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Abstract— Detection of people and other moving objects is
fundamental for the development of tasks by an autonomous
mobile robot, and principally for human-robot interaction. In
this paper we present an evolutionary algorithm to learn a
pattern classifier system based on the Quantified Fuzzy Tem-
poral Rules (QFTRs) model, for the detection of moving objects
using laser range finders data. QFTRs are able to analyze
the persistence of the fulfillment of a condition in a temporal
reference by using fuzzy quantifiers. Experimental results with
a Pioneer II robot in a typical hallway environment show an
excellent classification rate in a real and complex situation with
people moving in several groups in the surrounding.

I. INTRODUCTION

The presence of moving objects in the surrounding of
the robot in a real environment is usual and must be taken
into account. Typical environments are for example terminal
areas of airports and railway stations, with people moving
and carrying baggage (also moving objects), the hallway of
a building, the corridors of a hospital, etc. In these envi-
ronments the robot has to build maps, localize, plan routes,
interact with humans or avoid obstacles. The knowledge of
the position, speed and heading of the moving objects is
fundamental for the execution of these and other tasks.

Several approaches to the detection of moving objects
using laser range finders data have been proposed in the
bibliography. We can group them in two categories: those
that use the difference of occupancy between consecutive
range scans [1], [2], [3], [4], and those that rely on specific
characteristics of the moving objects, fundamentally people
and, more specifically, legs of people [5], [6], [7], [8], [9].

All these approaches are based on heuristic rules and
conditions. Thus, they work in a given environment and with
an specific kind of moving objects but, if some conditions
change, the method must be tuned. To solve this drawback,
in this paper we present an evolutionary algorithm to learn a
pattern classifier system based on Quantified Fuzzy Temporal
Rules (QFTRs) for the detection of moving objects using
laser range data. Our approach is based in the difference of
occupancy between consecutive laser range scans.

The novelties of our approach are two: first, the system
is able to detect people that moves in groups (Fig. 1(a)).
This usually happens in real environments, where people
walk together, and carry objects (like suitcases, trolleys, etc.).
In these situations, the density of moving objects is high,
there are occlusions between moving objects, so the detection

This work was supported in part by the Spanish Ministry of Education
and Science under grant TIN2005-03844, and the DXID of the Xunta de
Galicia under grant PGIDIT04TIC206011PR.

Manuel Mucientes and Alberto Bugarı́n are with the Department of
Electronics and Computer Science, University of Santiago de Compostela,
E-15782 Spain (e-mails: {manuel, alberto}@dec.usc.es).

and tracking difficulties are higher [10] than for individual
objects. The second novelty is that the learned rules follow
a paradigm, called QFTRs [11], that is able to represent and
reason about values of variables evolving with time. Instead
of classifying a pattern as a moving object by solely using
the current values of some variables, QFTRs are able to
quantify the fulfillment of a linguistic label by a set of data,
and analyze the persistence of this fulfillment in a temporal
reference.

The learned knowledge base has been tested with real data
recorded with a Pioneer II robot equipped with two laser
range scanners in a typical hallway environment. Results
show an excellent classification rate over the test set. The
paper is structured as follows: Sec. II shows the fundamentals
of the detection of moving objects with laser range scanners.
Sec. III presents the QFTRs model, while Sec. IV describes
the evolutionary algorithm for the learning of QFTRs. Then,
Sec. V shows the experimental results and, finally, Sec. VI
points out the conclusions.

II. DETECTION OF MOVING OBJECTS

The detection of moving objects has been done using
laser range finders data. These sensors emit several beams,
each one in a direction. When a beam hits an obstacle, it
is reflected and registered by the scanner’s receiver. The
time between the transmission and the reception of the pulse
is known as the time of flight. With this information, the
distance measured in the direction of each beam can be
calculated. Fig. 1(b) shows a typical laser scan. The laser
range finder provides the distances to the closest obstacle in
each direction with a given resolution (number of degrees
between two consecutive beams).

(a) Ten people moving in
groups

(b) A typical laser scan

Fig. 1. Hallway environment

The existence of moving objects in the surrounding of the
robot can be determined with two basic characteristics [1]:

1) A moving object appears in the distance histograms of
the lasers as a local minimum.

