : Si /∈ Lj(j < i) ∧ ISi ∩Oi−1 �= ∅ ∧ ISi ⊆
IR ∪O0 ∪ . . . ∪Oi−1}

83

where, for each layer Li:

• Si is a service on the ith layer.

• Oi is the set of outputs generated in the ith layer.

• ISi is the set of inputs required for the execution of

service Si.

• IR is the set of inputs provided by the requester.

The construction of the graph can be done in a simple

manner, as can be seen in Alg. 1. First, a subset of services

from the repository is selected. This subset consists of

all the services such that all their inputs are provided

by the requester. Then, the new outputs generated by the

selected subset are combined with the inputs provided by

the requester. This combination defines a new set, Ia, which
will be the available inputs for the next layer. These steps

are repeated iteratively until the outputs of all layers contain

the requested output set.

Algorithm 1 Service dependency graph algorithm

1: Ia := ∅
2: i := 0
3: Ototal := IR
4: Layers := ∅
5: repeat

6: Li := ∅
7: Ia := Ia ∪Ototal

8: for Service Si ∈ Repository do

9: Os := Outputs{Si}
10: if Si ∈ Li then

11: Li := Li ∪ Si

12: Ototal := Ototal ∪Os

13: end if

14: end for

15: Layers := Layers ∪ Li

16: i = i+ 1
17: until OR ⊆ Ototal ∨ Li = ∅

In order to speed up the calculation of the graph, we used

a pre-computed table that maps each input to the services

that use it. Thus, for each output generated in a layer, we can

obtain all possible services for the next layer very quickly.

In Figure 2, an example of a service dependency graph with

i layers is showed. Web services denoted as Ri and Ro are

dummy services. The outputs of Ri are the inputs provided

by the requester. Since these outputs are provided in the first

layer, they will be propagated through all layers from 1 to

i, so the layer L1 will have all services from the repository

such that all their inputs are a subset of Ri. Moreover, the

inputs of Ro are the outputs wanted by the requester.

B. A* algorithm description

Once the graph is calculated, a search over it must be

performed. The search algorithm will traverse the graph

backwards, from the solution (the service whose inputs are

��

����

����

����

��
�

������

������

������

��
�

��

���

�� �� ���� ��

��� ����������������

Figure 2. Example of i layers, with n services per layer

the outputs wanted by the requester), to the initial node

(the service whose outputs are the provided inputs). As

mentioned before, our heuristic algorithm is based on an

implementation of the A* pathfinder. There are three prin-

cipal concepts in this type of algorithms: the neighborhood

function, the cost function and the heuristic function. These

concepts will be explained below.

In order to perform the searching process, the search space

must be divided into nodes. Each node will contain a set of

services from a graph layer that can be executed in parallel.

Thus, a path will be composed of a list of neighbor nodes,

which represents the sequential execution path. Thus, the

starting node will only contain the service labeled as R0

in Fig. 2. This service represents the outputs wanted by

the requester, as their inputs match with them. To generate

all possible neighbors from a node, the following steps are

performed:

1) Calculate, for each input of a node, a list of services

from the previous layer that provide it. If there are no

services in the previous layer for that input, a dummy

service that generates this input and receives the same

input is created. This dummy holds the dependency so

it can be resolved later.

2) Make all combinations between services from each

list. These combinations will generate all possible

neighbors from the current node.

3) Remove all equivalent neighbors. This process will be

described in Sec. V.

For example: Given a node N with a service S in the

layer Li, with Is = {a, b} and a set of services X,Y, Z in

the layer Li−1 where Ox = {a}, Oy = {b} and Oz = {a, b},
we construct a list of services for each input of S:

• Set(a) = {X,Z}
• Set(b) = {Y,Z}

Then, we generate all combinations. Each combination

will constitute a neighbor node from N . The possible

combinations are: (X,Y), (X,Z), (Y,Z), (Z). All these nodes

generate all the required inputs for node N (a, b).

