
Iterative Rule Learning of Quantified Fuzzy Rules
for Control in Mobile Robotics

Ismael Rodrı́guez-Fdez, Manuel Mucientes, Alberto Bugarı́n
Dep. Electronics and Computer Science
University of Santiago de Compostela

{ismael.rodriguez, manuel.mucientes, alberto.bugarin.diz} @usc.es

Abstract—Learning controllers in mobile robotics usually re-
quires expert knowledge to define the input variables. However,
these definitions could be obtained within the algorithm that
generates the controller. This cannot be done using conventional
fuzzy propositions, as the expressiveness that is necessary to
summarize tens or hundreds of input variables in a proposition
is high. In this paper the Quantified Fuzzy Rules (QFRs) model
has been used to transform low-level input variables into high-
level input variables, which are more appropriate inputs to learn
a controller. The algorithm that learns QFRs is based on the
Iterative Rule Learning approach. The algorithm has been tested
learning a controller in mobile robotics and using several complex
simulated environments. Results show a good performance of
our proposal, which has been compared with another three
approaches.

Index Terms—mobile robotics, Quantified Fuzzy Rules, Itera-
tive Rule Learning.

I. INTRODUCTION

The selection of the set of actions that a mobile robot must
take in order to complete a prefixed task, depends not only on
its state, but also on its situation in the environment. Thus, an
augmented state, which comprises both the state of the robot
and the description of the environment, must be considered in
order to select the most appropriate action. Data describing the
environment is acquired with the sensors of the robot. These
data must be transformed in order to be used by the control
system that implements the task. This mapping between the
augmented state of the robot (including the sensors data) and
the actions depends on the task.

This problem is usually solved with the translation of the
sensors data (or low-level input variables) into high-level data,
which includes all the information that is relevant to solve the
task. This translation of data is done using expert knowledge.
Our proposal in this paper is to present a method for learning
a controller starting from the low-level input variables (sensors
raw data), and without using expert knowledge in the transfor-
mation of the variables. This means that the mapping between
low and high-level input variables is done automatically during
the learning phase of the controller.

This kind of learning requires a fuzzy rules model that
is able to represent information from sets of low-level input
variables. This information is not just an average value, a max-
imum or a minimum value. More expressive and meaningful
information is required, i.e., the propositions must summarize
data using expressions like “most of the variables in the set

take a high value”. These propositions are referred to as
Quantified Fuzzy Propositions (QFPs) [1].

The learning of knowledge bases of Quantified Fuzzy Rules
(QFRs) requires the use of an evolutionary algorithm with
the ability to cope with individuals with different structures
defined through a context-free grammar. The reason is that
a fuzzy rule can contain both conventional and quantified
propositions (with different structures). Moreover, grouping
low-level variables into high-level input variables makes the
number of propositions in the antecedent of the rules very
variable. Therefore, genetic programming, where each chro-
mosome of the population is represented as a tree of variable
length, is the most appropriate choice.

In this paper we propose a genetic based approach to learn
Quantified Fuzzy Rules (QFRs), defined as fuzzy rules of
variable structure involving QFPs. The algorithm is based on
the genetic programming paradigm and has been designed
to solve regression problems in mobile robotics having as
input variables the state of the robot and the sensors data, but
without using expert knowledge for transforming these data.
The algorithm is based on the Iterative Rule Learning (IRL)
approach.

The main contributions of the paper are: (i) the proposed
algorithm is able to learn with the state of the robot and
the sensors data, without any preprocessing; (ii) the algorithm
uses QFPs, a model able to represent information in a more
expressive way. Furthermore, the proposal presented in this
paper is able to learn rules involving linguistic labels with
multiple granularity. On the contrary, previous approaches [2]
were based on the Genetic Cooperative-Competitive Learning
(GCCL) approach, and the rules involved approximative la-
bels.

The paper is structured as follows: Sec. II presents the QFRs
model and its advantages in mobile robotics, while Sec. III
describes the algorithm that has been used to learn the QFRs.
Sec. IV presents some results and, finally, Sec. V points out
the conclusions.

II. QUANTIFIED FUZZY RULES (QFRS)

A. Motivation for Mobile Robotics

Learning of a controller in mobile robotics requires the
definition of the input variables. These variables usually need
to be obtained through a preprocessing of the sensors data. For
example, in [3], [4] two successful approaches to learn fuzzy

978-1-61284-048-2/11/$26.00 ©2011 IEEE 111

rules for the control of a robot in two different tasks were
described. In both cases, the learned rules were conventional
fuzzy rules and all the input variables were defined by a
human expert. For the wall following task these variables were
right distance, left distance, orientation, and velocity. For the
moving object tracking task the variables were distance to the
object, deviation, difference in velocity with the object and
difference in angle.

In general, two categories can be established for the input
variables:

∙ High-level input variables: variables that provide, by
themselves, information that is relevant and meaningful
to the expert for modeling the system (e.g. the linear
velocity of the robot or the right-hand distance from the
robot to a wall).

∙ Low-level input variables: variables for which their in-
dividual values do not contribute to model the system.
Their importance stems from the analysis of sets of these
variables (e.g. the distance measured by a single beam of
a laser range finder).

However, the values of a group of low level variables can
provide valuable and meaningful information. For example,
the “frontal sector distance” of a laser range finder is a high-
level variable made up of a set of distances of single beams
(low-level variables). Within this context Quantified Fuzzy
Propositions (QFPs) such as “some of the distances of the
frontal sector are low” are useful for representing relevant
knowledge for the experts and therefore for performing intelli-
gent control. Modeling using QFPs as in this example demands
the definition of several elements:

∙ Some: how many distances of the frontal sector must be
low?

∙ frontal sector: which beams belong to the frontal sector?
∙ low: what is the actual semantics of low?
This example clearly sets out the need to use propositions

different from the conventional ones. In this paper QFPs (as
“X is A in Q of S”) are used for representing knowledge about
high-level variables that are defined as the grouping of low-
level variables. Conventional fuzzy propositions (“X is A”)
are used to represent other high-level variables, non related to
low-level ones.