1-4244-1210-2/07/$25.00 ©2007 IEEE.
1149



2) As other static objects (like the legs of a table, a
wastepaper basket, etc) can also have this character-
istic, the object that has generated the local minimum
must also be new at that position.

Fig. 2. Laser distance histogram corresponding to Fig. 1(b)

The first characteristic of a moving object can observed in
the laser distance histogram. Fig. 2 represents the distance
measured for each beam of the laser for the laser scan in Fig.
1(b). Several local minima are detected. Those labeled as
mom are moving objects, while the local minima identified
by som are static objects. If we want to filter these static
objects, we must identify which ones are new objects (they
were not there in previous instants) and which were already
there. This can be done constructing a local occupancy grid
map of the environment.

Occupancy grid maps [12] represent the surrounding envi-
ronment arranging it in cells of equal size (a grid). Each cell
stores its probability of occupancy: a value of 1 indicates
that the cell is occupied, 0 represents a free cell (without
obstacles), while a value of 0.5 informs that the probability
of occupancy is unknown (the cell has never been seen by
the sensors, or it has been seen several times, sometimes
occupied and others free). With each new laser scan the
map is updated taking into account the current information
provided by the sensors, but also the previous occupancy grid
map.

Fig. 3(a) shows the occupancy grid map using the infor-
mation of only one laser scan (rotated area inside the dashed
rectangle of Fig. 1(b)). The map is represented in a 256
gray scale. The darker the gray, the higher the probability of
occupancy of that cell. As this map represents only one laser
scan, there are three possibilities: the cell is free (white), the
cell is occupied (black), or the the probability of occupancy
is unknown (gray). Fig. 3(b) represents the grid map in the
same time instant, but this map contains now, not only the
current laser scan, but also the scans of previous iterations.
The positions of the moving objects, mom, have now a
low probability of occupancy (light gray) as they have been
detected as free in previous instants, and occupied only in
the current scan. As we need to obtain the probability of
new objects in the grid map, we will use the current map
and the map tb times before to calculate the probability of
new objects for each cell:

P i, j
new (t, tb) = P i, j

occ (t) · (1 − P i, j
occ (t − tb)

)
(1)

where P i, j
occ (t, tb) is the probability of occupancy of cell with

coordinates (i, j) using the sensorial information until the
present instant (t) and 1−P i, j

occ (t − tb) is the probability that

(a) Grid Map of one scan (b) Grid Map

(c) Probability of new objects (d) Probability of new objects
(nNeighbors = 3)

(e) Detected moving objects

Fig. 3. Detection of four moving objects for the laser scan of Fig. 2

cell (i, j) is free in the map tb times before. Fig. 3(c) shows
the map obtained after applying Eq. 1 to the current (Fig.
3(b)) and previous grid maps (tb = 1).

Due to small errors in the laser measurements and the
size of the grid map cells, the same object can be detected
in a cell in one laser scan and in an adjacent cell in other
laser scan. These small errors heavily increase when the
robot is moving, because of the odometric errors: the control
commands of the robot are not precise, as the wheels can slip,
turnings are not exactly implemented, etc. To eliminate some
of these errors, a scan matching technique can be applied:
we have tried the iterative point correspondence algorithm
[13], but there are still errors that cannot be removed.

Therefore, the probability that an object detected in a cell
is new needs to be calculated in a more reliable way. Errors
can be filtered using a spatial window around each cell. Thus,
Eq. 1 can be reformulated as:

P i, j
new (t, tb, nNeighbors) = minnNeighbors

k,l=−nNeighbors P i, j
occ (t) ·(

1 − P i+k, j+l
occ (t − tb)

)
(2)

where nNeighbors is the size of the window, and the prob-
ability that the object is new is calculated as the minimum
over all cells of the window in the occupancy map tb times
before. The resulting grid map after applying Eq. 2 to the
current (Fig. 3(b)) and previous grid maps is shown in Fig.
3(d) (nNeighbors = 3). As can be seen, the spatial window
removes most of the points that belong to static objects. If

1150



we combine the detected local minima with the probability
of new objects (Fig. 3(d)) we obtain the detected moving
objects (Fig. 3(e)).