On the other hand, the behaviour of the A* algorithm

depends on two functions: g(N), the cost, and h(N), the

84

��

����

����

����

����

����

��

�� �� �� ��

����

����

����

��

����

�

������������

�

�

��

�

�

�

�

Figure 3. Example of the minimum composition over the graph. Dark
grey services correspond with the services selected by the algorithm. This
composition can be written as: sequence(S1,1, S2,1, split(S3,1, S3,2))

heuristic. N is a composite service obtained as a path over

a set of nodes (Ni), where Ni is the set of services in layer

Li. One of the goals is to minimize the number of web

services in a composition, therefore, the function cost should

calculate the lenght of a composition based on the number

of services. On this basis, we define a function g(N) as

showed in 1 :

g(N) =

#L�

i=LN

cost(Ni) (1)

where LN is the first layer of the current composition

service, #L is the first layer and cost is a function that

retrieves the number of services from node Ni. The dummy

services in a node will not be computed.

The other function is the heuristic. This function should

estimate the cost to the solution. A good choice is to use, as

heuristic, the layer in which the node is located. The layer

number indicates the distance from the initial node. Thus, a

service in layer 3 means that the algorithm needs three more

steps in order to reach the start node. The heuristic function

is defined as:

h(N) = distance(Ni) (2)

Putting (1) and (2) together, function f(n) is defined as

(3):

f(N) =
�

cost(Ni) + distance(Ni) (3)

Figure 3 shows an example of a minimum composition

path detected with this algorithm. In the next section, a set

of optimization techniques are explained.

V. OPTIMIZATION TECHNIQUES

In order to achieve a significant performance improvement

over the search process, we designed two techniques that

reduce the number of possible paths to explore: Offline

Service Compression and Online Node Reduction.

Table I
CHARACTERISTICS OF THE WEB SERVICE CHALLENGE REPOSITORIES.

Test #S. #I. #O. I./S. O./S. S./I.

WSC’01 158 735 778 3.53 5.25 2.69

WSC’02 558 2972 2890 3.79 3.92 8.97

WSC’03 604 3254 3129 4.07 6.46 7.01

WSC’04 1041 5781 5611 4.23 5.47 16.10

WSC’05 1090 5816 5953 3.36 4.26 9.24

WSC’06 2198 12218 11831 6.00 4.31 16.42

WSC’07 4113 22324 22392 7.37 7.21 41.14

WSC’08 8119 44569 44628 5.44 6.54 20.11

A. Offline Service Compression

The essence of this technique is to combine equivalent

services from each layer in the graph, which implies a lower

number of paths to explore during the search. This process

is subdivided into two steps: remove unused services and

detect equivalent services. These steps are described below:

• Remove unused services:

1) Create an empty list M . This list will contain all

the required inputs to reach the solution.

2) Create an empty list U . This list will contains all
unused services.

3) Traverse backwards the graph, starting from the

final layer.

4) For each layer L in the graph:

a) Create an empty list R. This list will contain
all the required inputs for this layer.

b) For each service S in the current layer:

i) Check if Os ⊆ M , where Os are the

service outputs. If M is empty, skip this

step.

ii) If S meets the condition or M is empty,

add all inputs from S to the list R.
iii) In other case, add S to the list U

c) Add all inputs from R to the list M .

5) Finally, remove from the graph, each service in U

• Detect and combine equivalent services:

1) For each layer in the graph:

a) Group services by the equivalence of their

inputs. Two services have equivalent inputs if

the services from the graph that provide their

inputs are the same.

b) For each group:

i) If the services have quality parameters,

then check the dominance between them.

ii) For each service Si that dominates other

Sj from the group (Si � Sj), check if

OSi
⊇ OSj

∧ OSi
� OSj

. This condition

is described below.

iii) If Si meets the previous restrictions, then

combine Sj with Si. Sj must be deleted.

85

One service Si with parameters PSi
= {P 1

Si
, P 2

Si
, ..., Pn

Si
}

dominates other service Sj (Si � Sj) with parameters

PSj
= {P 1

Sj
, P 2

Sj
, ..., Pn

Sj
} if:

∀ k ∈ {1, . . . , n} P k
Si

≥ P k
Sj

∧∃ k ∈ {1, . . . , n}, P k
Si
> P k

Sj

Moreover, in order to check the restriction OSi
� OSj

,

the following steps must be performed:

1) Set Listi as the list of services from the graph such

that their inputs are a subset of OSi
.

2) Set Listj as the list of services from the graph such

that their inputs are a subset of OSj
.

3) Compare both lists. If Listi ⊇ Listj then go to the

next step. Else, the restriction is not met and therefore

Si and Sj cannot be combined.

