
RESEARCH PAPER

Composition of web services through genetic programming

Pablo Rodrı́guez-Mier • Manuel Mucientes •

Manuel Lama • Miguel I. Couto

Received: 22 February 2010 / Revised: 11 August 2010 / Accepted: 23 September 2010 / Published online: 15 October 2010

� Springer-Verlag 2010

Abstract Web Services are interfaces that describe a

collection of operations that are network-accessible

through standardized web protocols. When a required

operation is not found, several services can be compounded

to get a composite service that performs the desired task.

To find this composite service a search process in a, gen-

erally, huge search space must be performed. The algo-

rithm that composes the services must select the adequate

atomic processes and, also, must choose the correct way to

combine them using the different available control struc-

tures. In this paper a genetic programming algorithm for

web services composition is presented. The algorithm has a

context-free grammar to generate the valid structures of the

composite services and, also, it includes a method to update

the attributes of each node. Moreover, the proposal tries to

minimize the number of services, and looks for composi-

tions with the minimum execution path. A full experi-

mental validation with four different repositories with up to

1,090 web services has been done, showing a great per-

formance in all the tests as the algorithm finds a valid

solution with a short execution path.

Keywords Web services composition � Genetic

programming � Evolutionary algorithms

1 Introduction

Web Services are interfaces that describe a collection of

operations that are network-accessible through standard-

ized web protocols, and whose features are described using

a standard XML-based language [3, 11]. This includes

functional features that indicate the input/output needed to

invoke the execution of a web service; nonfunctional fea-

tures such as cost, robustness, reliability, etc.; interaction

features or choreography that describe how a client dialogs

with the service in order to consume its functionality;

and structural features or orchestration that model how

the internal components of the service are combined to

execute it.

In this way, as the characteristics are available through

the interfaces, web services can be automatically discov-

ered and invoked by extern programs (clients). When

programs do not find a service with the required func-

tionality (inputs and outputs), it is possible to compose a

new service automatically. This composite service com-

bines the functionalities of other services to get the desired

outputs. This combination consists of a set of services that

are executed in a sequence or in a set of workflow-like

structures that control the execution of the services (specified

through web services composition languages as OWL-S [17]

or BPEL4WS [10]).

In the last years several papers have dealt with the

composition of web services. Some approaches consider the

composition problem as a planning problem of several

actions (services) that operate on an initial state (inputs and

preconditions) and generate an output state (postconditions)

P. Rodrı́guez-Mier � M. Mucientes (&) � M. Lama �
M. I. Couto

Department of Electronics and Computer Science,

University of Santiago de Compostela, E-15782 Galicia, Spain

e-mail: manuel.mucientes@usc.es

P. Rodrı́guez-Mier

e-mail: pablo.rodriguez.mier@usc.es

M. Lama

e-mail: manuel.lama@usc.es

M. I. Couto

e-mail: miguelixen.couto@usc.es

123

Evol. Intel. (2010) 3:171–186

DOI 10.1007/s12065-010-0042-z

[13, 14, 20–25, 27]. In these proposals, the planning tech-

niques are blended with semantic reasoning to combine the

outputs of some services with the inputs of others. The main

drawback is that in these approaches the result of the

composition is a sequence of services and, therefore, they

do not take into account other control constructions that are

part of the OWL-S or BPEL4WS models. In this way, this

particular problem has a computational complexity much

lower that those compositions that follow languages like

OWL-S or BPEL4WS.

Other papers solve the composition of services with

machine learning techniques like genetic programming

[5, 9, 26, 28]. In these approaches, the minimum execution

path needed to achieve a solution is not considered in the

fitness function, and therefore optimal individuals are not

assured. Furthermore, these proposals are validated with a

low number of services and then the effectiveness of the

proposed algorithms cannot be really evaluated.

In this paper we present a genetic programming algo-

rithm that solves the problem of composition of web ser-

vices. The algorithm uses a context-free grammar to limit

the valid structures, takes into account the attributes

updating, and minimizes both the number of services of the

composite solution and the execution path needed to

achieve the desired result. A full validation has been done

in four different repositories: OWL-S TC [15], a hand-

made repository with 1,000 services, and three program-

generated repositories proposed for the 2008 Web Service

Challenge of the EEE conference [6]. The behavior of the

algorithm shows a great performance, as in all the cases a

correct composition was found. This validation demon-

strates the generality of the evolutionary algorithm, as it

does not depend on the structure and features of a given

repository.

The paper is structured as follows: Sect. 2 introduces the

web services composition problem, and Sect. 3 describes

the different approaches that have already been proposed.

Then, Sect. 4 presents the proposed genetic programming-

based algorithm for web services composition, Sect. 5

comments the obtained results and, finally, Sect. 6 points

out the conclusions.

2 Problem description

In this paper, we consider that web services are only

characterized by their functional features (that is, inputs

and outputs), which are semantically described through

ontologies. With this semantic description the output of a

service OSo matches the input of other service ISi when OSo

is a subclass of ISi. In general, when a concept Ci is a

subclass of a concept Cj (Ci � Cj), then there is a semantic

matching between Ci and Cj. This semantic matching will

be used when two o more concepts are compared in the

different stages of our algorithm.

Considering this description for web services, the

composition problem can be formulated as the automatic

construction of a workflow that coordinates the execution

of a set of services that interact among them through their

inputs and outputs (applying the semantic matching). This

workflow, therefore, has services and a set of control

structures that define both the behavior of the execution

flow and the inputs/outputs of the services related to those

structures. Thus typical control structures of web services

composition languages are:

– Sequence structure, where the output of a service is the

input of one of the following services of the sequence.

This is the simplest control structure of the workflow

languages.

– Selection (choice) structure, where an output can be

achieved through two or more services, which therefore

share the same output, but only one service will be

selected and executed.

– Parallel (split) structure, where two o more services

are executed in parallel and, as result, produce several

and different outputs.

– Parallel and synchronized (splitJoin) structure, where

the execution ending of services that run in parallel is

synchronized. In this construction the services outputs

are tipically different.

– Loop structure, where a set of services are executed

until a given condition is verified. This structure does

not impose any condition to the input/output concepts,

although some approaches [5] assume that there must

be a set of data in order to be individually used in each

loop iteration.

These structures are shared by OWL-S1 and BPEL4WS,

which are the languages of the service repositories we have

used to validate the proposed algorithm. In this sense it is

important emphasize that the proposed algorithm is inde-

pendent of the web services composition language, because

the behavior of the control structures is defined in a general

way.

As has been mentioned, the composition of web services

consists of a set of services that are executed in a sequence

or in a set of workflow-like structures that control the

execution of the services. These two problems are very

different from the point of view of the computational

complexity:

1 In OWL-S a process is used with the same meaning as a service.

Thus a single service is named as an atomic process, and composite

services are named as composite processes. We use this notation in

the grammar that describes the chromosomes of our evolutionary

algorithm.