The rules for the detection of moving objects must take
into account information about the size of the local minimum
(the gap between the object that produces the local minimum
and the obstacles behind), the number of beams of the local
minimum, and the probability of a new object in each of
the cells of the local minimum. This last characteristic dis-
tinguishes between static and moving objects. The analysis
of P i, j

new (t, tb, nNeighbors) can also generate false positives.
These errors can be reduced if instead of taking into account
P i, j

new (t, tb, nNeighbors) for an specific value of tb, the system
analyzes this probability in different time instants. Moreover,
some cells of the local minimum can have a high probability
of containing a new object, but others not. The system should
also quantify how many cells must have a Pnew over a
threshold.

Therefore, a mechanism for performing the spatial filtering
of successive values of P i, j

new (t, tb, nNeighbors) is needed
to produce a reliable detection of the moving objects. An
example of a proposition that fulfills this objective is: “Pnew

is high in most of the cells in part of the last instants”. We
will implement such a proposition using the QFTRs model
described in the following section.

III. QUANTIFIED FUZZY TEMPORAL RULES MODEL

The structure of a QFTR for the moving objects pattern
recognition task is described in Fig. 4.

IF Xgap is biggap and (3)

Xnew (nNeighbors) is highnew in Qs, new of the cells

in Qt, new of St, new and (4)

Xbeams is highbeams (5)

THEN the pattern is a moving object

Fig. 4. QFTR for the classification of a pattern as a moving object

Propositions (3) and (5) are non-temporal fuzzy propo-
sitions, while (4) is a Quantified Fuzzy Temporal Propo-
sition (QFTP). Variable Xgap indicates the value of the
gap (distance between the object that produces the local
minimum and the obstacles behind). Xnew (nNeighbors) rep-
resents the probability of a new object in each cell of
the local minimum and at each time instant for an spe-
cific value of nNeighbors (Eq. 2): Xnew (nNeighbors) =
{x1, 1

new , . . . , x1, nCells
new , . . . , xtBefore, nCells

new }, where tBefore is the
number of analyzed time instants and nCells is the number of
cells of the local minimum. Finally, Xbeams stores the number
of beams of the local minimum.

The QFTRs model [11] is an extension of the FTRs model
used in [14], [15]. QFTPs are of the form X isA < inQsof >
Ss < in Qt of > St, where X is a linguistic variable, A
represents a linguistic value of X , Qs and Qt are fuzzy
quantifiers, Ss is a fuzzy set, and St is a temporal reference

or entity. In proposition (4), Ss is not explicitly included as
for all the values, xp,w

new , µSs
(xp,w

new ) = 1 (each value belongs
with degree 1 to a cell).

The temporal entities St may represent both fuzzy tem-
poral instants as well as fuzzy temporal intervals, being in
both cases membership functions defined on a discrete set
of values τ = {τ0, τ1, . . . , τp, . . .}, where each τp represents
a precise temporal instant and τ0 represents the origin. We
assume that the values of this set are evenly spaced, where
� = τr − τr−1 is the unit of time, whose size or granularity
depends on the temporal dynamics of the application. In our
case, � is the time that passes between two consecutive laser
scans. Temporal distributions are defined in relation to the
current temporal point, τnow (Fig. 5(a)).

(a) Temporal reference (b) Some temporal quantifiers

Fig. 5. Membership functions of a temporal reference and some quantifiers

The execution of a QFTR differs from that of a con-
ventional fuzzy rule in the calculation of the Degree Of
Fulfillment (DOF), which now also depends on the prior
values of variables. A QFTP can be divided in two different
parts:

• Non-temporal part: X is A < in Qs of > Ss

• Temporal part: . . . < in Qt of > St

The calculation of the DOF is implemented in the model
in the following way: first, the degree of fulfillment of the
non-temporal part of the proposition is calculated:

sc(τp) = µQs




nvτp∑
w=1

µA (X (τp, w)) ∧ µSs
(X (τp, w))

nvτp∑
w=1

µSs
(X (τp, w))



(6)

where µA is the membership function of the linguistic
label A, X (τp, w) is the value observed for variable X at
the temporal point τp, and with non-temporal index w. w
identifies the different values observed for variable X at a
given temporal point τp, and takes values from 1 to nvτp

.
Finally, µSs

is the membership function of the fuzzy set Ss,
µQs

is the membership function associated to the linguistic
quantifier Qs, and the operator ∧ is the t-norm minimum.