B. QFRs Model

An example of QFR is shown in Fig. 1, and involves both
QFPs (Eq. 1) and conventional ones (Eq. 2):

IF 𝑑 (ℎ) is𝐻𝐼𝐺𝐻 in𝑚𝑜𝑠𝑡 of 𝐹 1
sector and (1)

. . .

velocity is 𝐹vel (2)

THEN linear velocity is 𝐹lv and angular velocity is 𝐹av

Fig. 1. A typical QFR to model the behavior of a mobile robot.

The general expression for QFPs in our case is:

𝑑 (ℎ) is 𝐹 𝑖
𝑑 in𝑄𝑖 of 𝐹 𝑖

sector (3)

where, for each 𝑖=1,...,𝑔𝑚𝑎𝑥
𝑏 (𝑔𝑚𝑎𝑥

𝑏 being the maximum pos-
sible number of sectors of distances):

∙ 𝑑 (ℎ) is the signal. In this particular case, it represents
the distance measured by beam ℎ.

∙ 𝐹 𝑖
𝑑 is a linguistic value for variable 𝑑 (ℎ).

∙ 𝑄𝑖 is a (spatial, defined in the laser beam domain) fuzzy
quantifier.

∙ 𝐹 𝑖
sector is a fuzzy set in the laser beam domain (e.g., the

“frontal sector”).

Evaluation of the Degree of Fulfillment (𝐷𝑂𝐹) for Eq. 3 is
carried out using Zadeh’s quantification model for proportional
quantifiers (such as “most of”, “part of”, ...) [5], that allows
to consider non-persistence, partial persistence and total per-
sistence situations for event “𝑑 (ℎ) is 𝐹 𝑖

𝑑” in the range of laser
beams (spatial interval 𝐹 𝑖

sector). This is a relevant feature of
this model, since it allows to consider partial, single or total
fulfillment of an event within the laser beams set.

Automatic learning of QFRs for this application (Fig. 1)
demands an algorithm with the ability to represent rules with
different structures, as the number of analyzed sectors of
distances, and therefore the number of QFPs per rule (Fig. 1)
can change among rules. Moreover, the number of elements
involved in the definition of a proposition is higher in QFP
than in conventional propositions (3 vs. 1).

III. QFRS LEARNING ALGORITHM FOR ROBOTICS

A. Evolutionary Learning of Knowledge Bases

According to [6], [7], evolutionary learning of knowledge
bases has different approaches to represent the solution to
the problem: Pittsburgh, Michigan, IRL [8], and GCCL [9].
We focus the discussion on those approaches for which an
individual represents a rule, discarding the Michigan approach
as it includes reinforcement learning techniques in order to
obtain the fitness. Therefore, we analyze the IRL and GCCL
approaches.

In the IRL approach, a single rule (and not the whole rule
base) is learned by the evolutionary algorithm. After each
sequence of iterations, the best rule is selected and added to the
final rule base. The selected rule must be penalized in order to
induce niche formation in the search space. A common way to
penalize the obtained rules is to delete the training examples
that have been covered by the set of rules in the final rule base.
The final step of the IRL approach is to check whether the
obtained set of rules is a solution to the problem. In the case
it is not, the process is repeated. A weak point of this approach
is that the cooperation among rules is not taken into account
when a rule is evaluated. For example, a new rule could be
added to the final rule base, deteriorating the behavior of the
rule base over a set of examples that were already covered.
The cooperation among rules can be improved with a posterior
selection algorithm.

In the GCCL approach rules evolve together but compet-
ing among them to obtain the higher fitness. For this type

112

of algorithm it is fundamental to include a mechanism to
maintain the diversity of the population (niche induction). The
mechanism must warrant that individuals of the same niche
compete among themselves, but also has to avoid deleting
those weak individuals that occupy a niche not covered by
other individuals of the population. This can be usually done
using token competition. Although this approach works well
for classification problems [1], the same does not occur for
regression problems [2]. The main drawback is the balance
between cooperation and competition, which is difficult to
adjust in regression problems. It is frequent that an individual
tries to capture examples seized by other individual, improving
the performance on many of them, but decreasing the accuracy
over a few ones. In the subsequent iterations, new and more
specific individuals replace the rule that was weakened. As
a result, the individuals improve their fitness, but the perfor-
mance of the knowledge base does not increase. In particular,
for mobile robotics, the obtained knowledge bases over-fit the
training data due to a polarization effect of the rule base: a
few very general rules and many very specific rules. Moreover,
many times, the errors of the individual rules compensate each
other generating a good output of the rule base but, of course,
only in the training phase.

Our proposal, called IQFRL (Iterative Quantified Fuzzy
Rule Learning, fig. 2), is based on IRL. The learning process
is divided in epochs (set of iterations), and at the end of each
epoch a new rule is obtained. The following sections describe
each of the stages of the algorithm.

1: KBcur := ∅

2: repeat
3: 𝑖𝑡 := 0
4: 𝑒𝑞𝑢𝑎𝑙𝑖𝑛𝑑 := 0
5: Initialization
6: Evaluation
7: repeat
8: Selection
9: Crossover and Mutation

10: Evaluation
11: Replacement
12: if 𝑏𝑒𝑠𝑡𝑖−1

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = 𝑏𝑒𝑠𝑡
𝑖
𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 then

13: 𝑒𝑞𝑢𝑎𝑙𝑖𝑛𝑑 := 𝑒𝑞𝑢𝑎𝑙𝑖𝑛𝑑 + 1
14: else
15: 𝑒𝑞𝑢𝑎𝑙𝑖𝑛𝑑 := 0
16: end if
17: 𝑖𝑡 := 𝑖𝑡+ 1
18: until (𝑖𝑡 < 𝑖𝑡𝑚𝑖𝑛 ∨ 𝑒𝑞𝑢𝑎𝑙𝑖𝑛𝑑 < 𝑖𝑡𝑐ℎ𝑒𝑐𝑘) ∧ (𝑖𝑡 < 𝑖𝑡𝑚𝑎𝑥)
19: KBcur := KBcur ∪ 𝑏𝑒𝑠𝑡𝑖𝑛𝑑
20: 𝑢𝑛𝑐𝑜𝑣𝑒𝑥 := 𝑢𝑛𝑐𝑜𝑣𝑒𝑥 − 𝑐𝑜𝑣𝑒𝑥
21: until 𝑢𝑛𝑐𝑜𝑣𝑒𝑥 = ∅

Fig. 2. IQFRL algorithm.