172 Evol. Intel. (2010) 3:171–186

123

– Sequence-based compositions: the complexity is O(n!),

where n is the size of the services repository2.

– Workflow-like structures: the complexity is O(n! t),

where t is the number of different structures that can be

generated. The structures can be represented by trees,

and can be defined by a context-free grammar.

Therefore, t depends on the grammar and on the

maximum tree depth (d). If we assume that the

grammar generates a complete binary tree3, the max-

imum number of leaf nodes is 2d. Thus, if the grammar

has m different control structures, then the number of

different structures that can be generated is t / m2d

, as

for each leaf node a different control structure can be

selected. t is proportional to this expression because not

all the rules in the grammar generate two internal nodes

and/or not all the leaf nodes are control structures. This

is the case for the context-free grammar defined in this

paper (described in Sect. 4.1, Fig. 2). Finally, the

complexity of workflow-like structures is O n! m2d
� �

.

As can be seen, workflow-like compositions have a

much higher number of candidate solutions than sequence-

based compositions, which makes classical search methods

not applicable for this kind of web services composition.

Figure 1 shows the size of the search space for both

sequence and workow-like compositions and two different

services repositories with sizes 100 and 8,000. The x-axis

represents the depth of the tree for workflow-like compo-

sitions and the corresponding search space size has been

calculated using the context-free grammar defined in this

paper (Fig. 2). The size of the search space has been cal-

culated in a precise way, generating all the valid structures

for each tree depth and calculating the number of different

compositions using the number of services of the corre-

sponding services repository. Even if the number of ser-

vices used for workow-like compositions is 80 times lower

than that of a sequence-based approach (100 vs. 8,000), the

size of the search space for a depth of five is larger for

workflow-like compositions.

3 Related work

Web services composition has attracted widespread atten-

tion in recent years. Although there are several proposals to

classify the approaches that focus on this topic [2, 12], in

this paper we distinguish two kinds of algorithms

depending on the complexity of the problem they solve:

1. Algorithms that solve the problem of generating

services sequences whose execution leads to the

desired result.

2. Algorithms whose aim is to obtain a workflow

composed by a set of control structures that coordinate

the service execution. Usual control structures in most

workflow languages are sequences, parallel executions,

synchronizations, selections and loops. The complex-

ity of this kind of services compositions is higher than

the sequence generation (Fig. 1) because, to achieve a

solution, they must be taken into account the depen-

dencies among control structures and how each

structure deals with input/output data.

3.1 Services sequence-based composition

An extensive research in services composition has been

focused on planning-based approaches in which the com-

position is modeled as a planning problem [13, 19]. In

these approaches there is an initial state defined by a set of

both inputs and preconditions that the composite service

must verify; a set of operators (or services) that are exe-

cuted to obtain new and intermediate states; and a final

state defined by a set of both outputs and postconditions

that the solution must also verify. The composite service is

therefore generated by a sequence of services whose

ordered execution allows to achieve the requested outputs

from the inputs.

Following this general model, different planners have

been applied, such as graph analysis-based planners [14,

27], where the GraphPlan [8] algorithm is adapted to find

Fig. 1 Search space size of sequence and workflow-like structures

for different services repository sizes

2 This complexity is for the worst case: a composition which uses all

the services of the repository. However, if we knew in advance the

size of the composition (this is, in general, not truth), the complexity

would be O n!
ðn�pÞ!

� �
, where p is the number of services of the

composition.
3 In a complete binary tree every level, except possibly the last, is

completely filled, and all nodes are as far left as possible.

Evol. Intel. (2010) 3:171–186 173

123

services compositions with optimal paths from inputs to

outputs; logic-based planners [22], where the reasoning

capabilities of a logic paradigm are used to obtain the

services whose execution is compliant with the description

of the state where they are applied to; hierarchical planners

[16, 18, 25], where the hierarchical representation of

composite services is considered to reduce the complexity

in generating automatic sequences at different hierarchy

levels; or planning as model checking [4, 7, 21], where the

non-determinism and partial observability of services is

managed for the generation of compositions. In these

approaches, as for hierarchical planners, it is necessary to

have an abstract representation of the workflow that models

the composite service (with abstract service descriptions).

The planner has to select the concrete services that better fit

to the predefined compositions.

The main drawback of these approaches is their low

performance when the search space is huge, that is, when

the number of services and the input/output interactions

among them is high. In this case the number of operators

(services) that could be applied to a given state (verifying

partially its inputs and preconditions) is high and, there-

fore, the number of potential intermediate states is huge. In

this situation, finding a solution is a hard problem that

requires the use of optimal search techniques. To deal with

this issue some strategies have been proposed:

– In [20] the planning algorithm is combined with

regression search to minimize the number of services

that could be applied to a given state. Thus, once a

services sequence is obtained, an heuristic greedy

search is applied in a backward sense to approximate

the optimal sequence of services.

– In [23] a query index with semantic information about

inputs/outputs concepts of the services is created in

order to reduce the reasoning time needed to obtain a

matching between the inputs and outputs of the

services.

The other disadvantages of these approaches are that: (1)

they have not been validated in large services repositories;

and (2) the generation of services sequences, usually, has

not the optimal execution path, because parallel structures

are not considered as part of the solution. However, as

implicit loops are allowed in the algorithm, a solution to

this issue would be to apply a pattern matching algorithm

to discover control structures in the sequences [14].

3.2 Automatic workflow composition

Several approaches based on evolutionary algorithms have

been proposed to obtain services compositions whose

description is carried out through workflows [5, 9, 26, 28].

For example, [5] describes an algorithm for services

composition in BPEL that follows a similar approach to the

one presented in this paper. The main differences with our

proposal are that: (1) it does not show a formal description

of the grammar to compound services; (2) attributes

updating after crossover and mutation is not explicitly

managed. Therefore, it is difficult to evaluate to which

degree all the interactions among services are fulfilled to

get a correct solution; (3) minimum execution paths are not

assured because this parameter is not included as part of the

fitness function; and (4) the algorithm has been validated in

a private repository.

In [9], authors consider a workflow of tasks and a set of

services that may execute each of those tasks. The proposal

presents an evolutionary algorithm to associate a task with

an optimal service, and considers a fitness function

implemented as a multi-objective and distance-based

algorithm that evaluates quality of service parameters. In

this algorithm, therefore, it makes no sense to include the

minimum execution path of the composite service as a

criterion to select individuals, because the workflow is

predefined. A similar approach has been presented in [26],

where the fitness function is calculated as a formula with

weights for the different quality of service parameters.

