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Abstract— A correct reconstruction of medical im-
ages in Positron Emission Tomography (PET) needs
a precise estimation of the position of the incidence
photons in the detector surface. The traditional
method based on Anger algorithm calculates the po-
sition as a polynomial of the intensities. However, it
fails to track the true position near the edges of the
detector. In this paper Takagi-Sugeno-Kang (TSK)
fuzzy rules are used in order to obtain gradual smooth
outputs for different situations with a consequent rep-
resented in a similar way as Anger does. The algo-
rithm that learns the TSK rules is based on the Itera-
tive Rule Learning approach. The learned knowledge
bases have been tested with a set of Monte Carlos
simulations of PET photon detection. Results show
a good performance of our proposal, which has been
compared with other approaches.
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I. Introduction

A correct reconstruction of medical images in
Positron Emission Tomography (PET) needs a pre-
cise estimation of the position of the incidence pho-
tons in the detector surface. Usually, the reconstruc-
tion of these images is very sensitive to inevitable
measurement errors. These errors could be reduced
increasing the resolution of the detectors. However,
this also increases the cost of the PET device. There-
fore, it is essential to have an estimation system as
reliable as possible, able to improve the detection
performance with the same hardware.
The most popular technique to predict the posi-

tion of photons on a PET detector is known as Anger
method. This method consists in a linear combina-
tion of the intensity distribution. The anger method
is quite accurate at the center of the detector, but
fails near the edges. Different algorithms have been
proposed to improve the position determination [4]:
squaring the calculation of Anger method, based on
the skewness of the light distribution and by means
of an iterative optimization algorithm for the solu-
tion of a regularized nonlinear least squares problem.
Also, neural networks based on multi-layer percep-
trons [10] and radial basis function network [1] have
been used in order to improve the estimation error.
Our proposal takes into account two premises:

high accuracy, but providing the expert with valu-

able and easy to extract information. Fuzzy rules
have the capability to obtain a smooth result inter-
polating the output of each fired rule in a gradual
way. Moreover, Takagi-Sugeno-Kang (TSK) fuzzy
rules [13], [12] have an adequate structure for the
requirements of the problem. In a TSK rule, the
output is obtained as a polynomial of the measured
the input variables. So, if the input variables verify
the antecedent part of the rule, the light distribu-
tion belongs to that class with a certain degree, and
the position of the photon can be estimated with the
polynomial in the consequent of the rule, in a similar
way as Anger does.

Learning of fuzzy knowledge bases through the use
of evolutionary algorithms has shown to be a power-
ful technique [2]. Evolutionary algorithms have two
main advantages over other learning methods in this
field: first, the rules of the knowledge base can be
coded in many different ways, due to the flexibility
in the representation of the solutions. On the other
hand, another important advantage is that we can
manage the tradeoff between interpretability and ac-
curacy of the learned rules through the use of differ-
ent algorithms.

The main contributions of the paper are: (i) the
proposed algorithm is able to learn TSK fuzzy rules
with high precision for regression problems improv-
ing the Iterative Rule Learning (IRL) approach; (ii)
the proposal is able to learn rules involving linguistic
labels with multiple granularity for regression; (iii)
the results on PET data shows a great performance
over other existing methods.

The paper is structured as follows: Sec. II ex-
plains in more detail the photons detection in PET,
while Sec. III describes the algorithm that has been
used to learn the TSK rules. Sec. IV presents the
results and, finally, Sec. V points out the conclu-
sions.

II. Detection of photons in PET

PET is a non-invasive diagnostic method of medi-
cal imaging which allows displaying metabolic activ-
ity in a slice of the body by means of detecting radi-
ation, emitted from a radio-isotope injected into the
body of the patient. A high-energy photon emitted
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Fig. 1. Detection of a photon.

from the body collides with the scintillation crystal,
in which it produces a shower of low-energy visible
photons. These photons are collected by a set of
photomultipliers coupled to the crystal, allowing to
reconstruct the incidence point from the evoked po-
tentials. Then, this information is converted into the
slice image by a reconstruction algorithm.

