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Summary

A fuzzy control system has been developed
for the avoidance of moving objects by a
robot. Due to the displacement of this mov-
ing object, it is necessary to carry out tempo-
ral reasoning with the aim of responding suit-
ably with regard to the tendency of the mov-
ing object, employing for this a fuzzy tem-
porary reasoning profile that we denominate
Fuzzy Temporal Rules. The system has been
subjected to a complete simulation process,
and certain results are commented upon and
an example is presented.

Keywords: Robot navigation, Moving ob-
stacles avoidance, Fuzzy Temporal Rules,
Fuzzy control.

1 INTRODUCTION

An area of robotics in which great advances have
been made in recent years, but in which many com-
plex problems still remain to be solved, is the endow-
ment of mobile robots with sufficient autonomy to pur-
sue their goals while overcoming the imperfectly pre-
dictable problems - including moving obstacles - that
are presented by environments that have not been tai-
lored to their needs. The difficulty of this enterprise
stems from the robot’s model of the environment in-
evitably being incomplete, imprecise or faulty due to
the modifications that real environments are likely to
undergo (including continuous modification by moving
obstacles) and the limited precision, accuracy and re-
liability of the robot’s sensors (a problem that can be
exacerbated by environmental noise).

The majority of research into the avoidance of mobile
objects in robotics have been focused on attempting to
estimate future positions of the obstacles with the aim
of recalculating the robot’s trajectory. Various differ-
ent techniques have been used for this. Thus Chang
[3] uses neural networks in order to obtain the mov-
ing objects’ future positions, whilst Elnagar [4] uses an
autoregressive model. In other works the robot travels

towards its goal and in order to avoid collision with
the moving object only how far this is away from the
robot and its relative position is taken into considera-
tion. Garnier [5] and Pratihar [6] use fuzzy controllers
to this end

All these systems have in common the impossibility
of reasoning out the behaviour of the moving object
(which is reflected in the changes of velocity and/or
turning) over time.

This paper describes a knowledge-based control sys-
tem for the avoidance of the collision of a robot with a
moving object in a restrictive environment (the robot
moves along a passageway). For this we have intro-
duced expert knowledge into the system, which de-
mands the valuation of the occurrence of certain events
(significant changes in the values of variables) within a
determined, albeit fuzzy, temporal reference ( e.g. “in
the last few seconds the robot’s speed has been slow”).
For this reason it has been necessary to use a paradigm
belonging to fuzzy temporal reasoning which we de-
nominate FTR (Fuzzy Temporal Rules) [1, 2]. In this
manner it is possible to valuate the current setting in
which the robot is found, along with previous scenar-
ios (recent values histories), which is decisive for taking
the correct decisions to avoid collision.

2 DESCRIPTION OF THE
CONTROL SYSTEM

In the problem that has been tackled, a robot travels
along a passageway some 4 metres wide, and in which
there is a free-moving mobile object. Based on the
position coordinates, velocity and advance angle of the
robot and the position of the mobile object, all the
input system control variables are calculated.

The system has been exhaustively validated in the set-
ting of Nomad 200 robot simulation; the range of the
ultrasonic sensors (6 metres) and the finite dimensions
of the space in which both objects move (passageway
4 metres wide) have been taken into account. Further-
more, possible imprecision in the measurements of the
position of the mobile object by the ultrasonic sensors
has also been simulated, this being considered as an



error that depends on the distance between the robot
and the mobile object, and can reach as much as 10%.

The controller is made up of three modules (figure 1):
in the first of these ("obstacle course evaluation”) the
tendency of the object is deduced, valuating its recent
position and velocity values by means of FTRs. Es-
sentially, this entails valuating whether the obstacle
tends to go before or after the robot, or whether it
shows no clear tendency in these two senses. The sec-
ond module ("behaviour selection”) selects the most
suitable behaviour for the robot to avoid collision. In
order to do so, it uses, amongst other variables, the
estimated tendency of the previous block. There are
up to seven components that may be selected in this
module. Amongst these are: give way (the robot lets
the moving object pass by), pass in front (the robot at-
tempts to pass before the moving object) and observe.
In the latter situation, the robot maintains its velocity
(in module and direction); this is normally due to the
tendency of the mobile object not being clear.
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Figure 1: Schematic diagram of the control system.
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Finally, the last block ("behaviour implementation”),
given the current location of the robot (its position
with respect to the walls of the passageway, its speed,
the collision time and the moving objects’s angle of in-
cidence) establishes the optimum way of implementing
this behaviour. Angular velocity and linear accelera-
tion control variables are obtained as output of this
module, and these are sent to the robot three times
a second. With these values the robot will turn and
vary its advance velocity in order to avoid collision.
The latter two blocks described are made up of con-
ventional fuzzy rules.