B. Examples and Grammar

The learning process is based on a set of training examples.
In mobile robotics, each example can be composed of some

variables that define the state of the robot (position, orienta-
tion, linear and angular velocity, etc.), and the data measured
by the sensors. If the robot is equipped with laser range finders,
the sensors data is a vector of distances. A laser range finder
provides the distances to the closest obstacle in each direction
with a given angular resolution (number of degrees between
two consecutive beams). In this paper, each example 𝑒𝑙 is
represented by a tuple:

𝑒𝑙 = (𝑑 (1) , . . . , 𝑑 (𝑁𝑏) , velocity, vlin, vang) (4)

where 𝑑 (ℎ) is the distance measured by beam ℎ, 𝑁𝑏 is the
number of beams, velocity is the measured linear velocity of
the robot, and vlin and vang are the output variables (velocity
control commands for the linear and angular velocities).

The structure of the individuals of the population can be
very different among them: some propositions are conventional
and others are QFPs, and the number of inputs is vari-
able. Therefore, genetic programming is the most appropriate
approach, as each individual is a tree of variable size. In
order to generate valid individuals of the population, and to
produce right structures for the individuals after crossover and
mutation, some constraints have to be added. With a context-
free grammar all the valid structures of a tree (genotype) in the
population can be defined in a compact form. A context-free
grammar is a quadruple (V, Σ, P, S), where V is a finite set
of variables, Σ is a finite set of terminal symbols, P is a finite
set of rules or productions, and S is an element of V called
the start variable.

The grammar is described in Fig. 3. The first item enumer-
ates the variables, then the terminal symbols, in third place
the start variable is defined, and finally the rules for each
variable are enumerated. When a variable has more than one
rule, rules are separated by symbol ∣. Fig. 4 represents a
typical chromosome generated with this context-free grammar.
Terminal symbols (leafs of the tree) are represented by ellipses,
and variables are shown as rectangles. There are two different
types of antecedents:

∙ The sector antecedent. Consecutive beams are grouped
in sectors in order to generate more general (high-level)
variables (frontal distance, right distance, etc.). This type
of antecedent is defined by the terminal symbols 𝐹𝑑, 𝐹𝑏,
𝑄, that are the linguistic labels for the measured distances
(𝐻𝐼𝐺𝐻 in Fig. 1, prop. 1), the definition of the sector,
i.e., which beams belong to the sector (𝐹 1

sector in Fig.
1, prop. 1) and the quantifier (𝑚𝑜𝑠𝑡 in Fig. 1, prop. 1)
respectively.

∙ The measured linear velocity of the antecedent is defined
by the 𝐹𝑣 linguistic label.

Finally, 𝐹𝑙𝑣 and 𝐹𝑎𝑣 are the linguistic labels of the linear
and angular velocity control commands respectively, which are
the consequents of the rule.

The linguistic labels of the antecedent (𝐹𝑣, 𝐹𝑑, 𝐹𝑏) are
defined using a multiple granularity approach. The universe
of discourse of a variable is divided into a different number
of labels for each granularity. Specifically, a granularity 𝑔𝑖𝑣𝑎𝑟

113

∙ V = { rule, antecedent, consequent, sector }
∙ Σ = { 𝐹𝑙𝑣 , 𝐹𝑎𝑣 , 𝐹𝑣 , 𝐹𝑑, 𝐹𝑏, 𝑄 }
∙ 𝑆 = rule
∙ P:

– rule −→ antecedent consequent
– antecedent −→ sector 𝐹𝑣 ∣ sector
– consequent −→ 𝐹𝑙𝑣 𝐹𝑎𝑣

– sector −→ 𝐹𝑑 𝑄 𝐹𝑏 sector ∣ 𝐹𝑑 𝑄 𝐹𝑏

Fig. 3. Context-free grammar.

Fig. 4. A genotype representing a QFR to model the behavior of a robot.

divides the variable 𝑣𝑎𝑟 in 𝑖 uniformly spaced labels, i.e.,
𝐴𝑖

𝑣𝑎𝑟 = {𝐴𝑖,1
𝑣𝑎𝑟, ..., 𝐴

𝑖,𝑖
𝑣𝑎𝑟}. Fig. 5 shows a partitioning up to

granularity five. 𝑔𝑚𝑖𝑛
𝑣𝑎𝑟 is the minimum granularity defined for

the variable 𝑣𝑎𝑟 and 𝑔𝑚𝑎𝑥
𝑣𝑎𝑟 is the maximum one. On the other

hand, the linguistic labels of the consequents (𝐹𝑙𝑣 , 𝐹𝑎𝑣) are
defined by a single granularity approach.

Fig. 5. Multiple granularity approach.

C. Initialization

A genotype (Fig. 4) is generated for each example in
the training set. All the fuzzy sets of conventional fuzzy
propositions (𝐹𝑣) and those of the consequent part (𝐹𝑙𝑣

and 𝐹𝑎𝑣) are initialized as 𝐹𝑣𝑎𝑟 = 𝐴
𝑔𝑚𝑎𝑥
𝑣𝑎𝑟 ,𝛽

𝑣𝑎𝑟 where 𝛽 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑗 𝜇
𝑔𝑚𝑎𝑥
𝑣𝑎𝑟 ,𝑗

𝑣𝑎𝑟

(
𝑒𝑙
)
, i.e., the label with the largest mem-

bership value for the example.
The initialization of the quantified propositions (sectors) is

quite more complex. In the first place, the number of sectors
that are going to be included in an individual is the number
of labels for sector definition in the partition with maximum

granularity (𝑔𝑚𝑎𝑥
𝑏). Afterwards, for each sector (𝐹𝑏), the other

components (𝐹𝑑 and 𝑄), have to be calculated with the
following steps:

1) The sector is divided into groups of consecutive laser
beams whose deviation does not exceed a certain thresh-
old (𝜎𝑏𝑑).