Detection of the high-energy photons in PET is
a crucial stage prior to image reconstruction. The
ability to precisely calculate the photon coordinates
from electric pulses invoked in the photomultipliers
implies high detection resolution and allows better
reconstruction accuracy.

The most common method for scintillation point
estimation is the Anger algorithm. In this method,
the scintillation point coordinates are computed ac-
cording to:

x =

N�

i,j=1

Q(i, j) · xi

y =

N�

i,j=1

Q(i, j) · yi

(1)

where Q is the matrix of the light distribution whose
elements Q(i, j) represent the number of detected
optical photons, (xi, yi), i, j = 1, . . . , N are the coor-
dinates of Q(i, j), and N×N is the number of pixels
within the detector. This method works well at the
center of the detector, where the light distribution
is entirely known. However, it fails to track the true
position near the edges of the detector.

Fig. 1 shows an example of detection of a pho-
ton in (15, 3) point. The image of the light intensi-
ties shows a truncation to the right of the photon :
only one column of intensities is used in order to dis-
place the coordinate estimation to the right against
6 columns that displace the coordinate estimation to
the left. Therefore, the estimation method defined
by Anger have wrong results in this situations.

III. Learning Algorithm

A. Evolutionary Learning of Knowledge Bases

According to [3], [6], evolutionary learning of
knowledge bases has different approaches to repre-
sent the solution to the problem: Pittsburgh, Michi-

gan, IRL [2], and GCCL.
In the IRL approach, the whole rule base is learned

by the evolutionary algorithm. After each sequence
of iterations, the best rule is selected and added to
the final rule base. The selected rule must be penal-
ized in order to induce niche formation in the search
space. A common way to penalize the obtained rules
is to delete the training examples that have been cov-
ered by the set of rules in the final rule base. The
final step of the IRL approach is to check whether
the obtained set of rules is a solution to the prob-
lem. In the case it is not, the process is repeated. A
weak point of this approach is that the cooperation
among rules is not taken into account when a rule is
evaluated.

Our proposal is based on IRL. The learning pro-
cess is divided in epochs (set of iterations), and at
the end of each epoch a new rule is obtained. The
following sections describe each of the stages of the
algorithm.

1: KBcur := ∅

2: repeat

3: it := 0
4: equalind := 0
5: Initialization
6: Evaluation
7: repeat

8: Selection
9: Crossover and Mutation
10: Evaluation
11: Replacement
12: if besti−1

individual = bestiindividual then

13: equalind := equalind + 1
14: else

15: equalind := 0
16: end if

17: it := it + 1
18: until (it < itmin ∨ equalind < itcheck) ∧

(it < itmax)
19: KBcur := KBcur ∪ bestind
20: uncovex := uncovex − covbestex

21: until uncovex = ∅

22: Rule Subset Selection

Fig. 2. IRL algorithm.
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B. Examples

The learning process is based on a set of training
examples obtained from photons detection. Each de-
tection generates a matrix Q of dimension N × N

that represents the distribution of light intensities.
Moreover, the simulation process gives the actual
photon coordinates. Using these data, the following
steps are performed in order to generate the exam-
ples for the evolutionary algorithm:
1. For each detection, two examples are generated:
one using the data from the columns in order to esti-
mate the X coordinate and the other using the data
from the rows for the Y coordinate.
2. First, the accumulated intensity for each column
(row) is calculated.
3. Then, the accumulated intensities are normalized
so that their sum is equal to 1 and the column (row)
of the higher intensity is labeled the reference ref .
4. The number of columns (rows) that are picked for
each example is n < N .
(a) The number of column (row) intensities se-
lected to the right of ref is defined as:

rightn =

�
n
2 if n

2 + ref ≤ N

N − ref otherwise
(2)

(b) On the other hand, the number of column (row)
intensities selected to the left of ref is defined as:

leftn = n− rightn (3)

5. Finally, the output coordinate is the deviation
of the photon detection coordinate from the center
point of ref .
So, in this paper, each example el is represented by
a tuple:

el = (q1, . . . , qn, o) (4)

where qi is the normalized intensity for the column
(row) i, n is the number of i-th columns (rows) and
o is the relative output.