The avoidance of collision is based, to a good de-
gree, on the accurate estimation of the tendency (first
block), due to which this task is especially critical in
the process. In this sense, it is of utmost importance
to have explicit knowledge on how to carry out this
task. In order to do so, new representational models
have to be adopted which adapt themselves faithfully
to the manner in which an expert would express his
knowledge on the problem to be solved, due to which
we have adopted a suitable knowledge and reasoning
representation model (FTR)

Due to its special interest, the remainder of the paper

will focus on the description of this first module of the
controller. In order to do this, we briefly describe in
section 3 the paradigm of FTRs, which is the knowl-
edge and reasoning representation formalism that is
used in the obstacle course evaluation module, in sec-
tion 4 we give examples of how it is applied to obstacle
course evaluation, and in section 5 we describe the per-
formance of the system in a typical simulation run.

3 FUZZY TEMPORAL RULES

The obstacle course evaluation module uses FTRs of
the kind described in previous papers [1, 2]. In these
rules, a generic antecedent proposition has the form

XisAforQofT (1)

where X is a non-temporal variable such as velocity
that takes as its values fuzzy sets defined on a universe
U, A is a linguistic label associated with a possible
value of X, T'is a time reference (either a fuzzy instant
or a fuzzy interval), and @Q is a quantifier such as all
or most.

Calculation of the current degree of fulfillment of the
proposition, DOF (T ) starts with the calculation of
the spatial compatibility, sc(7y), between X and A at
each time point 74 in the support of T:

se(me) = \/ ng(me,u) A pau) (2)
uclU

where Z(Tk, w) is the membership function associated
(by direct fuzzification or otherwise) with the value
that is observed at time 7, for X, 14 (u) is the member-
ship function associated with A, A is the t-norm min-
imum and V the t-conorm mazimum. DOF (Tpow) is
then obtained by combining sc(7t) and pr (the mem-
bership function defining the time reference 7) in a
way that depends on the value of Q. If @ is any point

(“for Q of” = in),

DOF (Thow) = \/ se(mi) Apr(ts)  (3)

T €ESupp(pT)

where Supp(pr) is the support of pur. If Qis all (“for
Q of” = “for all of”),

DOF(tnow) = )\

TR ESupp(pr)

sc(ti) V (1 = pr(r)) (4)

If @ is intermediate between any point and all, then the
linguistic quantification method of Zadeh [7] is used:

DOF (Tnow) = KQ (Z

TRESupp(pT) SC(Tk) A pr (Tk')
ZTkES‘lLPP(NT) pr ()

(5)

where 11 is the membership function of Q.



4 APPLICATION TO AVOIDANCE
OF MOVING OBSTACLES

Three conclusions can be drawn by the FTRs of the
obstacle course evaluation module: that the obstacle
is giving way to the robot to avoid collision, that the
obstacle is aiming to pass in front of the robot to
avoid collision, or that the obstacle is indifferent to
the robot (i.e. it maintains either a steady course or
an erratic course uncorrelated with the possibility of
collision). These conclusions are drawn for an estimate
of whether and how soon collision will occur; from in-
formation of which side of the robot the obstacle is
approaching from (to avoid what would essentially be
duplication of rules, all reasoning is carried out as if
it approaches from the left; if it actually approaches
from the right, the input variables are subjected to a
transformation that is later taken into account by the
robot’s behavior modules); and from evaluation of the
recent history of the non-collision index (nci), a vari-
able that quantifies how far from head-on any collision
will be, and which is calculated from the radii, posi-
tion and velocity of the robot and obstacle, and the
distance between them. Values of the nci in the inter-
val [ -1, 1] predict that there will be a collision (which
affects the left-hand side of the robot if nci > 0, the
right-hand side if nci < 0), values > 1 and < —1 that
the robot will leave the obstacle to its left and right
respectively.

For an approach of the obstacle from the left side of
the robot, an increase of the nci could be produced
by the following four causes: increase of the robot’s
velocity, decrease of the obstacle’s velocity, turn of the
robot to its right or turn of the obstacle to its right

An example of the reasoning that takes place in this
module is the rule

“IF

collision_time is medium AND collision_status_change
is increase in approximately the_last_8_seconds AND
nci_trend is not_decreasing for all of approximately
the_last_2_seconds

THEN

obstacle_aim is to_give_way” (6)

Here collision_status_change is a fuzzy variable that
is set to increase if in successive reasoning cycles the
value of nci changes from less than -1 to greater than
-1, to decrease if nci changes from greater than +1 to
less than +1, and to neutral otherwise. The variable
nci_trend takes fuzzy values defined on the universe of
possible changes in the value of nci.

Note that what is evaluated is the consistent non-
collision-oriented behavior of the obstacle over a period
of several seconds, not just a single acceleration, decel-

eration or change of direction. The reason for this can
be understood by considering the case of a obstacle
approaching from the left that suddenly accelerates:
an analysis of whether this acceleration tends to avoid
or favour collision requires the processing of detailed
information about the magnitude of the acceleration
and the course of the obstacle and the robot, and in
any case may be invalidated by the behaviour of the
obstacle during the next few instants. Assessment of
what appears to be the “intention” of the obstacle,
as shown by consistent behaviour over a reasonable
period, is less precise, but affords more robust conclu-
sions.