2) The group with the largest number of beams is chosen
and its average distance (𝑑) is calculated.

3) The distance is initialized as 𝐹𝑑 = 𝐴
𝑔𝑚𝑎𝑥
𝑑 ,𝛽

𝑣𝑎𝑟 where 𝛽 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑗

(
𝜇
𝑔𝑚𝑎𝑥
𝑣𝑎𝑟 ,𝑗

𝑣𝑎𝑟

(
𝑑
))

, i.e., the label that is closest to
the average distance of the sector.

4) Finally, 𝑄 is calculated as the percentage of beams of
the sector (ℎ ∈ 𝐹𝑏) that fulfill 𝐹𝑑:

𝑄 =

∑
ℎ∈𝐹𝑏

𝑚𝑖𝑛 (𝜇𝐹𝑑
(𝑑(ℎ)), 𝜇𝐹𝑏

(ℎ))∑
ℎ∈𝐹𝑏

𝜇𝐹𝑏
(ℎ)

(5)

D. Evaluation

The fitness of an individual of the population is calculated
as follows. Firstly, it is necessary to estimate the probability
that an example 𝑒𝑙 matches the output associated to rule
(individual) 𝑗 (𝐶𝑗):

𝑃
(
𝐶𝑗 ∣𝑒𝑙

)
= exp

(
−error𝑙𝑗

ME

)
(6)

where error𝑙𝑗 is the difference between output 𝐶𝑗 and the
output codified in the example, and ME is a parameter that
defines the meaningful error for the application. error𝑙𝑗 can be
defined as:

𝑒𝑟𝑟𝑜𝑟𝑙𝑗 =
∑
𝑘

(
𝑦𝑙𝑘 − 𝑐𝑗,𝑘

𝑚𝑎𝑥𝑘 −𝑚𝑖𝑛𝑘)
2 (7)

where 𝑦𝑙𝑘 is the value of the 𝑘-th output variable of example
𝑒𝑙, 𝑐𝑗,𝑘 is the output of the 𝑘-th output variable associated
to individual 𝑗, and 𝑚𝑎𝑥𝑘 and 𝑚𝑖𝑛𝑘 are the maximum and
minimum values of output variable 𝑘. In regression problems,
an example can have several outputs that are different from the
one codified in the example, but that produce small errors, i.e.
that are very similar to the desired output. Thus, 𝑃

(
𝐶𝑗 ∣𝑒𝑙

)
can be interpreted as a normal distribution with covariance
𝑀𝐸 and 𝑒𝑟𝑟𝑜𝑟𝑙𝑗 is the square of the difference between the
mean (output codified in the example) and the output value
proposed in the rule codified by the individual.

In an IRL approach, 𝐶𝑗 = 𝐶𝑅𝑗
, i.e., the output associated to

rule 𝑗 is the output codified in individual 𝑗. The fitness of an
individual in the population is calculated as the combination
of two variables. On one hand, the accuracy with which the
individual covers the examples, called confidence. On the other
hand, the ability of generalization of the rule, called support.
The confidence can be defined as:

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =
𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑢∑

𝑙𝐷𝑂𝐹𝑅𝑗
(𝑒𝑙𝑢)

(8)

where 𝐷𝑂𝐹𝑅𝑗
(𝑒𝑙𝑢) is the degree of fulfillment of 𝑒𝑙𝑢 for rule

𝑗, 𝑒𝑙𝑢 is an example that fulfills 𝑒𝑙 ∈ 𝑢𝑛𝑐𝑜𝑣𝑒𝑥 and 𝑢𝑛𝑐𝑜𝑣𝑒𝑥 is

114

defined as:

𝑢𝑛𝑐𝑜𝑣𝑒𝑥 = {𝑒𝑙 : 𝐷𝑂𝐹KBcur(𝑒
𝑙) < 𝐷𝑂𝐹𝑚𝑖𝑛} (9)

i.e., the set of examples that are covered with a degree of
fulfillment below 𝐷𝑂𝐹𝑚𝑖𝑛 by the current final knowledge
base (line 20, fig. 2), and 𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑢 can be defined as:

𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑢 =
∑
𝑙

𝐷𝑂𝐹𝑅𝑗
(𝑒𝑙𝑢) : 𝑃

(
𝐶𝑅𝑗

∣𝑒𝑖𝑢
)
> 𝑃𝑚𝑖𝑛

𝑎𝑛𝑑 𝐷𝑂𝐹𝑅𝑗
(𝑒𝑙𝑢) > 𝐷𝑂𝐹𝑚𝑖𝑛

(10)

where 𝑃𝑚𝑖𝑛 is the minimum admissible quality. Therefore, the
higher the accuracy over the covered examples, the higher the
confidence. Support is calculated as:

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =
𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑢
#𝑢𝑛𝑐𝑜𝑣𝑒𝑥

(11)

Thus, the support measures the percentage of examples that are
covered with quality related to the total number of uncovered
examples. Finally, we define 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 as a linear combination
of both values:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼𝑓 ⋅ 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒+ (1− 𝛼𝑓) ⋅ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (12)

which represents the strength of an individual over the uncov-
ered examples. 𝛼𝑓 ∈ [0, 1] is a parameter that codifies the
trade-off between accuracy and generalization of the rule.

E. Crossover

The pairs of individuals that are going to be crossed are
selected following a probability distribution defined as:

𝑃𝑐𝑙𝑜𝑠𝑒 (𝑖, 𝑗) = 1−
∑𝑁𝑐

𝑘 (
𝑐𝑖,𝑘−𝑐𝑗,𝑘

𝑚𝑎𝑥𝑘−𝑚𝑖𝑛𝑘
)2

𝑁𝑐
(13)

where 𝑐𝑖,𝑘 (𝑐𝑗,𝑘) is the value of the 𝑘-th output variable
of individual 𝑖 (𝑗), and 𝑁𝑐 is the number of consequents.
With this probability distribution, the algorithm selects with
higher probability mates that have similar consequents. The
objective is to extract information on which propositions of
the antecedent parts of the rules are important, and which are
not.