4) Check if OSi
resolves the same or more inputs from

each common service than OSj
. For example, if

OSi
= {a, b} and OSj

= {a, c}, and Listi = Listj =
X(a, b, c), Y (a, c), where X(a, b, c) and Y (a, c) are

services that receive as inputs (a, b, c) and (a, c)
respectively, we must verify which inputs are resolved

with OSi
and OSj

. So, in this example, OSi
resolves

input a, b from X and a from Y , and OSj
resolves a

from X and a, c from Y . Therefore, OSi
� OSj

.

B. Online Node Reduction

This technique consists in the combination of equivalent

neighbors during the A* search process. Given that a nodes

can generate equivalent neighbors (different combination of

services that together are equivalent), a mechanism to delete

this type of redundancy must be implemented. Two nodes

are equivalent if they meet two conditions:

1) Neighbors from the node must have the same f(n)
value for all their objectives.

2) Services from graph that provide the inputs required

for each neighbor must be the same.

The first condition is obvious: two neighbors cannot be

reduced if the f(n) value is different, as they will generate

different paths to the solution. The second condition refers

to the equivalence of the inputs. As before, a list of services

that provides the required input for each neighbor must be

calculated and then compared. Only nodes with same lists

of services and f(n) value can be combined. This technique
is performed while the neighbors are being generated.

VI. EXPERIMENTS

Our analysis consists in two parts: (1) we validate the

algorithm with eight different repositories from Web Service

Challenge 2008 and (2) we measure the speed up obtained

with the optimization techniques.

A. Web Service Challenge 2008 Datasets

In order to prove the validity and efficiency of our

algorithm in different situations, we carried out some exper-

iments1 using eight public repositories from Web Service

Challenge 20082. These repositories contain from 158 to

8119 services defined using WSDL. Also, inputs and outputs

are semantically described in a XML file. The best solutions

for each dataset are showed in Table II.

Table I shows in detail the characteristics of each dataset.

Column I./S. indicates the average number of inputs per

service, O./S. indicates the average number of outputs per

service, and S./I. indicates the average number of services

that provides each input. The first three columns indicate

the number of services in the repository (#S), the total

inputs (#I.) and the total outputs (#O). As can be seen, the

complexity of the selected datasets is enough for a complete

validation of our proposal.

Table II
WEB SERVICE CHALLENGE: SOLUTIONS PROVIDED BY THE WSC’08

Test min services min exec. path

WSC’01 10 3

WSC’02 5 3

WSC’03 40 23

WSC’04 10 5

WSC’05 20 8

WSC’06 40 9

WSC’07 20 12

WSC’08 30 20

Table III
ALGORITHM RESULTS FOR THE EIGHT DATASETS

Test Gr.s. iter. time(ms) #serv. ex.path

WSC’01 17 37 91 10 3

WSC’02 19 29 123 5 3

WSC’03 60 856 1929 40 23

WSC’04 31 18 314 10 5

WSC’05 62 1823 6356 20 8

WSC’06 95 13 777 42 7

WSC’07 89 332 9835 20 12

WSC’08 78 198 6398 30 20

B. Results

Our algorithm was implemented using JavaTM JDK 1.6

and tested with JavaTM SE build 1.6.0 22-b04 64-bit. All

the experiments were performed under an Ubuntu 64-bit

server workstation (kernel 2.6.32-27) with 2.93GHz Intel R�
Xeon R� X5670 and 16GB RAM DDR-3. Table III shows

experimental results obtained for each dataset. The first

column indicates the dataset name. The second column

1An online application is available to test our algorithm with the same
datasets used in this experiments: http://citius.usc.es/wiki/inv:composit

2http://cec2008.cs.georgetown.edu/wsc08/downloads/ChallengeResults.rar

86

indicates the number of services in the service dependency

graph. This value is a more useful complexity indicator than

the services of a repository, as the graph contains a subset of

services where the solution is, and therefore represents the

real search space for a request. The third column indicates

the iteration3 where the algorithm found a solution. In the

fourth column we show the elapsed time until a solution

was found (including the time spent in the generation of

the graph). The fifth indicates the number of solutions with

minimal execution path obtained by the algorithm and the

last one shows the length of that execution path of the

solution.

The first thing that must be noticed is that the solutions

obtained by our algorithm are the best for all datasets4

(comparing with Table II). Also, the performance is very

good, as in all the tests the best solution was found in a

very short period of time. As can be seen, the algorithm can

find a composition of 10 services in less than 100 ms and

a composition of 40 services in only 1929 ms. In general,

the worst performance was obtained in test 5, 7 and 8 due

to the high complexity of the repositories.

