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1 Introduction

Fuzzy control has shown to be a very useful tool in the field of autonomous
mobile robotics, characterized by a high uncertainty in the knowledge about
the environment where robot evolves.

The design of a fuzzy controller is generally made using expert knowledge
about the task to be controlled. Expert knowledge is applied in order to decide
the number of linguistic labels for each variable, to tune the membership
functions, to select the most adequate linguistic values for the consequents,
and to define the rules in the fuzzy knowledge base. This process is tedious
and highly time-consuming. For this reason, automated learning techniques,
such as evolutionary algorithms, have been employed for helping in some, or
in all, of the tasks involved in the design process.

A knowledge base is formed of a data base (number and definition of the
linguistic values, and universe of discourse of each of the variables) and the
rule base. Some authors have utilized evolutionary algorithms for learning
or tuning fuzzy controllers in robotics [1, 2, 3]. In some of the approaches
evolutionary algorithms are used just for tuning the membership functions.
In others, the complete rule base is learned, starting from a hand designed
data base. But only in a few of them both the data base and the rule base are
learned.

In this paper we describe the learning of a fuzzy controller for the wall-
following behaviour in a mobile robot. No restrictions are placed neither in
the number of linguistic labels, nor in the values of the membership functions.
The methodology is based on the Iterative Rule Learning (IRL) approach [4].
The paper is organized as follows: in section 2 some general comments about
the evolutionary learning of knowledge bases are made, whilst in section 3
the genetic learning methodology employed is explained. Section 4 describes
the application of the proposed algorithm to the wall-following behaviour,
and section 5 presents the results we obtained. Finally, conclusions and future
work are pointed out in section 6.
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2 Evolutionary learning of knowledge bases

Learning of knowledge bases using evolutionary algorithms has three main
approaches: Michigan, Pittsburgh and IRL [5]. In the Michigan approach [6],
each chromosome represents an individual rule, and the entire population is
the rule base. Rules evolve along time due to their interaction with the envi-
ronment. The major problem of this approach is that of resolving the conflict
between the performance of individual rules and that of the rule base. The
objective is to obtain a good rule base, which means to obtain good individ-
ual rules, but also rules that cooperate between each other to get adequate
outputs. This could be sometimes conflicting, for example when an individual
rule that receives a high payoff is not adequately cooperating with other rules.
This problem is addressed in [7].

This conflict is overcome by the Pittsburgh approach [8], where each chro-
mosome represents a full knowledge base. Length of the chromosomes can be
variable, which permits dealing with knowledge bases with a variable num-
ber of rules. This approach has a higher computational cost, because several
knowledge bases have to be evaluated, while for the Michigan approach a
single rule base is evaluated.

In the third approach (IRL [4]), each chromosome represents an individual
rule, but contrary to the Michigan approach, a single rule is learned by the
evolutionary algorithm and not the whole rule base. After each sequence of
iterations, the best rule is selected and added to the final rule base. The
selected rule must be penalised in order to induce niche formation in the
search space. Niching is necessary for solving multimodal problems, as occurs
with knowledge bases learning. In this case, each of the rules of the knowledge
base is a solution (highly multimodal problem), and all the solutions must be
taken into account to get the complete knowledge base. A common way to
penalize the rules that have been obtained is to delete those training examples
that have been covered by the set of rules that integrate the final rule base.
The final step of the IRL approach is to check whether the obtained set of
rules is a solution to the problem. In the case it is not, the process is repeated.
A weak point of this approach is that the cooperation between rules is not
taken into account when a rule is evaluated.