The crossover operator only modifies one proposition of
the antecedent part of the rule. As individuals have a variable
number of antecedents, the total number of propositions could
be different for two individuals. Moreover, the propositions
can be defined using different granularities. Therefore, the
first step is to select the propositions to be crossed in both
individuals as follows:

1) Randomly select an antecedent 𝑚 ∈ [1, 𝑁𝑎 = 𝑔𝑚𝑎𝑥
𝑏 + 1]

where 𝑁𝑎 is the maximum number of antecedents plus
one, due to the velocity proposition.

2) Check the existence of this antecedent in both individ-
uals, according to the following criteria:

a) If the antecedent 𝑚 is a sector, then calculate for
each proposition of each individual the overlap be-
tween 𝐴𝑔𝑚𝑎𝑥

𝑏 ,𝑚
𝑏 (linguistic label that defines sector

𝑚) and 𝐹𝑏 (the definition of the sector for the

proposition). Then, select for each individual the
proposition with higher overlap.

b) If the antecedent 𝑚 is the velocity, then the corre-
sponding proposition is 𝐹𝑣 (in case it exists).

TABLE I
CROSSOVER OPERATIONS

Individual 1 Individual 2 Action

no no try another antecedent
no yes insert antecedent 2 in individual 1
yes no delete antecedent
yes yes combine antecedents

Once the propositions used to generate a new individual (the
process will be repeated to generate the second new individual)
are selected, an operation must be picked depending on the
existence of that antecedent in both individuals (table I):

∙ If the antecedent does not exist in both individuals, this
means that the proposition is not relevant and the process
to select a new antecedent is repeated.

∙ If the antecedent does not exist in the first individual
but it exists in the second one, then the proposition of
the second individual is copied to the first one, as this
proposition could be meaningful.

∙ If the situation is the opposite to the previous one, then
the proposition of the first individual is deleted, as it could
not be important.

∙ If the antecedent exists in both individuals, then both
propositions are combined in order to obtain a proposition
that generalizes both antecedents.

If the antecedents need to be combined, then the degree of
overlap between them indicates which action is executed. If
the antecedent is of type sector, the overlap takes into account
both 𝐹𝑏 and 𝐹𝑑 labels. Only when both overlaps are partial,
the antecedents are merged:

∙ If the overlap is null, then the antecedents correspond
to different situations. For example, the definition of the
sectors is the same, but the distances label is high for
one and low for the other. This means that the proposi-
tion of the first individual does not contain meaningful
information and it can be deleted to generalize the rule.

∙ If the overlap is total, then, in order to obtain a new
individual with different antecedents, the proposition is
eliminated.

∙ Finally, if the overlap is partial, then the propositions are
merged in order to obtain a new one that combines the
information provided by the two original propositions.
Thus, the individual is generalized. The merge action is
defined as the process of finding the label with the highest
possible granularity that overlaps with the labels of both
original propositions. This is done for both 𝐹𝑏 and 𝐹𝑑

labels. 𝑄 will be calculated as the minimum 𝑄 of the
two individuals.

F. Mutation

When crossover is not performed, both individuals are mu-
tated. Mutation implements two different strategies: generalize

115

or specialize a rule. For generalization, the following steps are
performed:

1) Select an example 𝑒𝑠𝑒𝑙 ∈ 𝑢𝑛𝑐𝑜𝑣𝑗𝑒𝑥, where 𝑢𝑛𝑐𝑜𝑣𝑗𝑒𝑥 is
the set of examples that belong to 𝑢𝑛𝑐𝑜𝑣𝑒𝑥 and are
not covered by individual 𝑗. The example is selected
with a probability distribution given by 𝑃

(
𝐶𝑅𝑗

∣𝑒𝑙𝑢
)
. The

higher the similarity between the output of the example
and the consequent of rule 𝑗, the higher the probability
to be selected.

2) The individual is modified in order to cover 𝑒𝑠𝑒𝑙. There-
fore, all the propositions with 𝜇𝑝𝑟𝑜𝑝

(
𝑒𝑠𝑒𝑙
)
< 𝐷𝑂𝐹𝑚𝑖𝑛

are selected for mutation. These are the propositions that
are not covering the example.

a) For sector propositions, there are three different
ways in which the proposition can be modified:
𝐹𝑑, 𝐹𝑏, and 𝑄. 𝐹𝑑 and 𝐹𝑏 are generalized, choosing
the most similar label in the adjacent partition with
lower granularity. The process is repeated until
𝜇𝑝𝑟𝑜𝑝

(
𝑒𝑠𝑒𝑙
)
> 𝐷𝑂𝐹𝑚𝑖𝑛. On the other hand, 𝑄

is decreased until 𝜇𝑝𝑟𝑜𝑝
(
𝑒𝑠𝑒𝑙
)
> 𝐷𝑂𝐹𝑚𝑖𝑛. The

mutation is selected among the three possibilities,
with a probability proportional to 𝜇𝑝𝑟𝑜𝑝

(
𝑒𝑠𝑒𝑙
)
.

b) For velocity propositions, generalization is done
choosing the most similar label in the adjacent par-
tition with lower granularity until 𝜇𝑝𝑟𝑜𝑝

(
𝑒𝑠𝑒𝑙
)
>

𝐷𝑂𝐹𝑚𝑖𝑛.

For specialization, the process is equivalent:

1) Select an example 𝑒𝑠𝑒𝑙 ∈ 𝑐𝑜𝑣𝑗𝑒𝑥, where 𝑐𝑜𝑣𝑗𝑒𝑥 is the set
of examples that belong to 𝑢𝑛𝑐𝑜𝑣𝑒𝑥 and are covered by
individual 𝑗. The example is selected with a probability
distribution that is inversely proportional to 𝑃

(
𝐶𝑅𝑗

∣𝑒𝑙𝑢
)
.