C. Optimization effect

All the above experiments were performed using all opti-

mization techniques described on Section V. In this section,

we compare the effect of the optimization over the global

performance on each dataset, and its divided into three

parts: (1) performance using static service compression;

(2) performance using dynamic node reduction and (3)

performance improvement with both optimizations.

1) Static service compression: The results are presented

in Table IV. As can be seen, the average compression

obtained over the graph was close to 40%. Despite the

reduction obtained over the graph size, the complexity of the

repository 3 still remain too high, so the algorithm cannot

find a solution in a reasonable period of time, partly given

by the complexity of the solution, composed by a set of 40

services with an execution path of 23.

Table IV
OPTIMIZATION RESULTS USING STATIC SERVICE COMPRESSION

Test % compression time (ms)

WSC’01 54 99

WSC’02 48 145

WSC’03 43 -

WSC’04 32 376

WSC’05 37 311377

WSC’06 35 607963

WSC’07 29 16789

WSC’08 36 6837

3An iteration in the context of the A* algorithm is defined as an
expansion of the neighbors of the current path

4In the case of the dataset WSC’06, our algorithm found a solution with
shorter runpath than the results provided by the challenge (and with fewer
services than the WSC-2008 winners)

������ ������ ������ ������

�

�

�

�

�

�

�

�

�

��������
�����������

��������������

�����������������

�
�
�
�
�
�
�

Figure 4. Speedup with different optimizations

2) Dynamic node reduction: This technique reports a

big improvement in performance, as the algorithm obtains

solutions in all repositories except in WSC 2008-5 due to the

large number of services in the graph without compression.

Thus, this technique must be combined with the service

compression in order to reduce the complexity even further.

Table V
OPTIMIZATION RESULTS USING DYNAMIC NODE REDUCTION

Test name time (ms)

WSC’01 126

WSC’02 147

WSC’03 7457

WSC’04 1002

WSC’05 -

WSC’06 5562

WSC’07 10396

WSC’08 7318

3) Both optimizations: After applying both techniques,

our algorithm is able to solve the eight datasets showing a

good performance, as can be seen in Table III. In Figure

4, we compare the speedup5 obtained with each optimiza-

tion over the non-optimized algorithm. Given that single

techniques cannot solve all datasets, we compare only the

performance with some datasets (1, 2, 4 and 7). Note that

with all optimizations, the speedup is over 1.0x, i.e., there

is a substantial performance improvement.

VII. CONCLUSION

In this paper we have presented a heuristic-based search

algorithm for automatic web service composition over an op-

timized graph. The graph has been is optimized applying dif-

ferent techniques that reduce useless and equivalent services.

5The speedup is calculated as the division of the optimized result by the
non-optimized result. Thus, a speedup of 2.0x indicates that the optimized
result is two times faster than the non-optimized one.

87

The proposed A*-based composition algorithm is executed

over the reduced graph using dynamic node reduction and a

cost function, which minimizes the number of services and

maximizes the parallelization. Moreover, a full validation

has been done using eight different repositories from Web

Service Challenge 2008, showing a good performance as in

all the tests the best solution was found. Also, the search

times obtained for each composition are quite low, allowing

to use our proposal on-line.

ACKNOWLEDGMENT

This work was supported in part by the Dirección Xeral

de I+D of the Xunta de Galicia under grant 09SIN065E and

the Spanish Ministry of Science and Innovation under grant

TSI2007-65677-C02-02. Manuel Mucientes is supported by

the Ramón y Cajal program of the Spanish Ministry of

Science and Innovation.

REFERENCES

[1] M. P. Papazoglou and D. Georgakopoulos, “Service-oriented
computing,” Communications of the ACM, vol. 46, no. 10,
pp. 25–28, October 2003.

[2] A. Gustavo, F. Casati, H. Kuno, and V. Machiraju, Web
services: concepts, architectures and applications. Springer
Verlag, September 2003.

[3] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne
et al., “OWL-S: Semantic markup for web services,” W3C
Member Submission, vol. 22, pp. 2007–04, 2004.

[4] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte et al.,
“Business process execution language for web services, ver-
sion 1.1,” Standards proposal by BEA Systems, International
Business Machines Corporation, and Microsoft Corporation,
2003.

[5] M. Carman, L. Serafini, and P. Traverso, “Web service com-
position as planning,” in ICAPS 2003 Workshop on Planning
for Web Services, Trento, Italy, July 2003.