When learning knowledge bases, many approaches use a predefined number
of linguistic labels for each variable, or the shape of the membership functions
is constrained, facilitating the learning, but also limiting the solutions space
and the strength of the method. The learning of both the data and rule bases
can be done simultaneously, or in different stages. Some approaches firstly
learn the data base and finally generate the rule base using the learned data
base. Other approaches obtain the rule base using a predefined data base, and
then tuning the shape of the membership functions to improve the learned
knowledge base.
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3 Learning of fuzzy-rule based controllers

Our proposal consists on a learning method based on the IRL approach in
which both the data and rule bases are simultaneously learned. The only
predefined parameters are the universe of discourse and the granularity of each
variable. Both the number of linguistic labels, the shape of the membership
functions and the rules’ structure (a variable could not be considered in a
rule) will be learned. The algorithm has the following steps:

1. Obtain a rule for the system.
a) Initialise population.
b) Evaluate population.
c) Eliminate bad rules and fill up population.
d) Scale the fitness values.
e) While the maximum number of iterations is not exceeded.

i. Select the individuals of the population.
ii. Crossover and mutate the individuals.
iii. Evaluate population.
iv. Eliminate bad rules and fill up population.
v. Scale the fitness values.

2. Add the best rule to the final rule set.
3. Penalize the selected rule.
4. If the knowledge base does not solve the problem, return to step 1.

The rules that are going to be learned are conventional fuzzy rules like:

Ri : If X i
1
is Ai

1
and . . . and X i

NA is Ai
NA

Then Y i
1

is Bi
1
and . . . and Y i

NC is Bi
NC

(1)

where Ri, i=1, ..., NR, is the i-th rule, X i
j , j=1, ..., NA, and Y i

k , k=1, ..., NC,
are linguistic variables of the antecedent and consequent parts, respectively.
NR is the number of rules, NA the number of antecedents in a rule, NC the
number of consequents, and Ai

j and Bi
k are linguistic values (labels) of these

variables.
A set of examples has been chosen for learning the knowledge base. These

examples cover the universe of discourse of all the variables in the antecedent
part of the rule. The universes of discourse have been discretised, in order
to minimize the search space, with a step or granularity gn, n = 1, ..., NV ,
where NV = NA + NC is the number of variables. Prior to the application
of the learning method, the best action for each one of the examples is deter-
mined and saved in the variables in the consequent part of that example. The
function, SF , that scores the action of a rule over an example (not the fitness
function) is application dependent.

An example, el, is covered by rule Ri if it complies with the following two
conditions:
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Ai
1

(

el
1

)

∧ ... ∧ Ai
NA

(

el
NA

)

> 0 (2)

where Ai
j

(

el
j

)

represents the membership degree of the value of variable j in

the example el to Ai
j . A new parameter, δ, is defined with the aim of selecting

the relation between the number of rules and the quality and accuracy of the
controller. In that way, a second condition is imposed:

SF
(

Ri
(

el
))

max (SF (el))
> δ (3)

where SF
(

Ri
(

el
))

is the score assigned to the state reached by the system

after applying rule Ri over example el, and max
(

SF
(

el
))

is the maximum
score that an action can obtain for example el. The value of parameter δ can
be adjusted in a range between 0 and 1. A low value of δ produces a lower
number of rules in the final knowledge base, but the quality and the accuracy
of the controller decreases. On the contrary, a high value of δ increases the
quality of the controller, but also the number of rules.

The use of δ can be clarified by means of the following example. Let us
suppose a robot must reach a point by turning 30◦. Although this may be
labelled as the best control action, also a rule proposing a turning of 20◦

should be considered as a good rule, even though the goal point is not fully
reached. Parameter δ indicates the minimum quality a rule must have in order
to be a valid rule for being added to the final knowledge base.

The shape of the membership functions that are going to be learned is
shown in figure 1. Parameters bi

n and ci
n are learned, but points ai

n and di
n are

calculated as:

1
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Fig. 1. Shape of the membership function for the linguistic value A
i

n.

ai
n = max

{

bi
n − gn, lowern

}

(4)

di
n = min

{

ci
n + gn, uppern

}

(5)

where lowern and uppern are the extreme points of the universe of discourse
of variable n. In that way, it is not possible to exceed the range of the uni-
verse of discourse of the variables during the learning process. For exam-
ple, for a variable n having the following values: lowern = 0, uppern = 60,
gn = 10, bi

n = 40 and ci
n = 60, then ai

n = max {40− 10, 0} = 30 and
di

n = min {60 + 10, 60} = 60.
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Chromosomes are real coded, and a rule as the one shown in (1) is encoded
into a chromosome Ci as:

Ci =
(

ai
1
, bi

1
, ci

1
, di

1
, ..., ai

NV , bi
NV , ci

NV , di
NV

)

(6)

The first step of the genetic algorithm consists in initialising the popu-
lation. Rules in the initial population are created in the following way. An
example currently not covered by any rule in the final knowledge base is ran-
domly selected. The created rule is going to cover that single example, named
el, at this initial generation. The membership functions for this rule are con-
structed as: bi

n = ci
n = el

n, whilst ai
n and di

n are calculated using (4) and (5)
respectively.

The evaluation of each individual of the population (each rule) is done
with a two level fitness function. The first level (FF ) consists on counting
the number of examples that are covered by this rule, i.e., that fulfil (2)
and (3), and that are not yet covered by a rule of the final knowledge base.
If an example is covered by a rule of the final knowledge base, it will not
contribute to the fitness value of any rule in the population. A second level
for the fitness function is added in order to distinguish between rules with the
same antecedent part but different consequents. It is the average value of the
scoring function, SF , for all the examples that verify (2):

ASF i =

NE
∑

l=1

SF
(

Ri
(

el
))

NECi
(7)

where NE is the number of examples, and NEC i is the number of examples
that verify (2) for rule i. The second level of the fitness function is only used
(in conjunction with the first level) when the final generation has been reached
and the best rule of the population has to be added to the final knowledge
base.

If for any example a rule verifies (2) but not (3), then this rule is deleted
from the population. After the deletion of all the bad rules, the population
must be filled up, until its size reaches NR. The rules that will be added are the
best rules in the population. Finally the fitness values of the individuals of the
population must be linearly scaled in order to prevent premature convergence
of the population.

The selection procedure that has been employed is the stochastic remain-

der without replacement. An individual i will be selected int
(

FF i

AFF

)

times,

where FF i is the value of the fitness function (first level) for individual i, and

AFF is the average value of all FF i. Taking into account frac
(

FF i

AFF

)

the

population is randomly filled up. After selection, the individuals are crossed
(one-point crossover), mutated, and finally added to the new population.
Elitism has been applied to avoid the loss of the best individuals due to
crossover and mutation.
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Crossover is done taken into account that the combination of points ai
n and

bi
n cannot be truncated, and the same occurs to points ci

n and di
n. This means

that the slope of the sides of a membership function cannot be modified. After
crossover, each chromosome is reordered for repairing bad definitions of the
membership functions (e.g. bi

n > ci
n).

The mutation operator has three equally probable options to operate on a
gene. It will only modify genes of type bi

n or ci
n: increasing or decreasing the

value of the gene in an amount of gn, or leaving the gene unchanged. This will
provoke the extension or contraction of the membership function in a quantity
equal to the granularity of each variable, implementing a local search in that
way. After mutation, each chromosome will be reordered, and values of ai

n

and di
n will be calculated using (4) and (5), respectively.

Once the maximum number of iterations has been reached, the best rule
of the population is added to the final knowledge base, and all the examples
covered by this rule are marked. In that way these examples will not contribute
to the fitness value of the individuals in the next sequence of iterations. If all
the examples are covered by the rules of the final knowledge base, then this
is a solution to the problem and the algorithm ends.

4 Learning the wall-following behaviour

The methodology presented in the previous section is applied here for the
design of a fuzzy controller for the wall-following behaviour in mobile robotics.