Eq. 6 evaluates the percentage of points at τp that fulfill
the linguistic label A and belong to fuzzy set Ss. This
percentage of points is then evaluated with the linguistic
quantifier Qs, µQs

(. . . ), to obtain the non-temporal DOF
of the proposition: sc(τp).

The second stage in the calculation of the DOF consists
in the evaluation of the obtained sc(τp) within the temporal
part of the proposition. The values of sc(τp) are modulated
by the temporal part, so that the weight that is given to the
temporal points is proportional to its membership in St, µSt

.
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Different situations can occur for the fulfillment of the
non-temporal part, X is A < in Qs of > Ss, when St is an
interval:

• Non persistence: as in “Pnew is high in most of the cells
in the last instants”, where fulfillment is required for at
least one point of St.

• Persistence: as in “Pnew is high in most of the cells
throughout the last instants”, where fulfillment is re-
quired throughout the entire interval.

• Partial persistence: where the non-temporal part should
be fulfilled for some subinterval (“in the majority of
St”, “in part of St”), as in “Pnew is high in most of the
cells in part of the last instants”.

The calculation of the DOF is implemented in a different
way, depending on the type of temporal persistence of the
QFTP:

• Non persistence: X is A < in Qs of > Ss in St

DOF =
∨

τp∈τ

sc(τp) ∧ µSt
(τp) (7)

• Persistence: X is A < in Qs of > Ss throughout St

DOF =
∧

τp∈τ

sc(τp) ∨ (1 − µSt
(τp)) (8)

• Partial persistence: X isA < inQs of > Ss < inQt of >
St

DOF = µQt

(∑
τp∈τ sc(τp) ∧ µSt

(τp)∑
τp∈τ µSt

(τp)

)
(9)

Operators ∧ and ∨ are, respectively, the t-norm minimum
and the t-conorm maximum, µQt

is the membership function
that is associated to the linguistic quantifier Qt, and µSt

is
the membership function of the temporal reference St. Fig.
5(b) shows some definitions for the membership functions
(µQt

) associated to the temporal persistence quantifiers that
can be used.

The design of a QFTR involves the definition and tunning
of ten parameters (linguistic labels and quantifiers) per rule
for this application. Moreover, drastic changes in the char-
acteristics of the environment or the moving objects could
affect the accuracy of the pattern classifier system, making
useless the tunned parameters. Therefore automated learning
of Quantified Fuzzy Temporal Knowledge Bases (QFTKB)
has to be used, in order to implement a new classifier
for very different environmental conditions (corridor of a
hospital, railway station, etc.). Also, in this way we can
obtain a high classification rate, as the algorithm looks for
an optimal solution. In the next section, an evolutionary
algorithm to learn a pattern classifier system based on QFTRs
for detecting moving objects is described.

IV. EVOLUTIONARY LEARNING OF QFTRS

Evolutionary learning of fuzzy knowledge bases has dif-
ferent approaches to represent the solution to the problem
[16]. Our evolutionary algorithm follows the cooperative-
competitive approach: each chromosome codifies a single

rule, and the solution to the problem is the complete set of
individuals (rules). Rules evolve together (cooperative) in the
population, competing among them to obtain a higher fitness.
This approach needs to include a mechanism to maintain the
diversity of the population (niche induction).

The coding scheme of the chromosomes of the population
(Fig. 6) consists in three different parts, each of them
corresponding to one of the propositions in a rule (Fig. 4).
The linguistic labels and the quantifiers have been described
with trapezoids, defined as a quadruple < a, b, c, d >.
Each gene (g) of the chromosome has an associated precision
(precg) which codifies the value that indicates a meaningful
change in a variable. For example, precnew = 0.01, and
precbeams = 1.

Fig. 6. Coding scheme of a chromosome

The first gene of the chromosome, bgap, codifies the lin-
guistic label biggap (Fig. 4, proposition 3). The linguistic label
is constructed as < bgap − precgap, bgap, maxgap, maxgap >,
where maxgap is the maximum value that variable Xgap can
take. The same occurs with genes bnew (highnew), bQs, new

(Qs, new), bQt, new (Qt, new), and bbeams (highbeams). On the other
hand, St, new is completely codified in the chromosome (<
aSt, new , bSt, new , cSt, new , dSt, new >). Finally, gene nNeighbors
indicates the size of the window used to calculate P i, j

new (Eq.
2).

