
www.elsevier.com/locate/asoc

Applied Soft Computing 7 (2007) 540–546
Design of a fuzzy controller in mobile robotics using genetic algorithms

M. Mucientes *, D.L. Moreno, A. Bugarı́n, S. Barro

Department of Electronics and Computer Science, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain

Received 1 April 2004; received in revised form 10 May 2005; accepted 16 May 2005

Available online 20 November 2006
Abstract
The design of fuzzy controllers for the implementation of behaviors in mobile robotics is a complex and highly time-consuming task. The use of

machine learning techniques, such as evolutionary algorithms or artificial neural networks for the learning of these controllers allows to automate

the design process. In this paper, the automated design of a fuzzy controller using genetic algorithms for the implementation of the wall-following

behavior in a mobile robot is described. The algorithm is based on the Iterative Rule Learning (IRL) approach, and a parameter (d) is defined with

the aim of selecting the relation between the number of rules and the quality and accuracy of the controller. The designer has to define the universe

of discourse and the precision of each variable, and also the scoring function. No restrictions are placed neither in the number of linguistic labels nor

in the values that define the membership functions.

2006 Elsevier B.V. All rights reserved.

Keywords: Evolutionary algorithms; Fuzzy control; Mobile robotics; Wall-following behavior
1. Introduction

Fuzzy control has shown to be a very useful tool in the field

of autonomous mobile robotics, characterized by a high

uncertainty in the knowledge about the environment where the

robot evolves.

The design of a fuzzy controller is generally made using

expert knowledge about the task to be controlled. Expert

knowledge is applied in order to decide the number of linguistic

labels for each variable, to tune the membership functions, to

select the most adequate linguistic values for the consequents,

and to define the rules in the fuzzy knowledge base. This

process is tedious and highly time-consuming. For this reason,

automated learning techniques, such as evolutionary algo-

rithms, have been employed for helping in some, or in all, of the

tasks involved in the design process.

A knowledge base is formed of a database (number and

definition of the linguistic values, and universe of discourse of

each of the variables) and the rule base. Some authors have

utilized evolutionary algorithms for learning or tuning fuzzy

controllers in robotics [1–7]. In some of the approaches
* Corresponding author. Tel.: +34 981 563100x13570; fax: +34 981 528012.

E-mail addresses: manuel@dec.usc.es (M. Mucientes),

dave@dec.usc.es (D.L. Moreno), alberto@dec.usc.es (A. Bugarı́n),

senen@dec.usc.es (S. Barro).

1568-4946/$ – see front matter # 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.asoc.2005.05.007
evolutionary algorithms are used just for tuning the member-

ship functions [8,9]. In others, the complete rule base is learned,

starting from a previously designed database [1,3–5]. Finally,

some authors have used algorithms that learn both the database

and the rule base [6].

In this paper, we describe the learning of a fuzzy controller

for the wall-following behavior in a mobile robot. The designer

has to define the universe of discourse and the precision of each

variable, and also the scoring function. No restrictions are

placed neither in the number of linguistic labels, nor in the

values that define the membership functions. The methodology

is based on the Iterative Rule Learning (IRL) approach [10].

The paper is organized as follows: in Section 2 some general

comments about the evolutionary learning of knowledge bases

are made, while in Section 3 the genetic learning methodology

employed is explained. Section 4 describes the application of

the proposed algorithm to the wall-following behavior, and

Section 5 presents the results we obtained. Finally, conclusions

and future work are pointed out in Section 6.

2. Evolutionary learning of knowledge bases

Learning of knowledge bases using evolutionary algorithms

has three main approaches: Michigan, Pittsburgh, and IRL [11].

In the Michigan approach [12], each chromosome represents an

individual rule, and the entire population is the rule base. Rules

evolve along time due to their interaction with the environment.

mailto:manuel@dec.usc.es
mailto:dave@dec.usc.es
mailto:alberto@dec.usc.es
mailto:senen@dec.usc.es
http://dx.doi.org/10.1016/j.asoc.2005.05.007

M. Mucientes et al. / Applied Soft Computing 7 (2007) 540–546 541
The major problem of this approach is that of resolving the

conflict between the performance of individual rules and that of

the rule base. The objective is to obtain a good rule base, which

means to obtain good individual rules, but also rules that

cooperate between each other to get adequate outputs. This

could be sometimes conflicting, for example, when an

individual rule that receives a high payoff is not adequately

cooperating with other rules. This problem is addressed in ref.