[6] J. Hoffmann, P. Bertoli, and M. Pistore, “Web Service
Composition as Planning, Revisited: In Between Background
Theories and Initial State Uncertainty,” in Proceedings of the
22nd National Conference of the American Association for
Artificial Intelligence (AAAI’07). Vancouver, Canada: AAAI
Press, July 2007, pp. 1013–1018.

[7] M. Klusch, A. Gerber, and M. Schmidt, “Semantic web ser-
vice composition planning with owls-xplan,” in Proceedings
of the AAAI Fall Symposium on Semantic Web and Agents,
Arlington VA, USA, AAAI Press, 2005.

[8] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso, “Auto-
mated composition of web services by planning at the knowl-
edge level,” in Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence (IJCAI 2005), L. P.
Kaelbling and A. Saffiotti, Eds. Edinburgh, Scotland, UK:
AAAI Press, July 2005, pp. 1252–1259.

[9] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, “HTN
planning for web service composition using SHOP2,” Web
Semantics: Science, Services and Agents on the World Wide
Web, vol. 1, no. 4, pp. 377–396, 2004.

[10] K. Chen, J. Xu, and S. Reiff-Marganiec, “Markov-htn plan-
ning approach to enhance flexibility of automatic web service
composition,” in IEEE International Conference on Web
Services (ICWS 2009). Los Angeles, CA, USA: IEEE, July
2009, pp. 9–16.

[11] M. Shiaa, J. Fladmark, and B. Thiell, “An Incremental Graph-
based Approach to Automatic Service Composition,” in 2008
IEEE International Conference on Services Computing (SCC
2008), vol. 1. Honolulu, Hawaii, USA: IEEE, July 2008,
pp. 397–404.

[12] P. Hennig and W. Balke, “Highly Scalable Web Service
Composition Using Binary Tree-Based Parallelization,” in
2010 IEEE International Conference on Web Services (ICWS
2010). IEEE, 2010, pp. 123–130.

[13] S. Hashemian and F. Mavaddat, “A graph-based frame-
work for composition of stateless web services,” in Fourth
IEEE European Conference on Web Services (ECOWS 2006).
Zürich, Switzerland: IEEE, 2006, pp. 75–86.

[14] W. Jiang, C. Zhang, Z. Huang, M. Chen, S. Hu, and Z. Liu,
“QSynth: A Tool for QoS-aware Automatic Service Composi-
tion,” in 2010 IEEE International Conference on Web Services
(ICWS 2010). Miami, Florida, USA: IEEE, July 2010, pp.
42–49.

[15] Y. Yan, B. Xu, and Z. Gu, “Automatic service composition
using and/or graph,” in 10th IEEE International Conference
on E-Commerce Technology (CEC 2008) / 5th IEEE Inter-
national Conference on Enterprise Computing, E-Commerce
and E-Services (EEE 2008). Washington, DC, USA: IEEE,
2009, pp. 335–338.

[16] N. Milanovic and M. Malek, “Search strategies for automatic
web service composition,” International Journal of Web Ser-
vices Research, vol. 3, no. 2, pp. 1–32, 2006.

[17] S. Oh, J. Lee, S. Cheong, S. Lim, M. Kim, S. Lee, J. Park,
S. Noh, and M. Sohn, “WSPR*: Web-Service Planner Aug-
mented with A* Algorithm,” in 2009 IEEE Conference on
Commerce and Enterprise Computing. IEEE, 2009, pp. 515–
518.

[18] A. Bansal, M. Blake, S. Kona, S. Bleul, T. Weise, and
M. Jaeger, “WSC-08: Continuing the Web Services Chal-
lenge,” in 10th IEEE International Conference on E-
Commerce Technology (CEC 2008) / 5th IEEE International
Conference on Enterprise Computing, E-Commerce and E-
Services (EEE 2008). Washington, DC, USA: IEEE, 2009,
pp. 351–354.

[19] S. Kona, A. Bansal, M. Blake, and G. Gupta, “Generalized
semantics-based service composition,” in 2008 IEEE Interna-
tional Conference on Web Services (ICWS 2008). Beijing,
China: IEEE, September 2008, pp. 219–227.

[20] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for
the heuristic determination of minimum cost paths,” IEEE
transactions on Systems Science and Cybernetics, vol. 4,
no. 2, pp. 100–107, 1968.

88