In [28] a particle swarm optimization algorithm is

applied to optimize the selection of services that are part of

the solution. In order to do that, the semantic similarity

between the service characteristics is calculated, obtaining

a set of measures (or distances) that define the relation

between a service and the other services of the repository.

When these measures are available, the algorithm obtains a

services sequence with optimal distances among the ser-

vices. This work has not been validated in a large reposi-

tory; it used the Amazon services to demonstrate the

viability of the algorithm.

Furthermore, in the bibliography many other approaches

for composition of service workflows have been proposed,

approximating the solution with different search strategies

such as heuristic search [1] or graph analysis [29]. Com-

mon drawbacks of these proposals are that they cannot

manage all the control structures as are defined in workflow

languages as BPEL4WS and OWL-S, and the performance

of the algorithm decreases as the number of services and

interactions among them is huge.

With this state of the art, we can conclude that the main

differences between other approaches and our proposal are:

– Current approaches focusing on automatic generation

of workflows do not consider all the control structures

of the workflow languages like OWL-S and BPEL4WS.

Thus, planning algorithms only obtain services

sequences and evolutionary or optimization techniques

do not manage the complete set of workflow-like

structures.

174 Evol. Intel. (2010) 3:171–186

123

– Some approaches do not minimize the execution path

needed to execute the composite service, that is, they

do not maximize the use of parallel control structures to

reduce execution times.

– Existing proposals have not been validated in several

repositories with different features in order to demon-

strate the generality of the algorithm.

All these drawbacks have been tackled by our genetic

programming-based approach to web services composition,

which is described in the next section.

4 Genetic programming for web services composition

Web services composition requires the combination of

many atomic services using several control structures. This

combination of elements can be modeled, in a natural way,

with a tree that represents the solution to a web services

composition. As not all the combinations of atomic ser-

vices and control structures are valid from a syntactical

point of view, restrictions in the syntactical structure of a

solution (web services composition) can be described with

a context-free grammar. Genetic programming is especially

adequate for web services composition due to:

– Genetic programming can deal with solutions with very

different structures as the individuals are usually

represented by trees and, moreover, the trees can have

different depths and number of nodes.

– A context-free grammar can be naturally included to

generate new individuals, and to produce right struc-

tures for the individuals after crossover and mutation.

– Web services composition has a hierarchical structure,

i.e., several atomic services generate a composite service,

several composite services produce a more complex

composition and so on, until the desired solution is found.

Therefore, the subtrees of a tree represent simple

compositions that contribute to the solution. Intermediate

compositions can be interchanged between trees, in order

to improve the performance of the new trees (solutions).

This is exactly what is implemented with the crossover

operator in genetic programming.

The first step in the design of an algorithm for web

services composition requires the definition of the type of

composite services that are going to be build. A compact

definition of the valid structures of a tree (chromosome) for

a web services composition can be described by a context-

free grammar.

4.1 Context-free grammar

A context-free grammar is a quadruple ðV;R;P; SÞ, where

V is a finite set of variables, R is a finite set of terminal

symbols, P is a finite set of rules or productions, and S is an

element of V called the start variable. The grammar that

defines the valid structures for web services composition is

described in Fig. 2. The first item enumerates the variables,

then the terminal symbols, in third place the start variable

is defined, and finally the rules for each variable are enu-

merated. When a variable has more than one rule, rules are

separated by symbol ‘‘|’’.

The grammar has been defined to fulfill the syntax of

the most common web services composition languages

(OWL-S and BPEL4WS), and is completely independent

of the services repository.\initialProcess[is the start vari-

able of the grammar and generates an atomic or a composite

process.

Variable \process[defines either composite processes

or atomic processes. Two of the four rules of this variable

are recursive and, therefore, a process can be composed of

any number of atomic and composite processes. Finally,

variable \compositeProcess[represents the combination

of a control structure and two processes (of any type), i.e., a

composition of at least two processes.

All the nodes of type variable, together with terminal

symbol atomicProcess constitute the service nodes. They

are characterized by the following attributes:

– Control structure: the node of type control structure

({choice, sequence, split, splitJoin}) of which the ser-

vice node depends on. The control structure manages

the interaction among the services that share that

control.

– Available inputs: are those inputs available for a

service. A subset of them are selected as inputs to the

service. An input can be available in two ways. First, if

the user introduces that input. In second place, if a

service that belongs to the composition and has been

executed before (in the composition flow), generates as

output that service functionality.

Fig. 2 Context-free grammar for web services composition

Evol. Intel. (2010) 3:171–186 175

123

– Necessary inputs: are the inputs that the node needs for

running all the atomic processes in the subtree for

which the node is the root node. These inputs or their

subclasses have to be provided by the user or by other

services of the composition.

– Obligatory inputs: in some situations, the outputs of

several services have to be used as inputs to the current

service. This means that at least one of those outputs

has to be selected as input to the current service (a

semantic matching among them must exist). An

example of this situation is the sequence of two

services Sa and Sb. Let Oa ¼ foa
1; . . .; oa

na
g be the set of

outputs generated by service Sa, and In
b ¼ fib1; . . .; ib

nb
g

be the set of necessary inputs of Sb. Then, Oa \ In
b 6¼ ;.

If this condition is not fulfilled, the composition of

services Sa and Sb is not a sequence, and the structure is

not valid. Therefore, the inputs of the service must

contain a subset of the obligatory inputs. Following the

example, the obligatory inputs of service Sb are the

outputs of service Sa, i.e., Io
b ¼ Oa.

– Outputs: generated by the service. They can be directly

generated by the service (if it is an atomic process) or

by the subtree with the service as root node (composite

process).

4.2 Attributes updating

The initialization of a tree (web services composition), or a

modification of it due to crossover or mutation, requires the

updating of all the attributes of each node. The initial step

of the algorithm resets all the attributes of all the nodes in

the tree, and then initializes the necessary inputs of the root

node (\initialProcess[) to the set of inputs of the web

services composition to be solved. Then, the tree is tra-

versed in preorder, updating the attributes of each node. To

traverse a tree in preorder, the following operations must

be performed recursively at each node, starting with the

root node: first, visit the root. Then, traverse the subtrees

that have as root node the children of the root. Children are

traversed in order, starting with the leftmost node and

continuing to the right. Updating the attributes of each

node is done in a different way depending on the type of

attribute:

– Control structure (cs): this attribute is propagated in a

top-down way. This means that a node inherits the

attribute value from its parent. There is an exception to

this rule. The node will set its control structure to its

leftmost brother when that brother is a control structure.

– Available inputs (Ia): they are propagated in a top-down

way. If an input is available for a node, it will also be

available for all its children. When the control structure

of the node is sequence, all the outputs of the brothers

to the left of the node will also be added as available

inputs.

– Necessary inputs (In): the propagation is done in a

bottom-up way. This means that, if and only if the node

is a leaf node, all its ancestor nodes will add as

necessary inputs the necessary inputs of the node.