[13].

This conflict is overcome by the Pittsburgh approach [14],

where each chromosome represents a full knowledge base.

Length of the chromosomes can be variable, which permits

dealing with knowledge bases with a variable number of rules.

This approach has a higher computational cost, because several

knowledge bases have to be evaluated, while for the Michigan

approach a single rule base is evaluated.

In the third approach (IRL [10]), each chromosome

represents an individual rule, but contrary to the Michigan

approach, a single rule is learned by the evolutionary algorithm

and not the whole rule base. After each sequence of iterations,

the best rule is selected and added to the final rule base. The

selected rule must be penalized in order to induce niche

formation in the search space. Niching is necessary for solving

multimodal problems, as occurs with knowledge bases

learning. In this case, each of the rules of the knowledge base

is a solution (highly multimodal problem), and all the solutions

must be taken into account to get the complete knowledge base.

A common way to penalize the rules that have been obtained is

to delete those training examples that have been covered by the

set of rules that integrate the final rule base. The final step of the

IRL approach is to check whether the obtained set of rules is a

solution to the problem. In the case it is not, the process is

repeated. A weak point of this approach is that the cooperation

between rules is not taken into account when a rule is evaluated.

When learning knowledge bases, many approaches use a

predefined number of linguistic labels for each variable, or the

shape of the membership functions is constrained, facilitating

the learning, but also limiting the solutions space and the

strength of the method [1,3–5,8,9]. Learning of both the data

and rule bases can be done simultaneously, or in different

stages. The most common approach is to firstly learn the

database and finally generate the rule base using the previously

generated database [6,15].

3. Learning of fuzzy rule-based controllers

Our proposal consists on a learning method based on the IRL

approach in which both the data and rule bases are

simultaneously learned. The only predefined parameters are

the universe of discourse and the precision of each variable. The

number of linguistic labels, the shape of the membership

functions and the rules’ structure (a variable could not be

considered in a rule) will be learned. The algorithm has the

following steps:
(1) O
btain a rule for the system:

(a) initialize population;
(b) evaluate population;

(c) eliminate bad rules and fill up population;

(d) scale the fitness values;

(e) while the maximum number of iterations is not

exceeded

(i) select the individuals of the population;

(ii) crossover and mutate the individuals;

(iii) evaluate population;

(iv) eliminate bad rules and fill up population;

(v) scale the fitness values.
(2) A
dd the best rule to the final rule set.
(3) P
enalize the selected rule.
(4) I
f the knowledge base does not solve the problem, return to

Step 1.
The rules that are going to be learned are conventional fuzzy

rules like:

Ri ¼ If Xi
1 is Ai

1 and . . . and Xi
NA is Ai

NA

Then Yi
1 is Bi

1 and . . . and Yi
NC is Bi

NC

(1)

where Ri, i = 1, . . ., NR, is the ith rule, Xi
j, j = 1, . . ., NA, and Yi

k,

k = 1, . . ., NC, are linguistic variables of the antecedent and

consequent parts, respectively. NR is the number of rules, NA

the number of antecedents in a rule, NC the number of con-

sequents, and Ai
j and Bi

j are linguistic values (labels) of these

variables.

A set of examples has been chosen for learning the

knowledge base. These examples cover the universe of

discourse of all the variables in the antecedent part of the

rule. The universes of discourse have been discretised, in order

to minimize the search space, with a step or precision pn, n = 1,

. . ., NV, where NV = NA + NC is the number of variables. Prior

to the application of the learning method, the best action for

each one of the examples is determined. The function, SF, that

scores the action of a rule over an example (not the fitness

function) is application dependent.