C. Individual Representation

Each individual of the evolutionary algorithm rep-
resents a TSK fuzzy rule. Therefore, each individual
is divided into two parts:
• The antecedent, which consists in n linguistic la-
bels representing the n intensities of the examples
(Fq).
• The consequent, which is formed by the weights p
of the polynomial that represents the output of the
TSK rule:

p1q1 + p2q2 + . . .+ pnqn + p0 (5)

The linguistic labels of the antecedent (Fq) are
defined using a multiple granularity approach. The
universe of discourse of a variable is divided into
a different number of labels for each granularity.
Specifically, a granularity givar divides the vari-
able var in i uniformly spaced labels, i.e., Ai

var =
{Ai,1

var, ..., A
i,i
var}. Fig. 3 shows a partitioning up to

granularity five. On the other hand, the p weights
of the consequent are defined as real numbers.

�� ��

�� ��

Fig. 3. Multiple granularity approach.

D. Evaluation

The fitness of an individual is calculated as fol-
lows. First, the examples that are not covered by
the final knowledge base (line 19, fig. 2) are defined
as:

uncovex = {el : DOFKBcur
(el) < DOFmin} (6)

i.e. the set of examples that are covered with a de-
gree of fulfillment below DOFmin by the current fi-
nal knowledge base. Then, uncovex is divided into
two groups: the set of examples that are covered by
individual j, defined as:

covjex = {elu : DOFRj
(elu) > DOFmin}, (7)

where DOFRj
(elu) is the degree of fulfillment of e

l
u

for rule j, elu is an example that fulfills e
l ∈ uncovex;

and the set of examples that are not covered by in-
dividual j:

uncovjex = {elu : DOFRj
(elu) < DOFmin}, (8)

The fitness of an individual in the population is
calculated as the combination of two elements. On
one hand, the accuracy with which the individual
covers the examples, called confidence. On the other
hand, the ability of generalization of the rule, called
support. The confidence can be defined as:

confidence =
1

1 +
�

l
errorl

j
·DOFRj

(el)
�

l
DOFRj

(elu)

(9)

where errorlj is calculated as:

errorlj = (ol − Cl
Rj
)2 (10)

where ol is the value of the output of example el

and Cl
Rj

is the output of the rule codified in the in-

dividual j. Note that for confidence, the errorlj is
calculated for all the examples in the training set,
giving a measure of the global error for all the ex-
amples covered by the individual j.
Support is calculated as:

support =

�
1 if

#covj
ex

#uncovex
≥ covref

exp (
#covj

ex

#uncovex
− covref ) otherwise

(11)
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where
#covj

ex

#uncovex
is the percentage of examples in

uncovex that are covered by the individual j and
covref is a parameter that indicates the percentage
of reference.

Finally, we define fitness as a linear combination
of both values:

fitness = αf · confidence + (1 − αf ) · support (12)

which represents the strength of an individual over
the uncovered examples. αf ∈ [0, 1] is a parame-
ter that codifies the trade-off between accuracy and
generalization of the learning algorithm.

E. Initialization

An individual is generated for each example in the
training set. A hill-climbing approach is used in or-
der to initialize the antecedent. On the other hand,
for the consequent part a Ridge regression [5] is per-
formed in order to obtain the weights. Each individ-
ual is generated using the following steps:
1. The Fq linguistic labels are initialized with gran-
ularity g1q and confidencebest
2. n neighbor antecedents are generated, increment-
ing the granularity of one of the linguistic labels (a
different one for each neighbor). An step is per-
formed for each antecedent incrementing the granu-
larity. This is, n different antecedents are generated:
(ant1, . . . , antn)
(a) For each new antecedent anti, select the exam-

ples el that fulfill DOFanti(e
l) >= DOFmin

(b) These examples are used for the Ridge regres-
sion in order to obtain the weights of the consequent.
(c) The confidence is calculated using the Ridge

weights.
3. The individual with best confidence is selected
as confidencesel.
4. If confidencesel > confidencebest then go to step
2, else finish initialization and return the best indi-
vidual.