The higher the similarity between the output of the
example and the consequent of rule 𝑗, the lower the
probability of being selected.

2) Only one proposition needs to be modified to specialize,
and it is selected randomly.

a) For sector propositions, there are again three differ-
ent ways in which the proposition can be modified:
𝐹𝑑, 𝐹𝑏, and 𝑄. 𝐹𝑑 and 𝐹𝑏 are specialized, choosing
the most similar label in the adjacent partition with
higher granularity. The process is repeated until
𝜇𝑝𝑟𝑜𝑝

(
𝑒𝑠𝑒𝑙
)
< 𝐷𝑂𝐹𝑚𝑖𝑛. On the other hand, 𝑄

is increased until 𝜇𝑝𝑟𝑜𝑝
(
𝑒𝑠𝑒𝑙
)
< 𝐷𝑂𝐹𝑚𝑖𝑛. The

mutation is selected among the three possibilities,
with a probability that is inversely proportional to
𝜇𝑝𝑟𝑜𝑝

(
𝑒𝑠𝑒𝑙
)
.

b) For velocity propositions, specialization is done by
choosing the most similar label in the adjacent par-
tition with higher granularity until 𝜇𝑝𝑟𝑜𝑝

(
𝑒𝑠𝑒𝑙
)
<

𝐷𝑂𝐹𝑚𝑖𝑛.

Finally, after the mutation operation (generalization or spe-
cialization) of the antecedent is performed, the consequent
is mutated. Again, this mutation requires the selection of an
example. If generalization was selected for the mutation of
the antecedent, then the example will be 𝑒𝑠𝑒𝑙. On the other

hand, for specialization an example is randomly selected from
those currently in 𝑐𝑜𝑣𝑗𝑒𝑥. For each variable in the consequent,
the label of the individual is modified following a probability
distribution (Fig. 6). Thus, the labels closer to the label of the
individual have a higher probability, while the labels closer to
the example label have a lower one.

Fig. 6. Probability distribution for output mutation.

G. Selection and Replacement

Selection has been implemented with a binary tournament
selection. On the other hand, replacement follows an steady-
state approach. The new individuals and those of the previous
population are joined, and the best 𝑝𝑜𝑝𝑚𝑎𝑥𝑆𝑖𝑧𝑒 individuals are
selected for the final population.

H. Epoch Loop

An epoch is a set of iterations at the end of which a new
rule is added to KBcur. The stopping criterion of each epoch
(inner loop in fig. 2) is the number of iterations, but this limit
varies according to the following criteria: once the number of
iterations reaches 𝑖𝑡𝑚𝑖𝑛, the algorithm stops if there are 𝑖𝑡𝑐ℎ𝑒𝑐𝑘
consecutive iterations with no change in 𝑏𝑒𝑠𝑡𝑖𝑛𝑑. If the number
of iterations reaches 𝑖𝑡𝑚𝑎𝑥 iterations, then the algorithm stops
regardless of the previous condition.

When the epoch ends, the rule defined in 𝑏𝑒𝑠𝑡𝑖𝑛𝑑 is added
to KBcur. Moreover, the examples that are covered with quality
(according with Eq. 10) are marked as covered by the algo-
rithm (line 20, fig. 2). Finally, the algorithm stops when either
no uncovered examples remain or no example is covered by
the individual learned in the last epoch.

I. Rule Subset Selection

After the end of the iterative part of the algorithm, the per-
formance of the obtained rule base can be improved selecting
a subset of rules with better cooperation among them. The
rules selection algorithm described in [1] has been used. It is
based on the Iterated Local Search (ILS) algorithm [10].

IV. RESULTS

The proposed algorithm has been validated with a well-
known behavior in mobile robotics: wall-following. The main
objectives of a controller for this behavior are: to keep a
suitable distance to the wall, to move at the highest possible
velocity, and to implement smooth control actions.

The examples that have been used for learning were gener-
ated for three different situations that have been identified by
an expert:

116

1) Convex corner: is a situation in which the robot finds a
wall in front of it.

2) Concave corner: is characterized by the existence of a
gap in the wall (like an open door).

3) Straight wall: any other situation.

For each of the above situations, the robot was placed in differ-
ent positions and the associated control order was decided by
an expert. Therefore, each example consists of 722 distances
(one for each laser beam), the current linear velocity of the
robot, and the control commands (linear and angular velocity).
The expert always tried to follow the wall at, approximately,
50 cm and the maximum values for the linear and angular
velocities were 60 cm/s and 45𝑜𝑠−1. 468 training examples
were selected for the straight wall situation, 1092 for the
convex corner and 252 for the concave corner.

The values that have been used for the parameters of the
evolutionary algorithm are: ME = 0.02, DOF𝑚𝑖𝑛 = 0.001,
𝛼𝑓 = 0.9, 𝑃𝑐𝑟𝑜𝑠𝑠 = 0.8, pop𝑚𝑎𝑥𝑆𝑖𝑧𝑒 = 70, it𝑚𝑖𝑛 = 60,
it𝑐ℎ𝑒𝑐𝑘 = 10, it𝑚𝑎𝑥 = 100, 𝜎𝑏𝑑 = 0.01 and 𝑃𝑚𝑖𝑛 = 0.17. The
granularities and the universe of discourse of each component
of a rule are shown in table II. 𝑃𝑚𝑖𝑛 is a parameter that has
a high influence in the performance of the system. Only one
value of 𝑃𝑚𝑖𝑛 has been tried in our tests, and it has been
obtained with Eq. 6 when the error for each consequent is of
one label (Eq. 7).