An example, el, is covered by rule Ri if it complies with the

following two conditions:

Ai
1ðel

1Þ ^ � � � ^Ai
NAðelÞ> 0 (2)

where Ai
jðel

jÞ represents the membership degree of the value of

variable j in the example el to Ai
j. A new parameter, d, is defined

with the aim of selecting the relation between the number of

rules and the quality and accuracy of the controller. In that way,

a second condition is imposed:

SFðRiðelÞÞ
maxðSFðelÞÞ > d (3)

where SF (Ri(el)) is the score assigned to the state reached by

the system after applying rule Ri over example el, and max(S-

F(el)) is the maximum score that an action can obtain for

example el. The value of parameter d can be adjusted in a range

between 0 and 1. A low value of d produces a lower number of

rules in the final knowledge base, but the quality and the

accuracy of the controller decreases. On the contrary, a high

Fig. 1. Shape of the membership function for the linguistic value Ai
n.

M. Mucientes et al. / Applied Soft Computing 7 (2007) 540–546542
value of d increases the quality of the controller, but also the

number of rules.

The use of d can be clarified by means of the following

example. Let us suppose a robot must reach a point by turning

308. Although this may be labeled as the best control action,

also a rule proposing a turning of 208 should be considered as a

good rule, even though the goal point is not fully reached.

Parameter d indicates the minimum quality a rule must have in

order to be a valid rule for being added to the final knowledge

base.

The shape of the membership functions that are going to be

learned is shown in Fig. 1. Parameters bi
n and ci

n are learned, but

points ai
n and di

n are calculated as:

ai
n ¼ maxfbi

n � pn; lowerng (4)

di
n ¼ minfci

n þ pn; upperng (5)

where lowern and uppern are the extreme points of the universe

of discourse of variable n. In that way, it is not possible to

exceed the range of the universe of discourse of the variables

during the learning process. For example, for a variable n

having the following values: lowern = 0, uppern = 60,

pn = 10, bi
n ¼ 40, and ci

n ¼ 60, then ai
n = max{40 � 10,

0} = 30 and di
n = min{60 + 10, 60} = 60.

Chromosomes are real coded, and a rule as the one shown in

(1) is encoded into a chromosome Ci as:

Ci ¼ ðbi
1; ci

1; . . . ; bi
NV; c

i
NVÞ (6)

The first step of the genetic algorithm consists in initializing the

population. Rules in the initial population are created in the

following way. An example currently not covered by any rule in

the final knowledge base is randomly selected. The created rule

is going to cover that single example, named el, at this initial

generation. The membership functions for this rule are con-

structed as: bi
n ¼ ci

n ¼ ei
n, while ai

n and di
n are calculated using

(4) and (5), respectively.

The evaluation of each individual of the population (each

rule) is done with a two level fitness function. The first level

(FF) consists on counting the number of examples that are

covered by this rule, i.e., that fulfill (2) and (3), and that are not

yet covered by a rule of the final knowledge base. If an example

is covered by a rule of the final knowledge base, it will not

contribute to the fitness value of any rule in the population. A

second level for the fitness function is added in order to

distinguish between rules with the same antecedent part but

different consequents. It is the average value of the scoring
function, SF, for all the examples that verify (2):

ASFi ¼
PNE

l¼1 SFðRiðelÞÞ
NECi (7)

where NE is the number of examples, and NECi is the number

of examples that verify (2) for rule i. The second level of the

fitness function is only used (in conjunction with the first level)

when the final generation has been reached and the best rule of

the population has to be added to the final knowledge base.

If for any example a rule verifies (2) but not (3), then this rule

is deleted from the population. After the deletion of all the bad

rules, the population must be filled up, until its size reaches NR.

The rules that will be added are the best rules in the population.

Finally the fitness values of the individuals of the population

must be linearly scaled in order to prevent premature

convergence of the population.

The selection procedure that has been employed is the

stochastic remainder without replacement. An individual i will

be selected int(FFi/AFF) times, where FFi is the value of the

fitness function (first level) for individual i, and AFF is the

average value of all FFi. Taking into account frac(FFi/AFF) the

population is randomly filled up. After selection, the

individuals are crossed (one-point crossover), mutated, and

finally added to the new population. Elitism has been applied to

avoid the loss of the best individuals due to crossover and

mutation.