– Obligatory inputs (Io): they are propagated in a top-

down way. When the control structure of the node is

sequence and the brother node immediately to the left is

a service node, the obligatory inputs will be set with the

following algorithm:

–

1. Traverse in preorder the subtree that has as root

node the brother node just to the left of the current

node (the one for which the obligatory inputs are

being calculated).

2. Get the last node traversed in that process. It will

be the rightmost node of the subtree.

3. If both the last and current nodes depend on the

same control structure (they have a reference to the

same node of type controlStructure), then the

outputs of the last node will be the obligatory

inputs of the current node.

4. Else, the outputs of the brother node immediately

to the left will be the set of obligatory inputs of the

current node.

– Outputs (O): the attribute is propagated in a bottom-up

way (the outputs of a node will also be outputs of its

parent), except when the leftmost child of the node is a

choice control structure. Outputs for this situation are

obtained as: O ¼ O1\. . .\ On, i.e., the intersection of

the outputs of all the children of the node.

4.2.1 An example

Figure 3 shows a services composition. Terminal symbols

(leaves of the tree) are represented by rectangles or

squares, and variables are shown as flatted circles. Each

node includes the values of the different attributes: the

control structure governing the node (cs), the available

inputs (Ia), the necessary inputs (In), the obligatory inputs

(Io) and the outputs (O). In this example the initial avail-

able inputs are ia and ib, and the outputs required to solve

the composition are o6.1 and o6.2.

Attributes updating starts from the root node, traversing

the tree in preorder. When the first atomic process node

(3.1) is reached, its available and obligatory inputs are set

to its parent values, which were also taken from its ancestor

(top-down updating). This service uses ia as input and

generates o3.1 as output. Therefore, the necessary inputs

176 Evol. Intel. (2010) 3:171–186

123

and the outputs will be set to these values and propagated

to all the ancestors of the node.

Following the preorder traversal, node 2.3 is visited. As

this node has a sequence control structure and has brother

service nodes on the left, both the available and obligatory

inputs require a different updating. The available inputs are

those inherited from the parent (top-down updating) plus all

the outputs generated by the brother nodes to the left, i.e.,

o3.1 is added as an available input. On the other hand, the

obligatory inputs are the outputs of the brother node (o3.1).

These attribute values are propagated down to node 3.2. This

node is an atomic process that generates output o3.2 using

inputs ib and o3.1. Attributes outputs and necessary inputs are

consequently updated and propagated to its ancestors.

The next traversed node is 3.3. Again, this node has a

sequence control structure and has brother service nodes on

the left. Therefore, the output of node 3.2 is added as

available input to the node and, also, the obligatory inputs

attribute is set to this value.

Both the available and obligatory inputs are propagated

down. Thus, nodes 6.1 and 6.2 have to use o3.2 as input.

Both nodes propagate up the necessary inputs (ia, o3.2) and

the outputs (o6.1, o6.2), and the updating process ends with

the configuration shown in Fig. 3.

4.3 Genetic programming-based algorithm

Figure 4 describes the genetic programming algorithm that

has been used for web services composition. The first three

steps of the algorithm correspond to an initialization.

t represents the number of iterations, while timesRun will

be used to detect situations in which the search gets stuck.

The iterative part of the algorithm starts at step four. This

part will be repeated until the maximum number of itera-

tions is reached or the best possible solution is found. The

main stages of the iterative part are the selection of the

individuals, the crossover and mutation to generate new

individuals, the post-processing, their evaluation, the

replacement of the population, the local search, and the

checking of stuck situations in the search process. All of

them are described in detail in the next sections.

4.3.1 Initialization

The first step of the algorithm is the generation of the initial

population. A new individual is generated applying ran-

domly the rules of the grammar. If the depth of the tree

reaches the maximum predefined value, then all the nodes

of type service at that depth are transformed to

Fig. 3 A chromosome

representing the composition of

several atomic processes

Evol. Intel. (2010) 3:171–186 177

123

atomicProcess nodes. Once the structure of the tree has

been defined, the attributes of the nodes must be initialized

using the algorithm defined in Sect. 4.2.

This attributes updating algorithm is run with one spe-

cial characteristic. When an atomicProcess node is reached

during the traversal of the tree, as no specific service has

been assigned to it, one has to be selected from the

repository. The selection is done randomly from the set of

services that fulfill: Ia
j � Ik and Io

j \ Ik 6¼ ;. Thus, a service

k can be selected if its inputs are a subset of the available

inputs of the atomicProcess node j (Ia
j) and if at least one of

the inputs of k belongs to the set of obligatory inputs of

j (Io
j).

4.3.2 Evaluation

The calculation of the fitness of each individual of the

population is done analyzing four criteria: generated out-

puts, used inputs, execution time of the composite service

and number of nodes of type atomicProcess:

fitness ¼ x1 �
P Oobjj j

i
1

DOiþ1

Oobj

�� �� þ
In
root \ Iobj

�� ��
Iobj

�� ��

0
@

1
A

þ x2 �
1

runPath
þ x3 �

1

#atomicProcess
ð1Þ

where Oobj are the outputs that are required to solve the

composition, DOi is the distance of the individual to the ith

required output, In
root are the necessary inputs of the root

node (this node is the result of the composition of the

services), Iobj are the inputs provided to solve the compo-

sition, runPath is the execution time of the composite

service, #atomicProcess is the number of atomic processes

in the tree, and xk are values that weight the importance of

each criterion.

The first and second criteria indicate the degree to which

a valid solution has been found. The first one is the number

of outputs (or subclasses of them), of those that were

required, that have been generated by the composition. The

second criterion is the number of inputs (or superclasses of

them), of those provided by the user, that have been used.

In order to guide the composition, the use of a crisp

criterion for the outputs is not adequate, and the concept of

distances to outputs (DOi) must be introduced. For exam-

ple, if the expected result of a composition is a sequence of

ten services, and the desired output is provided by the last

service, a composition of the first nine services will not

generate the desired output and, therefore, with a crisp

criterion, this part of the fitness function would be evalu-

ated as 0. However, if the fitness function measures the

distance between the composite service (of nine atomic

processes) and the desired output, it will reflect that the

composite process is close to find a valid solution (only a

new atomic service needs to be added). The distance of an

individual to the ith desired output (DOi) is calculated in

the following way:

DOi ¼ min
j

DOij ð2Þ

where DOij is the distance of the jth atomic service of the

individual to the ith output. Thus, the distance of the

individual to the output is the minimum of the distances of

its atomic services to that output. Also,

DOij ¼ min
k

DO Sj; Sk

� �
: oi 2 Ok ð3Þ

where Sj and Sk are services, Ok is the set of outputs gen-

erated by service Sk, and oi is the ith output. DO is the

distance between two atomic services, and is defined as the

minimum number of atomic services that need to be

composed in sequence, starting with Sj, in order to generate

an output of Sk. For example, if Oj \ Ok 6¼ ;, then DO(Sj,

Sk) = 0.