The raw training and test data that have been used consist
of a number of consecutive laser range scans (Fig. 1(b)).
From these data, training and test examples sets are gener-
ated. The structure of an example el (moving object) is:

{gapl, nNeighborsl, averagel
pnew, percentagel

cells, tlb, beamsl}
(10)

where averagel
pnew is the average value of

P i, j
new

(
t, tlb, nNeighborsl

)
(Eq. 2) over all the cells occupied

by the moving object. percentagel
cells is the percentage of

these cells that have a value of P i, j
new

(
t, tlb, nNeighborsl

)
(Eq. 2) over averagel

pnew.
It is relatively simple to label the moving objects from

the laser scans to construct these examples sets, but this is
not true for the static objects: for example, a wall can be a
single static object, or due to its discontinuities could be also
several objects. Due to this difficulty, our training and test
examples sets will contain only moving objects. This does
not represent a disadvantage, as the rules that are learned
(Fig. 4) identify the class moving object, while any other
pattern will be considered in the other class (static object).

A description of the evolutionary algorithm is shown in
Fig. 7. First the population is initialized: a chromosome (Fig.
6) is generated for each example in the training set. Then all
the individuals are evaluated. For each individual (rule) of
the population, the following quantities are calculated:
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• True positives (tp): sum of the DOFs of the examples
that are moving objects and have been correctly classi-
fied by the rule.

• False positives (fp): sum of the DOFs of the patterns
that are static objects and are incorrectly classified by
the rule.

• False negatives (fn): these are the examples that are
moving objects and have not been classified by the rule.
fn = nex− tp, where nex is the total number of examples
(remember that the examples sets only have examples
of one class -moving object-).

True negatives are not defined as there are not examples of
the class static object in the examples sets. False positives
are defined as DOFs of the patterns ..., because there are
not examples of the class static object, but there are static
objects in the training and test data.

Taking into account the definitions for tp, fp, and fn, the
accuracy of an individual of the population can be described
as:

confidence =
1

1 + 10fp
(11)

while the capacity of generalization of a rule is calculated
as:

support =
tp

tp + fn
(12)

Finally, we can define the fitnessraw as the combination of
both values:

fitnessraw = support · confidence (13)

which represents the strength of an individual without taking
into account the others.

1) Initialize population
a) Generate rules
b) Evaluate population
c) Resize population (i)

2) for iteration = 1 to maxIterations
a) Crossover and mutation
b) Evaluate population
c) Resize population (ii)

3) Select rules for the final knowledge base

Fig. 7. Evolutionary algorithm

In the cooperative-competitive approach, a mechanism for
niche induction must be included. The mechanism must
promote the competition among individuals in the same niche
(individuals that cover the same examples) while it must
also preserve those individuals that have a low fitnessraw if
they are covering examples that are not covered by other
individuals. Our algorithm uses the token competition [17]
for this task: each example of the training set has a token
and, of all the individuals that cover this example, the token
will be seized by the individual with the highest fitnessraw. In
this way, the individual with the highest strength in the niche
will exploit it, while individuals that are weaker will reduce

its strength as they cannot compete with the best individual
in the niche. Thus, the fitness of an individual is defined as:

fitness = fitnessraw · seizedex

coveredex
(14)

where seizedex is the number of examples seized by the
individual, while coveredex is the number of examples that
have been covered by it (the DOF of the rule for the example
is not null).

The final step in the initialization of the population is to
resize it: all the individuals with null fitness are removed.
This population is called examples population. From this
examples population the first popsize individuals are picked
up to build the initial population. Finally with this initial
population, the iterative part of the algorithm starts.

The first stage consists in the crossover and mutation of
the individuals of the population. There is not selection.
A couple of individuals is randomly picked up (all the
individuals of the previous population have to be chosen
once), the two individuals are crossed (with probability pc),
then mutated (with probability pm), and finally added to the
population. At the end of the process the population will
double the size of the previous population, as it will contain
the original individuals plus their offspring (due to crossover
and mutation).

The crossover operator is the two-point crossover, while
the mutation is implemented with two different operators:
random mutation and step mutation. The algorithm selects
between these operators, choosing random mutation with
probability prm. Step mutation modifies the value of a gene
(g) increasing or decreasing its value in a quantity of precg

and with equal probability. For the special case of gene
St, new that represents a trapezoid, the step mutation has three
equiprobable options: shift, expand or contract the trapezoid.