The mutation operator has three equally probable options to

operate on a gene: increase or decrease its value in an amount of

pn, or leave it unchanged. This will provoke the extension or

contraction of the membership function in a quantity equal to

the precision of each variable, implementing a local search in

that way. After crossover and mutation, each chromosome will

be reordered for repairing bad definitions of the membership

functions ðbi
n > ci

nÞ, and values of ai
n and di

n will be calculated

using (4) and (5), respectively.

Once the maximum number of iterations has been reached,

the best rule of the population is added to the final knowledge

base, and finally penalized. Penalization is done marking all the

examples covered by this rule. In that way these examples will

not contribute to the fitness value of the individuals in the next

sequence of iterations. If all the examples are covered by the

rules of the final knowledge base, then this is a solution to the

problem and the algorithm ends.

4. Learning the wall-following behavior

The methodology presented in the previous section is

applied here for the design of a fuzzy controller for the wall-

following behavior in mobile robotics.

The wall-following behavior is usually implemented when

the robot is exploring an unknown area, or when it is moving

between two points in a map. A good wall-following controller

is characterized by three features: to maintain a suitable

distance from the wall that is being followed, to move at a high

velocity whenever the layout of the environment is permitting,

and finally to avoid sharp movements, making smooth and

Fig. 2. Description of some of the distances used for the calculation of the input

variables.

Table 1

Universes of discourse and precisions of the variables

Variable Universe of discourse:

[lowern, uppern]

Precision (pn)

RD [0, 3.0] 0.2

DQ [0, 2.7] 0.3

Orientation [�450, 450] 50

LV [0.0, 1.0] 0.125

Linear acceleration [�1.0, 1.0] 0.125

Angular velocity [�1.0, 1.0] 0.05

M. Mucientes et al. / Applied Soft Computing 7 (2007) 540–546 543
progressive turns and changes in velocity. The controller can be

configured modifying the values of two parameters: the

reference distance, which is the desired distance between the

robot and the selected wall, and the maximum velocity

attainable by the robot. In what follows we assume that the

robot is going to follow a contour that is on its right side. Of

course, the robot could also follow the left-hand wall, but this

can be easily dealt with by simply interchanging the sensorial

inputs.

The input variables of the control system are the right-hand

distance (RD), the distances quotient (DQ), which is calculated

as:

DQ ¼ left-hand distance

RD
(8)

As it can be seen (Fig. 2), DQ shows the relative position of

the robot inside a corridor, which provides with information

that is more relevant to the problem than simply using the left-

hand distance. A high value for DQ means that the robot is

closer to the right-hand wall, while a low value indicates that

the closer wall is the left-hand one. The other input variables are

the linear velocity of the robot (LV), and the orientation of the

robot with respect to the wall it is following. A positive value of

the orientation indicates that the robot is approaching to the

wall, while a negative value means the robot is moving away

from the wall. The output variables are the linear acceleration

and the angular velocity.

All the information used to calculate distances and

orientations comes from the ultrasound sensors of a Nomad

200 robot. The distances and the orientation are obtained in two

ways: if any of the walls (left or right) can be modeled with a

straight line using a least square mean of the raw sensor data,

then the corresponding distance and orientation are measured

from that line. Otherwise, distance is measured as the minimum

distance of a set of sensors, and the orientation will be the

orientation of that sensor with respect to the advance direction.

The function SF used at (3) is defined for this application as:

SFðRiðelÞÞ ¼ 1

a1 þ a2 þ a3 þ 1
(9)

where a1, a2, and a3 are, respectively:

a1 ¼ 100
jRD� reference distancej

pRD

(10)

a2 ¼ 10
jmaximum velocity� LVj

pLV

(11)

a3 ¼
jorientationj

porientation

(12)
and pRD, pLD, and porientation are the precisions of the respective

input variables. Table 1 shows the values of the precisions and

the universes of discourse of each variable. The precisions are

used in these equations in order to evaluate the deviations of the

values of the variables from the desired ones in a relative

manner (the deviation of the value of variable n from the

desired one is measured in units of pn). This makes the

comparison of the deviations of different variables possible

and, as a consequence, the assignment of the weights for each

one of the variables. These weights (100, 10, and 1 for (10–12),

respectively) have been heuristically determined, and indicate

how much important the deviation in the value of a variable is

with respect to the deviation of other variables.