The third criterion is the execution time of the com-

posite service. This time depends on the execution time of

each atomic service but, also, on the control structures in

the following way:

– sequence: the execution time is the sum of the times of

all the services in the sequence.

– split and splitJoin: the execution time is equal to the

time of the slowest service belonging to this control

structure, as all the services are executed in parallel.

Fig. 4 Genetic programming algorithm for web services composition

178 Evol. Intel. (2010) 3:171–186

123

– choice: in this control structure, only one service of the

composition is executed. As the selected service is only

known at run time, the worst time of all the services in

the choice composition has to be selected. Therefore,

the execution time is calculated in the same way as for

the split control structure.

Finally, the last criterion is related with the complexity

of the composite service. The higher the number of atomic

processes in the composition, the higher the complexity.

4.3.3 Selection

The selection mechanism that has been used is the binary

tournament selection. In a k-tournament selection, k indi-

viduals are randomly picked from the population with

replacement, and the best of them is selected. In this case,

k = 2 (binary tournament selection).

4.3.4 Crossover

The crossover operator replaces a subtree of an individual

with a subtree of other individual. The process is as

follows:

– Select randomly a node of type service in the first

individual.

– Generate the set of candidate nodes in the second

individual. These nodes must have the following

characteristics:

– They must be of type service.

– In
2 � O2

� �
\ Io

1 6¼ ;. In
2 � O2 represents all the

inputs that are used by the subtree of the second

individual and that have not been generated inside

that subtree. This set of inputs must contain at least

one of the obligatory inputs (or their subclasses) of

the subtree that is going to be replaced in the first

individual.

– In
2 � O2 � Ia

1 . Also, the set of inputs used in the

subtree of the second individual must be a subset of

the available inputs (or their subclasses) for the

subtree of the first individual.

– Select randomly a node of the candidate nodes set,

and replace the subtree of the first individual with

the selected subtree of the second individual.

– Execute the attributes updating algorithm. During

the execution of the algorithm, if a leaf node of type

atomicProcess is reached, two conditions must be

checked: Ia
j � Ik and Io

j \ Ik 6¼ ;, i.e., the inputs of

the process (Ik) must be a subset of the available

inputs (or subclasses of them) of the node and, also,

they must contain at least one of the obligatory

inputs (or their subclasses) of the node. If the

conditions are not fulfilled, a new atomic process

must be selected using the same procedure as in the

initialization stage (Sect. 4.3.1).

4.3.5 Mutation

The mutation operator modifies a subtree of the individual.

First, a node must be randomly selected. If the node is of

type variable, then the subtree that has as root the selected

node is eliminated. The new subtree is generated applying

the rules of the grammar randomly for that variable in the

same way as in the initialization stage (Sect. 4.3.1). On the

other hand, if the node is of type terminal, there are two

cases:

– If the node is a control structure, a new one is randomly

selected.

– If the node is an atomic process, there are two

posibilities:

– A new process is randomly selected from the

repository using the same conditions defined in the

initialization stage (Sect. 4.3.1).

– The node is substituted with a process node and a

subtree is generated applying the rules of the

grammar in the same way as for nodes of type

variable.

In all the cases, the attributes updating algorithm must

be run. Also, the validity of the atomic processes must be

checked and, if necessary, a new selection of the atomic

processes is done.

4.3.6 Replacement

The selection mechanism is a population-based selection

approach, i.e., parents and their corresponding offspring are

combined generating a population with a size 2N (being

N the size of the initial population), and the best N indi-

viduals are selected for the next population.

4.3.7 Post-processing

The size and complexity of the trees representing the

individuals has to be managed in order to improve the

search, reduce the time per iteration and, also, to simplify

the final composite service. The post-processing stage

consists of four steps that are executed at the end of the

algorithm. Moreover, two of these steps are also executed

at the end of each iteration. The steps must be executed in

the following order:

1. Eliminate useless atomic services: an atomic service is

useless if none of their outputs neither contribute to the

Evol. Intel. (2010) 3:171–186 179

123

objective outputs nor are inputs to other services.

Elimination of this kind of services is recursive, i.e., it

is repeated while in the previous step a service was

eliminated. New useless services can appear due to the

elimination of a useless service. This procedure is

executed at the end of the algorithm.

2. Eliminate useless control structures: a control struc-

ture is useless when only one atomic service depends

on that control structure. A control structure is used to

compose services and, therefore, a minimum of two

services are needed. Useless control structures have to

be eliminated, and the atomic process belonging to it is

assigned to the control structure of its closer ancestor.

This step needs to be done at the end of each iteration.

3. Eliminate consecutive and equal control structures:

when a node and its parent have the same type of

control structure and it is an split or an splitJoin, both

control structures can be merged. This step is executed

only at the end of the algorithm.

4. Tree flatten: the depth of the trees is limited in order to

prevent an infinite growth of the individuals. The

proposed context-free grammar is unambiguous, and

this means that an individual can be only represented

by a tree. However, due to crossover, mutation and,

also, due to the recursive rules in the grammar, the

number of nodes and the depth of the trees can grow at

a high rate. In large trees, usually some of the internal

nodes are useless, i.e., they could be deleted without

modifying the fenotype of the individual (the compo-

sition remains equal), although the genotype is

changed. This process generates smaller individuals,

which improves the search for better compositions.

Tree flatten transforms a tree in its equivalent with the

minimum depth, and it is done in each iteration. To

keep the same fenotype, it is necessary to respect the

precedence among the different control structures in

the individual. The process is started in the leaf nodes

and ends when the root node is reached. Each node in

the tree is gone up to the depth of its control structure

node.

4.3.8 Local search

The objective of the local search is to improve some of the

individuals of the population implementing a search pro-

cess with a low degree of exploration and a high degree of

exploitation, i.e., a very exhaustive search in the neigh-

borhood of the individual. In this case, the local search has

been applied to only one individual of the current popu-

lation: the best individual. If the local search was already

run for that individual in previous iterations, then a new

individual is randomly selected to execute the local search.

The local search algorithm is described in Fig. 5. It is a

greedy algorithm (proceeds by changing the current

assignment by always trying to increase the fitness) called

steepest ascent hill climbing [24]. This algorithm fulfills

two requirements that are necessary for its adequate

cooperation with the genetic programming algorithm for

web services composition: it makes a complete search in

the neighborhood of the solution until it finds the local

maximum, and it is very fast. A loop (lines 2–14) is run

until the local search fails to improve the best solution in

one iteration. The best solution of the iteration (X0) is

initially set to the best solution (X). For all the neighbors of

the the best solution, the best one is picked if it improves

the best solution of the iteration (lines 5–9). Finally (lines

10–13), if the best solution of the iteration improves the

best solution, the best solution is updated and the local

search continues. Else, the best solution is returned and it

will replace the original solution in the population if it is

better.