TABLE II
GRANULARITIES AND UNIVERSE OF DISCOURSE

Variable Min Max Granularities

Distance 0 1.5 {3, 5, 7, 9, 11, 13}
Beam 0 721 {2, 4, 6, 8}

Quantifier 10 100 –
Velocity 0 0.6 {2, 3, 4, 5}

Lineal velocity 0 0.6 {9}
Angular velocity −𝜋/4 𝜋/4 {19}

TABLE III
CHARACTERISTICS OF THE ENVIRONMENTS FOR THE WALL-FOLLOWING

BEHAVIOR.

Environment Dim. (𝑚 × 𝑚) Length (m) #CC #CX #doors

1 15 × 15 70 4 7 1
2 14 × 10 43 10 6 0
3 19 × 12 86 12 6 4
4 26 × 15 146 23 10 8

In order to analyze the performance of the proposed learning
algorithm, several tests have been done in four environments.
Three of them are shown in Fig. 7. The trace of the robot
is represented by marks, and the higher the concentration of
marks, the lower the velocity. Table III shows some of the
characteristics of the four environments: the dimensions of
the environment, the length of the path, the number of concave
(#CC) and convex (#CX) corners, and the number of times that
the robot has to cross a door (#doors). The action of crossing
a door represents a high difficulty as the robot has to negotiate
a convex corner with a very close wall in front of it.

Our proposal (IQFRL) has been compared with three dif-
ferent algorithms:

∙ Cooperative-Iterative Rule Learning (CIRL): it is based
on the described IQFRL algorithm and was designed only

(a) Environment 2

(b) Environment 3

(c) Environment 4

Fig. 7. Path of the robot along three of the environments.

for comparison purposes. The only difference between
them is that for CIRL 𝐶𝑗 = 𝐶KB𝑗

, with KB𝑗 = KBcur∪𝑅𝑗 .
Thus, what is going to be evaluated is the output of a
knowledge base composed of the current final knowledge
base and the 𝑗-th rule of the population, rather than the
output of the individual. Moreover, fitness is calculated
as the fitness defined for IQFRL (Eq. 12) weighted by the
accuracy over the covered examples (as defined in Eq. 8,
but over the set of covered examples). In this way, CIRL
also takes into account the ability of the rule to cooperate
with the current final knowledge base. The values of the
parameters used for CIRL are the same as for IQFRL.

∙ Genetic Cooperative-Competitive Learning (GCCL) [2]:
uses the same crossover and mutation operators defined
for IQFRL, and the same values for the parameters, ex-
cept for pop𝑚𝑎𝑥𝑆𝑖𝑧𝑒 = 300 and the number of iterations
was set to 300.

∙ Different neural networks (NN)1 were also trained with
Backpropagation and Resilient Backpropagation without
weights [12] with the following parameters: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
0.01, 𝑠𝑡𝑒𝑝𝑚𝑎𝑥 = 1𝑒 + 5, 𝑟𝑒𝑝 = 1, 𝑙𝑅𝑎𝑡𝑒𝐿 = 𝑁𝑈𝐿𝐿,
𝑙𝑅𝑎𝑡𝑒𝐹 = (−0.5, +1.2) and the error function was
the root mean error. As it is not possible to learn with
723 input variables, the following preprocessing was
implemented to obtain the inputs to the network:

1) The distances of the beams are divided into 𝑟
sectors. Five different number of sectors were used:
𝑟 = {2, 4, 8, 16, 32}

1The package Neuralnet of the statistical software R [11] was used.

117

2) The number of hidden neurons was set to 𝑟.
3) For each sector, the input distance was calculated

as the initialization stage of IQFRL.
4) For each of the three situations (convex and concave

corner, and straight wall), two neural networks were
trained, one for the linear velocity and another for
angular velocity.

TABLE IV
NUMBER OF RULES LEARNED

Alg. #𝑅𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 #𝑅𝑐𝑜𝑛𝑣𝑒𝑥 #𝑅𝑐𝑜𝑛𝑐𝑎𝑣𝑒 #𝑅𝑡𝑜𝑡𝑎𝑙

IQFRL 54 124 31 209
IQFRL+S 42 100 29 171

CIRL 74 121 33 228
CIRL+S 71 119 28 218
GCCL 84 166 46 296

GCCL+S 61 137 43 241

TABLE V
AVERAGE RESULTS (𝑥± 𝜎) FOR DIFFERENT ENVIRONMENTS

Alg. Env. Dist.(cm) Vel.(cm/s) Vel.ch.(cm/s) Time(s)

IQFRL 1 72.64 ± 2.70 32.71 ± 0.38 4.37 ± 0.76 206.27 ± 3.35
IQFRL 2 71.38 ± 5.18 24.81 ± 1.72 6.71 ± 0.55 161.13 ± 23.19
IQFRL 3 63.86 ± 4.26 32.44 ± 1.41 4.10 ± 0.77 261.73 ± 8.63
IQFRL 4 66.07 ± 2.62 32.49 ± 0.44 5.60 ± 0.49 433.23 ± 6.88

IQFRL+S 1 48.60 ± 0.82 30.70 ± 0.32 6.65 ± 0.86 208.33 ± 2.57
IQFRL+S 2 54.49 ± 0.31 22.41 ± 0.89 7.38 ± 0.12 178.17 ± 2.14
IQFRL+S 3 51.86 ± 0.29 30.37 ± 0.51 7.26 ± 0.63 270.40 ± 1.80
IQFRL+S 4 53.82 ± 0.52 27.33 ± 0.11 7.11 ± 0.85 511.93 ± 1.66

CIRL 1 57.32 ± 1.39 31.14 ± 0.60 5.04 ± 0.49 213.07 ± 1.63
CIRL 2 60.07 ± 0.56 19.69 ± 0.51 5.98 ± 0.31 215.27 ± 4.24
CIRL 3 56.91 ± 0.39 29.50 ± 0.24 3.89 ± 0.37 285.33 ± 2.10
CIRL 4 59.62 ± 0.26 25.83 ± 0.14 5.33 ± 0.44 563.17 ± 3.64