F. Crossover

The matching of the pairs of individuals that are
going to be crossed is implemented following a prob-
ability distribution defined as:

Pclose(α,β) =
1

1 + Csim

M

(13)

where Csim represents the similarity of the outputs
for the examples covered for α or β:

Csim (α,β) =
�

l

|Cl
α − Cl

β | : DOFRα
(elu) ≥ DOFmin

or DOFRβ
(elu) ≥ DOFmin

(14)
and M is the number of examples that fulfill
DOFRα

(elu) ≥ DOFmin or DOFRβ
(elu) ≥ DOFmin

With this probability distribution, the algorithm
selects with higher probability mates that have simi-
lar consequents. The objective is to extract informa-
tion on which propositions of the antecedent parts

of the rules are important, and which are not. The
crossover operator generates two offspring:

offspring1 = crossover(indα, indβ)

offspring2 = crossover(indα, indβ) (15)

Crossover performs two different operations: an-
tecedent crossover, and consequent crossover. For
the antecedent crossover, the following steps are per-
formed:
1. First, select randomly an antecedent F sel

q .
2. Then, an operation must be picked depending on
the existence of that antecedent in both individuals
(table I):
• If the antecedent is not taken into account (i.e.,

the granularity of F sel
q is g1q) in the first individ-

ual but it exists (granularity differs from g1q) in the
second one, then the proposition of the second indi-
vidual is copied to the first one, as this proposition
could be meaningful.
• If the situation is the opposite to the previous

one, then the proposition of the first individual is
deleted, as it might be not important.
• If the antecedent exists in both individuals, then

both propositions are combined in order to obtain a
proposition that generalizes both antecedents.

TABLE I

Crossover operations

Ind. 1 Ind. 2 Action

no yes add antecedent in individual 1
yes no delete antecedent
yes yes combine antecedents

In this last case, the combination of antecedents
is done taking into account the degree of similarity
between them (Fig. 4), where similarity [11] is cal-
culated as:

similarity(Fφ, Fψ) = 1−

�
x |µφ(x) − µψ(x)|

card(X)
(16)

where Fφ and Fψ are the labels to compare and X

is a set of finite points x over support(φ ∪ ψ).
Only when both similarities are partial, the an-

tecedents are merged:
• If the similarity is 0, then the antecedents corre-
spond to different situations. This means that the
proposition of the first individual might not contain
meaningful information and it could be deleted to
generalize the rule.
• If the similarity is total, then, in order to obtain a
new individual with different antecedents, the propo-
sition is eliminated.
• Finally, if the similarity is partial, then the propo-
sitions are merged in order to obtain a new one that
combines the information provided by the two origi-
nal propositions. Thus, the individual is generalized.
The merge action is defined as the process of finding
the label with the highest possible granularity that
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has some similarity with the labels of both original
propositions.

Fig. 4. Different possibilities of similarity in the crossover

After the crossover of the antecedents, the conse-
quent is also changed. Ridge regression is performed
over the covered examples (this set has changed due
to mutation), and PCBLX is executed using Ridge
and the previous consequent.
When the antecedent crossover is not performed,

the consequents are selected to be crossed. The
crossover operator for the consequents is the parent-
centric BLX (PCBLX) [7], [9]. Given two real-
coded chromosomes, X = (x1 . . . xg) and Y =
(y1 . . . yg) (xi, yi ∈ [ai, bi], i = 1, . . . , g), that are go-
ing to be crossed, the following offspring are gener-
ated (Fig. 5):
• Z = (z1 . . . zg), where zi is randomly selected from
the interval [lzi , u

z
i ], with l

z
i = max{a, xi − I}, uzi =

min{bi, xi + I}, and Ii = |xi − yi| · pcblxα, pcblxα ∈

[0, 1].
• V = (v1 . . . vg), where vi is randomly selected from
the interval [lvi , u

v
i ], with l

v
i = max{a, yi − I}, uvi =

min{bi, yi + I}, and Ii = |xi − yi| · pcblxα, pcblxα ∈

[0, 1]

Fig. 5. PCBLX operator for real numbers.