The local search requires the generation of the neighbors

of an individual (line 5). The neighborhood can be obtained

substituting each atomic process of the individual with

another atomic process from the repository (fulfilling some

conditions that will be detailed later). As there can be

several candidates for each replacement and there are also

several atomicProcess nodes in the individual, making all

the combinations can generate a huge number of neighbors.

Thus, in order to speed up local search, a reduced number

of neighbors will be generated as follows:

1. Select randomly the number of atomicProcess nodes

of the individual that will be modified (#apLS).

2. Pick randomly those atomicProcess nodes that will be

modified.

3. For each node of type atomicProcess (apj) that has

been picked, look for all the processes in the repository

that fulfill the following conditions:

Fig. 5 Steepest ascent hill climbing algorithm [24]

180 Evol. Intel. (2010) 3:171–186

123

(a) Ia
j � In

jk

(b) Io
j \ In

jk 6¼ ;
(c) Ojk � On

j

where In
jk are the necessary inputs of process apjk,

k = 1,…, aj. apjk is the kth atomic process of the

repository that fulfills the conditions for node

j (which corresponds to atomic process apj), Ojk

are the outputs of apjk, and On
j are the outputs that

were generated by atomic process apj and that

were used as inputs by other atomic processes of

the individual.

4. Calculate for each apjk the probability to be selected:

pjk = g fitnessjk, where fitnessjk is the fitness of the

individual after the replacement of the atomic process

of node j by apjk, and g is a normalization factor.

5. For each considered apj, pick randomly one of the apjk

using the calculated probabilities (pjk).

6. The neighborhood is composed of all the individuals

obtained after replacing or keeping the corresponding

nodes (apj). The size of this neighborhood is 2#apLS � 1.

4.3.9 Reinitialization

The last steps of each iteration (Fig. 4) update the value of

timesRun, decreasing it when the best individual has not

improved and also when no individuals of the current

iteration have survived the replacement process. If times-

Run takes a value below 0, the population is reinitialized in

the same way as in the initialization stage, but keeping the

best individual.

5 Results

The validation of the genetic programming algorithm for

web services composition has been done with a set of

experiments with different degrees of complexity. Four

different repositories have been used for test:

1. OWL-S TC V2.2, with 1,000 services described with

the OWL-S profile4.

2. Web Service Challenge 2008 (WSC 2008) repository 1,

with 158 services represented in WSDL and whose

inputs and outputs are semantically described5.

3. Web Service Challenge 2008 (WSC 2008) repository 2,

with 558 services represented in WSDL and whose

inputs and outputs are semantically described.

4. Web Service Challenge 2008 (WSC 2008) repository 5,

with 1,090 services represented in WSDL and whose

inputs and outputs are semantically described.

The services compositions that have been tested are

shown in Figs. 6, 7 and 8. For each example, a short

description of the task that the composite service solves is

given. Also, the available inputs (those provided by the

user) and the desired outputs are enumerated. Then, the

solution to the requested service is indicated: it is a com-

bination of control structures and atomic processes. In most

of the cases there are a few possible best solutions, but only

one has been indicated in Figs. 6, 7 and 8. Finally, each of

the atomic processes that are part of the solution are

described. It should be noticed that, as the inputs and

outputs of the repositories WSC 2008 are semantically

described, the names of the inputs and outputs of the

atomic processes (Figs. 7 and 8) do not match up. For

example, the output of a service in a sequence could not be

an input to the next service. This is because the input of the

next service is a superclass of the previous output

(semantics has to be taken into account).

Table 1 shows the results for all the test examples

described in Figs. 6, 7 and 8. Each row in the table rep-

resents the results of the evolutionary algorithm for a test

example. As evolutionary algorithms are nondeterministic,

the result of one run over an example is not meaningful.

Thus, for each of them 10 runs were executed. The col-

umns represent the time to obtain the best solution found

by the algorithm, the percentage of provided inputs that

have been used by the atomic processes, the degree of

fulfillment of the required outputs, the fitness value, the

execution time (runPath) of the composite service (the

execution time of each atomic service has been established

to 1) and the number of atomic processes of the tree. For

each of these columns, two values are represented: v is the

arithmetic mean over 10 runs, and r is the standard devi-

ation over the 10 runs, which reflects the robustness of the

probabilistic algorithm to obtain similar results regardless

the followed pseudo-random sequence.

The values that have been used for the parameters of the

evolutionary algorithm are: maxT = 100, initialTimes-

Run = 20, population size = 200, crossover probability

= 0.9, mutation probability = 0.03 (per gene), maximum

depth of the tree = 9, x1 = 0.45, x2 = 0.05, x3 = 0.05,

percentage of the individuals to apply local search = 0.5%.

The first thing that must be noticed is that the fitness is,

in nearly all the cases, under 1, as the execution time of the

composite service and the number of atomic processes in

the tree are greater than one (Eq. 1). The performance of

the algorithm is good, as in all the tests an acceptable

solution has been found for all the runs. This means that

In
root \ Iobj ¼ Iobj and Oroot \ Oobj ¼ Oobj. Also, the search

4 http://projects.semwebcentral.org/frs/download.php/386/owls-tc2_

2_rev_2.zip.
5 http://cec2008.cs.georgetown.edu/wsc08/downloads/Challenge

Results.rar.

Evol. Intel. (2010) 3:171–186 181

123

http://projects.semwebcentral.org/frs/download.php/386/owls-tc2_2_rev_2.zip
http://projects.semwebcentral.org/frs/download.php/386/owls-tc2_2_rev_2.zip
http://cec2008.cs.georgetown.edu/wsc08/downloads/ChallengeResults.rar
http://cec2008.cs.georgetown.edu/wsc08/downloads/ChallengeResults.rar

times6 that have been obtained are quite low, which is

specially important for web services composition, as users

require a fast answer to their query. Going into the details

for each test:

– OWL-S TC V2.2–1: this test is very simple, as it is just

an atomic process and not a services composition.

However, it has been included to verify that also under

simple conditions the algorithm works properly (the

best fitness was always reached). The number of atomic

processes is always the right one, while the depth is

always the minimum possible one.

– OWL-S TC V2.2–2: in this example all the executions

reached the best possible services composition (two

atomic processes connected in a sequence).

– OWL-S TC V2.2–3: this example is similar to the

previous one (a sequence of two services). The best

values for all the objectives (inputs, outputs, execution

time, and number of atomic processes) have been

reached in all the runs.