SF takes values in [0, 1]. The highest weight has been

assigned to the distance, as small variations of RD with respect

to the reference distance should be highly penalized. An

intermediate weight is associated to velocity and, finally, the

least important contribution to function SF is for the orientation

of the robot.

DQ is implicitly included in SF, as its values are used in

combination with RD in order to calculate the width of the

passageway in which the robot is placed. If this width is too low

(less than two times the reference distance), the value of the

reference distance for that situation will be modified (half of the

width will be selected), and the robot will follow the right wall

closer and with a lower speed.

The defuzzification method that has been used for the

learned fuzzy controller is the height defuzzifier [16]:

Ok ¼
PNR

i¼1 Ȳ
i
kBi

kðȲ
i
kÞ

PNR
i¼1 Bi

kðȲ
i
kÞ

(13)

where Ȳ
i
k is the center of gravity of the linguistic label Bi

k, and

Ok is the defuzzified value for variable k. This method does not

take into account the width of the membership functions from

the consequent part of the rule. For this reason, and in order to

simplify the learning process, the membership functions of the

variables of the consequent part are crisp. This simplification

does not affect the quality of the obtained controller.

5. Results

The system described in the previous sections has been

implemented with a crossover probability of 0.2 and a mutation

probability (per gene) of 0.4 (remember that mutation can

increase, decrease or maintain unchanged a gene with equal

Fig. 3. Variation of some parameters with d for the final knowledge base.

M. Mucientes et al. / Applied Soft Computing 7 (2007) 540–546544
probability). These values have been selected in order to focus

search in a few promising areas (low crossover probability), but

exploiting those areas doing a local search due to the high

mutation probability, in a similar way evolution strategies, for

example (1 + 1)-ES, work. We noticed that a high crossover

probability distracted the search due to the combination of rules

from quite different areas of the search space, but a low

crossover probability is still necessary to discover new

promising areas.

The population size is 300 individuals, and the maximum

number of generations is 50. Once that value is reached, the best

rule of the population is added to the final knowledge base. The

process is repeated until the final knowledge base covers all the

examples. Different values for parameter d(3) have been tried.

All the parameters of the evolutionary algorithm have been

heuristically obtained.

Fig. 3 shows the variation of the number of rules (a), the

average velocity change (b), the average right distance (c), and

the average linear velocity (d) with d for the final knowledge

base. These values have been measured for the environment

shown in Fig. 4(b). Values of d < 0.06 have been discarded

since they did not produce valid controllers. As d increases the

number of rules rises. The average velocity change evaluates

the average change of the robot’s velocity between two

consecutive control iterations. Low values of the average

velocity change indicate smooth and progressive changes in

velocity, reflecting more accuracy and quality in the control

actions. As can be seen in Fig. 3(b), as d increases the average

velocity change decreases, and consequently the accuracy and

quality of the controller rises. The difference between the

highest and lowest value of the average velocity change for the
different values of d is of more than the 65%. As opposed to this,

the difference in the extreme values of the right distance (c) and

the velocity (d) is around 7% and 3%, respectively, which are

not meaningful. Thus, a higher number of rules does not

improve the average velocity or the average right distance too

much, but gets smoother behaviors.

All the controllers that have been obtained were tested in

three simulated environments using the Nomad 200 robot

simulation software. We have to emphasize that the examples

training set is different from the environments testing set.

Learning only depends on function SF, which has to be

carefully selected, and also on the examples, that must be

chosen covering the input space with an adequate precision

(selection of the precision of the variables is also of high

importance). None of the environments shown in this paper

(Fig. 4) has been used during the learning process.

Fig. 4 shows as an example the robot path in three simulated

environments for d = 0.06. The robot trajectory is represented

by circular marks. A higher concentration of marks indicates

lower velocity. The learned controller has 100 rules, the

maximum velocity the robot can reach is 61 cm/s, and the

reference distance at which the robot should follow the right

wall is 51 cm. Ten tests have been done for each one of the

environments. The average values measured for some para-

meters that reflect the controller performance are shown in

Table 2.