G. Mutation

When crossover is not performed, both individu-
als are mutated. Mutation implements two different
strategies: generalize or specialize a rule. The higher
the value of the confidence (Eq. 9), the higher the
probability to generalize the rule by mutation. This
occurs with rules that cover their examples with high
quality and that could be modified to cover other ex-
amples. On the contrary, when the confidence of the
individual is low, this means that it is covering some
of its examples with a low performance. In order
to improve the rule, some of the examples that are
currently covered should be discarded to get a more
specific rule.

For generalization, the following steps are per-
formed:
1. Select an example esel ∈ uncovjex (Eq. 8). The
example is selected with a probability distribution
given by the error calculated as:

P (CRj
|elu) = exp(−errorlj) (17)

The higher the similarity between the output of the
example and the consequent of rule j, the higher the
probability to be selected.
2. The individual is modified in order to cover esel.
Therefore, all the propositions with µprop

�
esel

�
<

DOFmin are selected for mutation. These are the
propositions that are not covering the example.
3. The selected propositions are generalized, choos-
ing the most similar label in the adjacent partition
with lower granularity. The process is repeated until
µprop

�
esel

�
> DOFmin.

For specialization, the process is equivalent:
1. Select an example esel ∈ covjex (Eq. 7). The ex-
ample is selected with a probability distribution that
is inversely proportional to P

�
CRj

|elu
�
(Eq. 17).

The higher the similarity between the output of the
example and the consequent of rule j, the lower the
probability of being selected.
2. Only one proposition needs to be modified to spe-
cialize, and it is selected randomly.
3. For the selected proposition, specialization is
done by choosing the most similar label in the
adjacent partition with higher granularity until
µprop

�
esel

�
< DOFmin.

�������������� ��������������

Fig. 6. Generalization/Specialization examples

After the mutation of the antecedents the conse-
quent is also mutated. Ridge regression is performed
over the covered examples (this set has changed due
to mutation), and PCBLX is executed using Ridge
and the previous consequent.

H. Selection and replacement

Selection has been implemented with a binary
tournament selection. On the other hand, replace-
ment follows an steady-state approach. The new in-
dividuals and those of the previous population are
joined, and the best popmaxSize individuals are se-
lected for the next population.

I. Epoch loop

An epoch is a set of iterations at the end of which
a new rule is added to KBcur. The stopping cri-
terion of each epoch (inner loop in fig. 2) is the
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number of iterations, but this limit varies accord-
ing to the following criteria: once the number of it-
erations reaches itmin, the algorithm stops if there
are itcheck consecutive iterations with no change in
bestind. If the number of iterations reaches itmax it-
erations, then the algorithm stops regardless of the
previous condition.

When the epoch ends, rule bestind is added to
KBcur. Moreover, the examples that are covered by
bestind (according with Eq. 7) are marked as cov-
ered by the algorithm (line 20, fig. 2). Finally, the
algorithm stops when either no uncovered examples
remain or no example is covered by the individual
learned in the last epoch.

IV. Results

The proposed algorithm has been tested using
8,599 examples generated by Monte Carlo simula-
tion of photons detection. The examples have been
divided into different sets, corresponding to each of
the combinations of rightn and leftn, as shown in
table II. For each one, a fuzzy knowledge base was
learned. When an example is not covered by the
corresponding knowledge base, Anger method is per-
formed instead. Table II shows the size of the exam-
ples for each combination.