After this stage, the population is evaluated (Eqs. 11,
12, 13, 14). Finally, population must be resized to popsize:
individuals with null fitness are removed and the best popsize
individuals are selected. Whenever the size of the population
is under popsize, new individuals are added. These individuals
are chosen from the examples population, selecting those
rules that cover examples that have not been seized yet by
the individuals of the population. If the population is still
under popsize (this may occur in the last iterations of the
algorithm), then mutated copies of the best individuals are
inserted.

The last step of the algorithm is the selection of the rules.
The final knowledge base will contain all those rules that
have seized at least one example of the training set (non
null fitness) and that fulfill that seizedex ≥ fp. This condition
eliminates rules that generate false positives and seize a lower
number of examples.

V. EXPERIMENTAL RESULTS

The training and test data sets have been obtained with a
Pioneer II robot equipped with two laser range scanners. The
lasers were mounted at a height of 40 cm (front laser) and 60
cm (rear laser), and with a resolution of 0.5 degrees. Thus,
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one laser scan provides information of the whole surrounding
of the robot. The experiment took place in the hall of a
building (Fig. 1) of the University of Freiburg and lasted 9
minutes. The moving objects were in all the cases people
moving in the hall, in groups of up to six people. Due to
the disposition of the lasers, the legs of people have been
detected.

The fact that people move in groups increases the diffi-
culties in the detection, as compared with a single person,
because cells that were originally free, are occupied in
successive time instants by different moving objects (legs).
Thus the values of P i, j

new (t, tb, nNeighbors) are lower. During
the experiment up to ten people moved around the robot,
which means 20 moving objects at the same time. Such a
high number of moving objects concentrated in a few and
small areas of the environment generates partial (and total)
occlusions of the objects, modifying the values of the gaps
and the number of beams of the detected moving objects.
Also, more than half of the time the robot was moving,
making harder the discrimination of new objects as the scan
matching errors increase.

We have extracted two time intervals from the data file to
construct training and test examples:

• From time = 0 s to time = 45 s: the robot does not
move, and there are 623 moving objects.

• From time = 101 s to time 123 s: the robot moves at
21 cm/s, and there are 609 moving objects.

The evolutionary algorithm has the following parameters:
maxIterations = 50, popsize = 50, pc = 0.9, pm = 0.5,
prm = 0.25. Experiments have been performed with a 5-
fold cross-validation: the examples set (1232 examples) was
divided in five subsets of approximately equal size (around
246 examples). Then the learning process was run five times,
using as training examples set four of the subsets, and testing
with the remaining subset (this subset is different for each
of the five runs).

TABLE I

RESULTS OF THE FIVE-FOLD CROSS-VALIDATION

Training Test
Rules fp fn % correct fp fn % correct

Average 25,60 11,40 19,60 96,85 2,20 7,40 96,10
σ 5,32 5,73 7,57 0,61 2,95 3,21 1,74

Results (Table I) show the average and standard deviation
values of the five-fold cross-validation for the number of
rules of the knowledge base, false positives (fp), false neg-
atives (fn), and percentage of examples correctly classified
(% correct) over the training and test examples sets. The
percentage of examples correctly classified over the test set
is 96,10%, although the number of moving objects, their high
concentration in small areas of the hall, and the movement
of the robot.

VI. CONCLUSIONS

We have developed a pattern classifier system based on
QFTRs for the detection of moving objects using laser range

scan data. QFTRs have been learned with an evolutionary
algorithm based on the cooperative-competitive approach
together with token competition for niche induction. The
system has been tested with real data obtained with a Pioneer
II robot equipped with two laser range scanners. The moving
objects are the legs of people (up to ten people at the same
time) that were moving in groups in the environment. The
experiment represents a real situation of a typical hallway en-
vironment. Both the number of moving objects and their high
concentration in small areas, together with the movement of
the robot, make the test conditions really complex. However,
results show a very high average classification rate (96,10%)
over the test set. In the near future we will run several tests in
order to know the limitations of the system in relation with
the number and density of people, as well as the analysis of
its performance in a variety of completely different and real
environments. Moreover, the pattern classifier system will be
integrated with the algorithm proposed in [10] to track the
detected moving objects.
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