– OWL-S TC V2.2–4: this composition requires the use of

two nested control structures: a sequence and an split.

This solution cannot be constructed with sequence-

based compositions. The execution time of the com-

posite process was most of the times the lower one (it

was over only two times). The number of atomic

processes has a higher variability, indicating that

-
-

-
-

-
- -

- -

--
-

-

-

- -
--

-
--

-
- -

-

- - -
--

- - - - - -

- - -

--
- -

-
- -

-
-

-
-

-
- -

-
-

--
-

- - - -

- -
--

-
- -

--
-

-
--

-
-

--
-

-

- -
- -

- - - -

- -
-

-
-

-
-

-
-

-

-

-
-

-

-

- - - -

Fig. 6 Description of the web services compositions used for testing on repository OWL-S TC V2.2

6 These times have been obtained with an Intel Xeon(R) Quadcore

E5320 1.86GHz processor with 8GB of RAM, and the algorithm was

implemented in Java and run on Linux.

182 Evol. Intel. (2010) 3:171–186

123

correct compositions have been obtained in many

different ways. A valid composition was found in all

the runs.

– OWL-S TC V2.2–5: this composition is an split of

atomic processes. In all the runs, a valid composition

was obtained. Moreover, the execution time was always

the lower one (1). The number of atomic processes was

also, most of the times, the minimum.

– WSC 2008–1: this composition is very complex, as it

requires the sequence of 6 processes, three of them

composite processes. These composite processes are

constructed with split and splitJoin control structures

(this is one of the possible solutions to this

composition). In all the runs, a valid solution was

found. Results show a very low variability in the

execution time of the composite process. On average,

the execution time (6) is the same of the solution shown

in Fig. 7. The number of atomic processes is higher

than expected (10), as other valid solutions have been

found with more than 10 atomic services.

– WSC 2008–2: this is also a complex composition, with

three nested control structures: a sequence, an splitJoin,

and a sequence. The first sequence controls two

services. The first of them is a composite service of

type splitJoin of three services. Again, the first of them

is a composite process of type sequence over two

Fig. 7 Description of the web services compositions 1 and 2 used for testing on repositories from WSC 2008

Evol. Intel. (2010) 3:171–186 183

123

atomic processes. The composition algorithm was able

to find a valid solution in all the runs. Moreover, the

execution time of the composite process was very close

to the minimum one (3), and also the number of atomic

processes was close to the minimum (5).

– WSC 2008–5: this is the most complex composition of

all the tests and, also, the repository is the largest one

(1,090 services). One of the solutions to this compo-

sition (the one described in Fig. 8) uses three different

control structures (sequence, split, and splitJoin), some

Fig. 8 Description of the web service composition 5 used for testing on repositories from WSC 2008

184 Evol. Intel. (2010) 3:171–186

123

of them nested three times. There are a total of 9

control structures and 20 atomic processes. The solu-

tion is a sequence of seven processes. Five of them are

composite processes of type split and splitJoin. More-

over, some of these processes have other composite

processes nested. For example, the second splitJoin has

four processes, and the second one is a sequence of two

atomic processes. Of course, this composition cannot

be obtained with sequence-based compositions.

Although the complexity of the solution, the proposed

composition algorithm was always able to find a valid

solution. Moreover, the execution time was very low.

On the other hand, the number of atomic processes was,

on average, over the minimum one.

In summary, the performance of the algorithm is very

good. The tests have been selected to cover different types

of compositions, using several control structures. More-

over, the complexity of the tests is really high (three of

them come from the WSC 2008), with up to nine control

structures in a composition, control structures nested up to

three times, and more than twenty atomic services in some

of the obtained solutions. Although these complex tests, the

composition algorithm was always able to find a valid

solution: in the 80 runs the results were always valid. Also,

the execution time of the obtained solutions (runPath) was

the lowest (or close to the minimum), which reflects the

ability of the algorithm to exploit the different control

structures that it can manage. Finally, the number of atomic

processes of the solutions was, in most of the tests, close to

the minimum.

6 Conclusions

A genetic programming algorithm for web services com-

position has been presented. The algorithm is able to

compound services using different control structures,

generates compositions following a context-free grammar,

and manages explicitly the attributes updating. A full val-

idation has been done for eight different composition

problems coming from four different repositories (three of

them from the Web Service Challenge 2008) with 158,

558, 1,000, and 1,090 services, showing a very good per-

formance. In all the tests and runs a valid solution was

found, indicating that the algorithm is robust and reliable

for different repositories. Moreover, the execution times of

the obtained composite processes were also low, showing

the ability of the algorithm to exploit the available control

structures. Also, the search times of the evolutionary

algorithm are quite low, allowing to use our proposal on-

line.

Acknowledgments This work was supported by the Spanish Min-

istry of Science and Innovation under Grant TSI2007-65677-C02-02.

Manuel Mucientes is supported by the Ramón y Cajal program of the

Spanish Ministry of Science and Innovation.

References

1. Aiello M, van Benthem N, Khoury E (2008) Visualizing com-

positions of services from large repositories. In: Proceedings of

the fifth IEEE conference on enterprise computing, e-commerce

and e-services (EEE’08). IEEE Computer Society, Washington,

DC, pp 359–362.

2. Alamri A, Eid M, Saddik AE (2006) Classification of the state of

the art dynamic web services composition techniques. Int J Web

Grid Serv 2(2):148–166

3. Alonso G, Casati F, Kuno H, Machiraju V (2003) Web services.

Springer, Berlin

4. Anderson BB, Hansen JV, Lowry PB (2009) Creating automated

plans for semantic web applications through planning as model

checking. Expert Syst Appl 36(7):10595–10603

5. Aversano L, di Penta M, Taneja K (2006) A genetic programming

approach to support the design of service compositions. Int J

Comput Syst Sci Eng 4:247–254

6. Bansal A, Blake MB, Kona S, Bleul S, Weise T, Jaeger MC

(2008) WSC-08: continuing the web services challenge. In:

Proceedings of the 5th IEEE international conference on

Table 1 Average results (v� r) for the test examples

Example Search time (ms) In
root \ Iobjj j

Iobjj j
P Oobjj j

i
1

DOiþ1

Oobjj j
Fitness runPath #atomicProcess

OWL-S TC V2.2–1 749.00 ± 364.10 1.00 ± 0.00 1.00 ± 0.00 1.0000 ± 0.0000 1.00 ± 0.00 1.00 ± 0.00

OWL-S TC V2.2–2 484.50 ± 139.20 1.00 ± 0.00 1.00 ± 0.00 0.9750 ± 0.0000 2.00 ± 0.00 2.00 ± 0.00

OWL-S TC V2.2–3 473.60 ± 76.19 1.00 ± 0.00 1.00 ± 0.00 0.9750 ± 0.0000 2.00 ± 0.00 2.00 ± 0.00

OWL-S TC V2.2–4 3010.20 ± 422.91 1.00 ± 0.00 1.00 ± 0.00 0.9296 ± 0.0042 2.20 ± 0.40 5.70 ± 1.19

OWL-S TC V2.2–5 1098.30 ± 240.72 1.00 ± 0.00 1.00 ± 0.00 0.9654 ± 0.0019 1.00 ± 0.00 3.30 ± 0.46

WSC 2008–1 6919.70 ± 1612.99 1.00 ± 0.00 1.00 ± 0.00 0.9112 ± 0.0012 6.00 ± 1.26 15.8 ± 5.71

WSC 2008–2 11137.30 ± 3106.75 1.00 ± 0.00 1.00 ± 0.00 0.9233 ± 0.0023 3.50 ± 0.67 6.00 ± 0.89

WSC 2008–5 95390.20 ± 43521.30 1.00 ± 0.00 1.00 ± 0.00 0.9069 ± 0.0011 9.20 ± 2.96 49.90 ± 16.84

Evol. Intel. (2010) 3:171–186 185

123

enterprise computing, e-commerce and e-services (EEE’08).

IEEE, pp 351–354

7. Bertoli P, Pistore M, Traverso P (2010) Automated composition

of web services via planning in asynchronous domains. Artif

Intell 174(3–4):316–361

8. Blum AL, Furst ML (1997) Fast planning through planning graph

analysis. Artif Intell 90(1–2):281–300

9. Chang W-C, Wu C-S, Chang C (2005) Optimizing dynamic web

service component composition by using evolutionary algo-

rithms. In: Proceedings of the 2005 IEEE/WIC/ACM interna-

tional conference on web intelligence (WI’05). IEEE Computer

Society, Washington, DC, pp 708–711

10. Curbera F, Goland Y, Klein J, Leymann F, Roller D, Thatte S,

Weerawarana S (2002) Business process execution language for

web services, version 1.0, November 2002. Standards proposal by

BEA Systems, International Business Machines Corporation, and

Microsoft Corporation

11. Curbera Francisco, Nagy William A., Weerawana Sanjiva (2001)

Web Service: Why and How. In: Proceedings of the OOPSLA-

2001 workshop on object-oriented services. Tampa, Florida, USA

12. Dustdar S, Schreiner W (2005) A survey on web services com-

position. Int J Web Grid Serv 1(1):1–30

13. Hoffmann Jörg, BP, Pistore M (2007) Web service composition

as planning, revisited: in between background theories and initial

state uncertainty. In: Proceedings of the 22nd national conference

on artificial intelligence (AAAI’07). AAAI Press, pp 1013–1018

14. Klusch M, Gerber A (2006) Fast composition planning of owl-s

services and application. In: Proceedings of the European con-

ference on web services (ECOWS’06). IEEE Computer Society,

Washington, DC, pp 181–190

15. Kuster U, Konig-Ries B, Krug A (2008) Opossum—an online

portal to collect and share sws descriptions. In: Proceedings of the

2th IEEE international conference on semantic computing (ICSC

2008). IEEE Computer Society, Santa Clara, pp 480–481

16. Madhusudan T, Uttamsingh N (2006) A declarative approach to

composing web services in dynamic environments. Decis Support

Syst 41(2):325–357

17. Martin D, Burstein M, Hobbs J, Lassila O, McDermott D,

McIlraith S, Narayanan S, Paolucci M, Parsia B, Payne T, Sirin E,

Srinivasan N, Sycara K (2004) OWL-S: semantic markup for web

services. World Wide Web Consortium (W3C), November 2004.

Available at http://www.w3.org/Submission/OWL-S/

18. Nau D, Au T-C, Ilghami O, Kuter U, Murdock W, Wu D, Yaman

F (2003) SHOP2: an HTN planning system. J Artif Intell Res

20(4):379–404

19. Oh S-C, Lee D, Kumara SRT (2006) A comparative illustration

of ai planning-based web services composition. SIGecom Exch

5(5):1–10

20. Oh S-C, Lee D, Kumara SRT (2008) Effective web service

composition in diverse and large-scale service networks. IEEE

Trans Serv Comput 1(1):15–32

21. Pistore M, Marconi A, Bertoli P, Traverso P (2005) Automated

composition of web services by planning at the knowledge level.

In Proceedings of the 19th international joint conference on

artificial intelligence (IJCAI’05). Morgan Kaufmann Publishers

Inc, San Francisco, pp 1252–1259

22. Rao J, Küngas P, Matskin M (2006) Composition of semantic

web services using linear logic theorem proving. Inform Syst

31(4):340–360

23. Ren K, Liu X, Chen J, Xiao N, Song J, Zhang W (2008).

A QSQL-based efficient planning algorithm for fully-automated

service composition in dynamic service environments. In: Pro-

ceedings of the 2008 IEEE international conference on services

computing (SCC’08). IEEE Computer Society, Washington, DC,

pp 301–308

24. Russell SJ, Norvig P (2009) Artificial intelligence: a modern

approach. Prentice Hall, Englewood Cliffs

25. Sirin E, Parsia B, Wu D, Hendler J, Nau D (2004) Htn planning

for web service composition using shop2. J Web Semant

1(4):377–396

26. Vanrompay Y, Rigole P, Berbers Y (2008) Genetic algorithm-

based optimization of service composition and deployment. In:

Proceedings of the 3rd international workshop on services inte-

gration in pervasive environments (SIPE’08). ACM, New York,

pp 13–18

27. Wu Z, Gomadam K, Ranabahu A, Sheth AP, Miller JA (2007)

Automatic composition of semantic web services using process

and data mediation. In: Proceedings of the 9th international

conference on enterprise information systems (ICEIS’07). Fun-

chal, Portugal, pp 453–461

28. Xiangbing Z (2010) Semantics web service characteristic com-

position approach based on particle swarm optimization volume

56 of Lecture Notes in Electrical Engineering. Springer,

pp 279–287

29. Zheng X, Yan Y (2008) An efficient syntactic web service

composition algorithm based on the planning graph model. In:

Proceedings of the 2008 IEEE international conference on web

services (ICWS’08). IEEE Computer Society, Washington, DC,

pp 691–699

186 Evol. Intel. (2010) 3:171–186

123

http://www.w3.org/Submission/OWL-S/

	Composition of web services through genetic programming
	Abstract
	Introduction
	Problem description
	Related work
	Services sequence-based composition
	Automatic workflow composition

	Genetic programming for web services composition
	Context-free grammar
	Attributes updating
	An example

	Genetic programming-based algorithm
	Initialization
	Evaluation
	Selection
	Crossover
	Mutation
	Replacement
	Post-processing
	Local search
	Reinitialization

	Results
	Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