TABLE II

Size of the datasets

leftn rightn #examples
3 3 4623
4 2 4225
5 1 3986
6 0 4359

Figure 7 shows a rule learned by the proposed al-
gorithm for rightn = leftn = 3. An example that
fits with the situation indicated by the antecedent
part is showed in figure 8. In order to obtain the in-
put data, the steps of section III-B are followed. The
Acc column indicates the accumulated intensity for
each row, while Norm shows the normalized values
so that their sum is equal to 1. In this case, the fifth
row is labeled as the reference (ref) and the normal-
ized intensities of the three preceding and following
rows are used as the input data.

The consequent of the rule is the deviation of the
photon detection coordinate from the center point
of ref (2.5). To calculate it, the rows close to ref

(q3 and q4) have the largest weights, while for the
farthest ones the weight is close to zero. Moreover,
the sign of the weights indicates to which side the
photon detection is deviated from the center point.
Positive values suggest that the photon detection co-
ordinate is below the reference, while negative values
indicate that it is over the reference. For this exam-
ple, the rule is fired with a degree of 0.204 and the
output deviation is 2.811, resulting in a value of the

y coordinate of the photon detection equal to 5.811
(2.5 + 2.811).

IF
q1 is A

1,1
q1

and q2 is A
2,1
q2

and q3 is A
4,1
q3

and q4 is A
3,2
q4

and q5 is A
4,1
q5

and q6 is A
1,1
q6

THEN
o = 0 · q1 − 4.908 · q2 − 10.427 · q3

+9.241 · q4 + 7.587 · q5 + 0 · q6 − 0.003

Fig. 7. A typical rule learned by the algorithm.

Fig. 8. An example that fires the in rule Fig. 7

The results shown in table III have been obtained
as an average of a cross-validation approach with
5 folds. For each of each of the combinations of
rightn and leftn, three values are represented: χ̄,
σcv and σ̄run. χ̄ is the arithmetic mean over 25 exe-
cutions (five-fold cross-validation with 5 runs). σcv is
the standard deviation over the arithmetic means of
each data partition, and represents the robustness of
the algorithm to obtain similar results regardless the
data partition. Finally σ̄run is the arithmetic mean
of the standard deviations over the 5 runs for all
the data partitions, which reflects the robustness of
the probabilistic algorithm to obtain similar results
regardless the followed pseudo-random sequence.
The values that have been used for the parameters

of the evolutionary algorithm are: n = 6, pcblxα =
0.1, DOFmin = 0.0001, αf = 0.9, popmaxSize = 100,
itmin = 50, itcheck = 10, itmax = 100, probcross =
0.8 and probant = 0.75 (probability to cross the an-
tecedent part instead of the consequent one).
The first column in table III indicates the dataset.

The last four columns show the results obtained by
the following algorithms:
• IRL: the proposal described in this paper.
• IRL+ILS: the proposal described in this paper
with a post-processing stage for the selection of rules
to improve the collaboration between them based on
the Iterated Local Search (ILS) algorithm[8].
• Anger: the traditional method for estimation of
coordinates in PET.
• NN: a Multi-layer Perceptron neural network with
six neurons in the hidden layer.
Moreover, table IV shows the number of rules ob-

tained by our proposal for the different datasets.
The best results on test for each of the datasets have
been highlighted in bold face (table III). The Anger
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TABLE III

Results of the different algorithms for several datasets

IRL IRL+ILS Anger NN
3-3 Training X 0.808 0.801 0.882 0.708

cv 0.095 0.099 - 0.130
run 0.095 0.099 - 0.131

Test X 0.824 0.825 - 1.156
cv8 0.392 0.391 - 0.705
run 0.392 0.392 - 0.903

4-2 Training X 0.406 0.394 0.984 0.336
cv 0.031 0.030 - 0.016
run 0.032 0.030 - 0.020

Test X 0.428 0.417 - 0.690
cv 0.140 0.140 - 0.518
run 0.140 0.140 - 0.566

5-1 Training X 0.563 0.529 3.734 0.466
cv 0.063 0.050 - 0.031
run 0.064 0.051 - 0.032

Test X 0.588 0.542 - 0.900
cv 0.165 0.187 - 0.549
run 0.166 0.187 - 0.670

6-0 Training X 1.578 1.545 16.184 0.561
cv 0.046 0.051 - 0.033
run 0.052 0.059 - 0.033

Test X 1.672 1.626 - 0.649

cv 0.211 0.226 - 0.188
run 0.214 0.230 - 0.204

method shows a good performance on datasets 3-
3 and 4-2. However, as the truncation degree in-
creases, its performance drastically diminishes. This
is especially true for dataset 6-0, where the error is
of more than 16mm on average.