Environment (b) is quite complex, with three concave

corners and seven convex corners in a circuit of a length of

54 m. Convex corners are truly difficult situations, because the

robot’s sensors may cease to correctly detect the wall at some

given moments, even though some of them may occasionally

Fig. 4. Path of the robot in different simulated environments for d = 0.06.

M. Mucientes et al. / Applied Soft Computing 7 (2007) 540–546 545
detect it. The controller must also significantly reduce velocity

at corners. In spite of these difficulties, the obtained average

velocity has been quite high, and the distance at which the robot

should follow the wall is near the desired reference distance.

The difference between both distances is caused by the high

number of corners, in which the orientation of the robot is very

bad (at concave corners the robot is detecting two perpendicular

walls, and sometimes at convex corners it detects no wall), and

a fast turning is prioritized over a correct distance.

Nevertheless, some aspects could be improved. Thus,

comparing this controller with refs. [17,18] (Fuzzy Temporal

Rule-based controller, hand-designed involving 313 rules), the
Table 2

Average values of some parameters for the environments of Fig. 4

Environment RD (cm) Velocity (cm/s) Velocity change (cm/s) Time (s)

(a) 70 57 4.23 62

(b) 65 51 4.59 106

(c) 63 48 5.48 87
obtained behavior provokes sharp changes in velocity. For this

reason, one of the aspects that characterizes a good wall-

following controller (smooth and progressive turns and changes

in velocity) is not completely fulfilled. Also, the controller

proposed in refs. [17,18] gets a trajectory closer to the shape of

the contour being followed. On the other hand, the time spent

for the design of a hand-designed controller is much higher, and

also a deep knowledge of the task to be controlled is required.

Another advantage of the controller presented in this paper is

the number of rules, much lower than in refs. [17,18].

6. Conclusions and future work

A genetic algorithm based on the IRL approach for the

learning of fuzzy controllers has been described. Learning has

no restrictions neither in the number of linguistic values for

each variable, nor in the values that define the membership

functions. The process only depends on function SF, and on the

selected precisions of the variables, which are application

dependent and must be carefully chosen. The algorithm has

M. Mucientes et al. / Applied Soft Computing 7 (2007) 540–546546
been applied to the learning of the wall-following behavior. The

learned control systems (for different values of d) have been

tested in a set of simulated environments with a high number of

corners, showing a good performance both in the distance the

wall was followed and in the average velocity.

Some aspects must be improved in the future, in order to get

a better cooperation among rules of the final knowledge base,

and enhance the interpretability of the rules. Another

challenging work will be the learning of Fuzzy Temporal

Rule-based controllers [17–19], which have a high degree of

expressiveness and of analyzing the temporal evolution of

variables, while taking past values into account.

Acknowledgement

This work was supported in part by the Dirección Xeral de

I + D of the Xunta de Galicia under grant PGIDIT04-

TIC206011PR and by the Spanish Ministry of Education and

Culture through grant TIN2005-03844.

References

[1] D.K. Pratihar, K. Deb, A. Ghosh, Optimal path and gait generations

simultaneously of a six-legged robot using a ga-fuzzy approach, Robot.

Auton. Syst. 41 (2002) 1–20.

[2] C. Zhou, Robot learning with ga-based fuzzy reinforcement learning

agents, Inf. Sci. 145 (2002) 45–68.

[3] D. Gu, H. Hu, L. Spacek, Learning fuzzy logic controller for reactive robot

behaviours, in: Proceedings of the 2003 IEEE/ASME International Con-

ference on Advanced Intelligent Mechatronics (AIM 2003), 2003, pp. 46–

51.

[4] D. Gu, H. Hu, J. Reynolds, E. Tsang, Ga-based learning in behaviour

based robotics, in: Proceedings of the 2003 IEEE International Sympo-

sium on Computational Intelligence in Robotics and Automation, Kobe,

Japan, (2003), pp. 1521–1526.

[5] H. Hagras, V. Callaghan, M. Collin, Learning and adaptation of an

intelligent mobile robot navigator operating in unstructured environment

based on a novel online fuzzy-genetic system, Fuzzy Sets Syst. 141 (2004)

107–160.