On the other hand, the alternative of using mean val-
ues of variables does not allow the detection of varia-
tions produced over a small number of cycles, whilst
the use of derivatives does not permit reasoning with
immediately prior values.

5 AN EXAMPLE

With the aim of illustrating the behaviour of the robot
in avoiding moving objects we will now give an exam-
ple taken from one of many situations analysed. In
all cases, in order to increase the realism of the simu-
lation, we have worked with different degrees of error
in the knowledge of the position of the moving object.
For example, figure 2 shows the real trajectory of the
moving object and the one employed by the robot for
a maximum error percentage of 10% of the distance
between the robot and the moving object.
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Figure 2: Trajectory of the moving object (real (x:-x)
and employed by the robot (0-0)).

Figure 3 shows the history of an obstacle that was
initially moving quite fast (50 cm/s), approaching from
the left side of the robot, on a course that would have
led it to cross in front of the slowly moving robot (25



cm/s). In this figure, a greater concentration of marks
indicates lower velocity (of the robot or the moving
obstacle) while a smaller concentration reflects higher
velocity. At point A the obstacle turned right, bringing
it first onto a collision course. The rule described in
expression (6) correctly detected this trend.
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Figure 3: Example. A, B and C are different positions
of the robot and the obstacle along a time interval.

The behaviour selection module of the robot re-
sponded by choosing to_pass_in_front, behaviour that
in this situation was implemented by turning a few
degrees to the right and accelerating.

A short time later the obstacle turned left (point B)
and advanced at full speed (60 cm/s); although this be-
haviour actually put it once more on a collision course,
the following rule interpreted it as showing an inten-
tion to pass in front of the robot:

“IF

collision_time is short AND collision_status_change
is decrease in approximately the_last_2_seconds AND
nci_trend is not_increasing for all of approrimately
the_last_second

THEN

obstacle_aim is to_pass_in_front” (7)

The robot’s response to this latter interpretation was
to select the behaviour give_way, which for short col-
lision time is implemented by braking hard.

Simulations of other situations, involving a wide range
of obstacle and robot speeds and obstacle trajectories,
have confirmed the ability of the system to prevent
collision. Anyway, final validation will be carried out
by hardware implementation in the robot Nomad 200.

6 CONCLUSIONS

In this paper, we have described the implementation
of a fuzzy control system for the avoidance of mov-
ing obstacles that go towards a robot. An important
characteristic of the 131 rules that make up the sys-
tem is that in the obstacle course evaluation module

an explicit assessment of the time is needed. In or-
der to carry out this assessment in a correct manner,
we have used a new fuzzy knowledge model, which we
have called Fuzzy Temporal Rules [1, 2]. With this
approach, it is possible to evaluate a variable along a
given time interval. This is precisely what is needed
for the analysis of the moving obstacle’s behaviour over
time, as this behaviour can be highly variable in the
time period considered. Furthermore, the projection
of the knowledge is more direct using this model than
with other strategies, thus facilitating the acquisition
and subsequent tuning of the knowledge base. The
proposal of FTRs supposes a new contribution to the
field of fuzzy control. Its validation in a real-time com-
plex application, such as the one shown in this paper,
clearly demonstrates its interest and usefulness.

Acknowledgements

Authors wish to acknowledge the support of the Xunta
de Galicia through an infraestructure grant that per-
mitted the adquisition of a Nomad 200 mobile robot
and through grant XUGA20608B97.

References

[1] A. Bugarin, P. Carifena, P. Félix and S. Barro
(1998). Fuzziness in Petri Nets, vol. 22 of Stud-
tes in Fuzziness, chap. Reasoning with Fuzzy Tem-
poral Rules on Petri Nets, pp. 174-202. Physica-
Verlag.

[2] P. Carifiena, A. Bugarin and S. Barro (1998). Un
modelo para la cuantificacion de la persistencia en
proposiciones temporales borrosas. In Proc. ES-
TYLF’98, pp. 109-116.

[3] C. C. Chang and K.-T. Song (1997). Environment
Prediction for a Mobile Robot in a Dynamic Envi-
ronment. IEEE Transactions on Robotics and Au-
tomation, 13, 6, pp. 862-872.

[4] A. Elnagar and K. Gupta (1998). Motion Predic-
tion of Moving Objects Based on Autoregresive
Model. IEEE Transactions on Systems, Man and
Cybernetics, 28, 6, pp. 803-810.

[5] P. Garnier and T. Fraichard (1997). A Fuzzy Mo-
tion Controller for a Car-Like Vehicle. Tech. rep.
3200, INRIA (France).

[6] D. K. Pratihar, K. Deb and A. Ghosh (1999). A
genetic-fuzzy approach for mobile robot navigation
among moving obstacles. International Journal of
Approximate Reasoning, 20, 2, pp. 145-172.

[7] L. A. Zadeh (1973). Outline of a New Approach
to the Analysis of Complex Systems and Decision-
Making Approach. IEEFE Transactions on Systems,
Man and Cybernetics, SME-3, 1, pp.28—45.