CIRL+S 1 66.00 ± 0.72 31.74 ± 0.72 5.08 ± 0.81 209.53 ± 1.32
CIRL+S 2 54.49 ± 0.56 22.41 ± 0.31 7.38 ± 0.37 178.16 ± 2.14
CIRL+S 3 65.40 ± 1.40 30.95 ± 0.28 4.91 ± 0.62 267.67 ± 1.43
CIRL+S 4 70.97 ± 1.66 27.55 ± 0.13 6.06 ± 0.58 519.93 ± 1.90

GCCL 1 53.03 ± 0.83 17.75 ± 0.37 2.65 ± 0.18 362.43 ± 5.69
GCCL 2 60.76 ± 0.69 13.32 ± 0.03 3.57 ± 0.62 308.73 ± 9.32
GCCL 3 57.23 ± 0.93 19.14 ± 0.33 2.1 ± 0.12 437.63 ± 6.88
GCCL 4 54.4 ± 0.27 15.12 ± 0.16 3.02 ± 0.23 935.27 ± 10.28

GCCL+S 1 53.48 ± 1.29 18.17 ± 0.31 3.11 ± 0.41 351.50 ± 4.45
GCCL+S 2 61.75 ± 0.71 12.25 ± 0.34 3.65 ± 0.38 324.03 ± 4.90
GCCL+S 3 58.47 ± 0.61 18.37 ± 0.47 2.75 ± 0.27 442.43 ± 6.30
GCCL+S 4 — — — —

NN — — — — —

Table IV shows the number of rules learned for the three
different situations by each of the methods based on QFRs, and
also for these methods with a posterior rule subset selection
(+S). The values of the parameters for rules selection [1]
were radiusnbhood = 1, maxRestarts = 1. Table V contains
the results of each of the four controllers for the different
environments. In order to evaluate the quality of the controllers
we have measured four different indicators: the right distance
(Dist.), the linear velocity (Vel.), the change in the linear
velocity between two consecutive cycles (Vel.ch.) —which
reflects the smoothness in the control—, and the time. The
average values of the indicators are calculated for each lap
that the robot performs in the environment. Results presented
in the table are the average and standard deviation values over
three laps of the average values of the indicators over one lap.

As can be seen, the best controller without rule selection
is CIRL, as it obtains the best average distance in two
of the environments, and is closer to GCCL in the other
two. IQFRL performance is not adequate due to the low
cooperation among the rules. On the other hand, none of the
neural networks was able to complete a lap in any of the
environments, thus showing the advantage of using QFRs.

After selection, the performance of IQFRL highly increases
due to a better cooperation. The distance to the wall is very
close to the reference distance (50 cm) in all the environments,
and the average velocity is close to the best one (IQFRL) in
all the tests. On the contrary, the performance of CIRL+S
and GCCL+S decreases, as the cooperation among rules was
taken into account during the learning phase. In summary,
the performance of the proposed algorithm with selection
(IQFRL+S) is exceptional in all the situations, both for the
distance and velocity parameters. Moreover, the number of
rules (table IV) is also the lower one.

V. CONCLUSIONS

An algorithm based on IRL to learn controllers in mobile
robotics using the state of the robot and the sensors data has
been presented. Our proposal does not use explicit prepro-
cessing of the data, as the transformation of the low-level
variables into high-level variables is done through the use of
QFPs. The algorithm has been tested with the wall-following
behavior in four different complex environments. Also, it has
been compared with other three proposals, showing a very
good performance.

ACKNOWLEDGMENT

This work was supported by the Spanish Ministry of Science
and Innovation under grant TIN2008-00040. M. Mucientes
is supported by the Ramón y Cajal program of the Spanish
Ministry of Science and Innovation.

REFERENCES

[1] M. Mucientes and A. Bugarı́n, “People detection through quantified
fuzzy temporal rules,” Pattern Recognition, vol. 43, pp. 1441–1453,
2010.

[2] M. Mucientes, I. Rodrı́guez-Fdez, and A. Bugarı́n, “Evolutionary learn-
ing of quantified fuzzy rules for hierarchical grouping of laser sensor
data in intelligent control,” in Proceedings of the IFSA-EUSFLAT 2009
conference, Lisbon (Portugal), 2009, pp. 1559–1564.

[3] M. Mucientes, J. Alcalá-Fdez, R. Alcalá, and J. Casillas, “A case study
for learning behaviors in mobile robotics by evolutionary fuzzy systems,”
Expert Systems With Applications, vol. 37, pp. 1471–1493, 2010.

[4] M. Mucientes and J. Casillas, “Quick design of fuzzy controllers with
good interpretability in mobile robotics,” IEEE Transactions on Fuzzy
Systems, vol. 15, no. 4, pp. 636–651, 2007.

[5] L. Zadeh, “A computational approach to fuzzy quantifiers in natural
languages,” Computers and Mathematics with Applications, vol. 9, pp.
149–184, 1983.

[6] O. Cordón, F. Herrera, F. Hoffmann, and L. Magdalena, Genetic fuzzy
systems: evolutionary tuning and learning of fuzzy knowledge bases,
ser. Advances in Fuzzy Systems - Applications and Theory. World
Scientific, 2001, vol. 19.

[7] F. Herrera, “Genetic fuzzy systems: Taxonomy, current research trends
and prospects,” Evolutionary Intelligence, vol. 1, pp. 27–46, 2008.

[8] O. Cordón and F. Herrera, “Hybridizing genetic algorithms with sharing
scheme and evolution strategies for designing approximate fuzzy rule-
based systems,” Fuzzy sets and systems, vol. 118, pp. 235–255, 2001.

[9] D. Greene and S. Smith, “Competition-based induction of decision
models from examples,” Machine Learning, vol. 3, pp. 229–257, 1993.

[10] H. Lourenço, O. Martin, and T. Stützle, Handbook of Metaheuristics.
Kluwer Academic Publishers, 2003, ch. Iterated Local Search, pp. 321–
353.

[11] Stefan Fritsch and Frauke Guenther, “neuralnet: Training of neural
networks,” http://cran.r-project.org/web/packages/neuralnet/index.html.

[12] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” in Neural Networks,
1993., IEEE International Conference on. IEEE, 2002, pp. 586–591.

118