The best results in three of the four datasets are
obtained by our proposal (IRL+ILS), although in
the first dataset IRL without selection obtains an
slightly better performance. The neural network is
only competitive for the most complex dataset (6-
0), where it obtains the best result. However, in the
other datasets the performance is not adequate. In
summary, our proposal shows a good performance
and consistent results over the different datasets.

V. Conclusion

An algorithm, based on an improved version of
the IRL approach to learn fuzzy rules, has been pre-
sented. The algorithm has been applied to learn
a knowledge base for the estimation of the photon
position emission in PET. Our proposal uses TSK
fuzzy rules for regression, and the learning process
involves linguistic labels with multiple granularity.
The algorithm has been tested with several simula-
tion photon captures showing a good performance in
comparison with the standard technique in the field
of PET.

TABLE IV

Size of the learned rule bases

IRL IRL+ILS
3-3 X 32.3 26.2

cv 10.1 11.4
run 18.9 19.6

4-2 X 8.2 2.4
cv 1.3 0.9
run 2.3 1.6

5-1 X 13.8 7.3
cv 1.8 2.6
run 3.5 3.6

6-0 X 18.2 14.6
cv 4.8 3.4
run 5.1 4.6

Acknowledgment

This work was supported by the Spanish Ministry
of Science and Innovation under grants TIN2008-
00040, TIN2011-22935 and TIN2011-29827-C02-02.
I. Rodriguez-Fdez is supported by the Spanish Min-
istry of Science and Innovation, under the FPU
national plan. M. Mucientes is supported by the
Ramón y Cajal program of the Spanish Ministry of
Science and Innovation.



258 Photons detection in Positron Emission Tomography through Iterative Rule. . .

References

[1] A.M. Bronstein, M.M. Bronstein, M. Zibulevsky, and
Y.Y. Zeevi. Optimal nonlinear line-of-flight estimation in
positron emission tomography. Nuclear Science, IEEE
Transactions on, 50(3):421–426, 2003.

[2] O. Cordón and F. Herrera. Hybridizing genetic algo-
rithms with sharing scheme and evolution strategies for
designing approximate fuzzy rule-based systems. Fuzzy
sets and systems, 118:235–255, 2001.

[3] O. Cordón, F. Herrera, F. Hoffmann, and L. Magdalena.
Genetic fuzzy systems: evolutionary tuning and learning
of fuzzy knowledge bases, volume 19 of Advances in Fuzzy
Systems - Applications and Theory. World Scientific,
2001.

[4] A. Cornelio, F. Gasperini, S.L. Meo, N. Lanconelli,
S. Moehrs, S. Marcatili, MG Bisogni, and A.D. Guerra.
Comparison of different reconstruction methods for pla-
nar images in small gamma cameras. Journal of Instru-
mentation, 6:C01030, 2011.

[5] T. Hastie, R. Tibshirani, and J.H. Friedman. The el-
ements of statistical learning: data mining, inference,
and prediction. Springer Verlag, 2009.

[6] F. Herrera. Genetic fuzzy systems: Taxonomy, current
research trends and prospects. Evolutionary Intelligence,
1:27–46, 2008.

[7] F. Herrera, M. Lozano, and A.M. Sánchez. A taxonomy
for the crossover operator for real-coded genetic algo-
rithms: An experimental study. International Journal
of Intelligent Systems, 18:309–338, 2003.

[8] H.R. Lourenço, O.C. Martin, and T. Stützle. Handbook
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