[6] M. Mucientes, D.L. Moreno, C.V. Regueiro, A. Bugarı́n, S. Barro, Design

of a fuzzy controller for the wall-following behavior in mobile robotics

with evolutionary algorithms, in: Proceedings of the International Con-

ference of Information Processing and Management of Uncertainty in
Knowledge-based Systems (IPMU’2004), Perugia, Italy, (2004), pp. 175–

182.

[7] D. Leitch, Genetic algorithms for the evolution of behaviours in robotics,

in: Genetic Algorithms and Soft Computing, Studies in Fuzziness and

Soft Computing, vol. 8, Physica-Verlag, 1996, pp. 306–328.

[8] R. Braunstingl, J. Mujika, J.P. Uribe, A wall following robot with a fuzzy

logic controller optimized by a genetic algorithm, in: Proceedings of the

International Joint Conference of the Fourth IEEE International Confer-

ence on Fuzzy Systems and the Second International Fuzzy Engineering

Symposium, vol. 5, Yokohama, Japan, (1995), pp. 77–82.

[9] D.K. Pratihar, K. Deb, A. Ghosh, A genetic-fuzzy approach for mobile

robot navigation among moving obstacles, International Journal of

Approximate Reasoning 20 (2) (1999) 145–172.

[10] O. Cordón, F. Herrera, Hybridizing genetic algorithms with sharing

scheme and evolution strategies for designing approximate fuzzy rule-

based systems, Fuzzy Sets Syst. 118 (2001) 235–255.

[11] O. Cordón, F. Herrera, F. Hoffmann, L. Magdalena, Genetic fuzzy

systems: evolutionary tuning and learning of fuzzy knowledge bases,

Advances in Fuzzy Systems—Applications and Theory, vol. 19, World

Scientific, 2001.

[12] L. Magdalena, J.R. Velasco, Fuzzy Rule-based controllers that learn by

evolving their knowledge base, in: Genetic Algorithms and Soft

Computing, Studies in Fuzziness and Soft Computing, vol. 8, Physica-

Verlag, 1996, pp. 172–201.

[13] A. Bonarini, Evolutionary learning of fuzzy rules: competition and

cooperation, in: W. Pedrycz (Ed.), Fuzzy Modelling: Paradigms and

Practice, Kluwer Academic Press, Norwell, USA, 1996, pp. 265–284.

[14] B. Carse, T.C. Fogarty, A. Munro, Evolving fuzzy rule based controllers

using genetic algorithms, Fuzzy Sets Syst. 80 (1996) 273–293.

[15] B. Carse, T.C. Fogarty, A. Munro, Evolving temporal fuzzy rule-bases for

distributed routing control in telecommunication networks, in: Genetic

Algorithms and Soft Computing, Studies in Fuzziness and Soft Comput-

ing, vol. 8, Physica-Verlag, 1996, pp. 467–488.

[16] J.M. Mendel, Fuzzy logic systems for engineering: a tutorial, Proc. IEEE

83 (3) (1995) 345–377.

[17] M. Mucientes, R. Iglesias, C.V. Regueiro, A. Bugarı́n, S. Barro, A fuzzy

temporal rule-based velocity controller for mobile robotics, Fuzzy Sets

Syst. 134 (2003) 83–99.

[18] M. Mucientes, R. Iglesias, C.V. Regueiro, A. Bugarı́n, S. Barro, A fuzzy

temporal rule-based approach for the design of behaviors in mobile

robotics, in: Intelligent Systems: Technology and Applications, Fuzzy

Systems, Neural Networks and Expert Systems of CRC Press International

Volumes on Intelligent Systems Techniques and Applications, vol. 2, CRC

Press, 2003, pp. 373–408.

[19] M. Mucientes, R. Iglesias, C.V. Regueiro, A. Bugarı́n, P. Cariñena, S.

Barro, Fuzzy temporal rules for mobile robot guidance in dynamic

environments, IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 31

(3) (2001) 391–398.

	Design of a fuzzy controller in mobile robotics using genetic algorithms
	Introduction
	Evolutionary learning of knowledge bases
	Learning of fuzzy rule-based controllers
	Learning the wall-following behavior
	Results
	Conclusions and future work
	Acknowledgement
	References