The wall-following behaviour is usually implemented when the robot is
exploring an unknown area, or when it is moving between two points in a
map. A good wall-following controller is characterized by three features: to
maintain a suitable distance from the wall that is being followed, to move
at a high velocity whenever the layout of the environment is permitting, and
finally to avoid sharp movements, making smooth and progressive turns and
changes in velocity. The controller can be configured modifying the values of
two parameters: the reference distance, which is the desired distance between
the robot and the selected wall, and the maximum velocity attainable by the
robot. In what follows we assume that the robot is going to follow a contour
that is on its right side. Of course, the robot could also follow the left-hand
wall, but this can be easily dealt with by simply interchanging the sensorial
inputs.

The input variables of the control system are the right-hand distance (RD),
the distances quotient (DQ), which is calculated as:

DQ =
left− hand distance

RD
(8)

As it can be seen (figure 2), DQ shows the relative position of the robot
inside a corridor, which provides with information that is more relevant to the
problem than simply using the left-hand distance. A high value for DQ means
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that the robot is closer to the right-hand wall, whilst a low value indicates that
the closer wall is the left-hand one. The other input variables are the linear
velocity of the robot (LV), and the orientation of the robot with respect to
the wall it is following. A positive value of the orientation indicates that the
robot is approaching to the wall, whilst a negative value means the robot is
moving away from the wall. The output variables are the linear acceleration
and the angular velocity.

All the information used to calculate distances and orientations comes
from the ultrasound sensors of a Nomad 200 robot. The distances and the
orientation are obtained in two ways: if any of the walls (left or right) can be
modelled with a straight line using a least square mean of the raw sensor data,
then the corresponding distance and orientation are measured from that line.
Otherwise, distance is measured as the minimum distance of a set of sensors,
and the orientation will be the orientation of that sensor with respect to the
advance direction.

Left-hand distance RD

Fig. 2. Description of some of the distances used for the calculation of the input
variables.

The function SF used at (3) is defined for this application as:

SF
(

Ri
(

el
))

=
1

α1 + α2 + α3 + 1
(9)

where α1, α2, and α3 are respectively:

α1 = 100
|RD − reference distance|

gRD

(10)

α2 = 10
|maximum velocity − LV |

gLV

(11)

α3 =
|orientation|

gorientation

(12)

and gRD, gLV , and gorientation are the granularities of the respective input
variables. The granularities are used in these equations in order to evaluate
the deviations of the values of the variables from the desired ones in a rela-
tive manner (the deviation of the value of variable n from the desired one is
measured in units of gn). This makes the comparison of the deviations of dif-
ferent variables possible and, as a consequence, the assignment of the weights
for each one of the variables. These weights (100, 10 and 1 for (10), (11),
and (12) respectively) have been heuristically determined, and indicate how
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much important the deviation in the value of a variable is with respect to the
deviation of other variables.

SF takes values in [0, 1]. The highest weight has been assigned to the dis-
tance, as small variations of RD with respect to the reference distance should
be highly penalised. An intermediate weight is associated to velocity and, fi-
nally, the least important contribution to function SF is for the orientation
of the robot.

The defuzzification method that has been used for the learned fuzzy con-
troller is the height defuzzifier [9]:

Ok =

∑NR

i=1
Y

i

k Bi
k(Y

i

k)
∑NR

i=1
Bi

k(Y
i

k)
(13)

where Y
i

k is the centre of gravity of the linguistic label Bi
k, and Ok is the

defuzzified value for variable k. This method does not take into account the
width of the membership functions from the consequent part of the rule. For
this reason, and in order to simplify the learning process, the membership
functions of the variables of the consequent part are crisp. This simplification
does not affect the quality of the obtained controller.

5 Results

The system described in the previous sections has been implemented with
a crossover probability of 0.2 and a mutation probability (per gene) of 0.4
(remember that mutation can increase, decrease or maintain unchanged a
gene with equal probability). These values have been selected in order to focus
search in a few promising areas (low crossover probability), but exploiting
those areas doing a local search due to the high mutation probability, in
a similar way evolution strategies, for example (1+1)-ES, work. We noticed
that a high crossover probability distracted the search due to the combination
of rules from quite different areas of the search space, but a low crossover
probability is still necessary to discover new promising areas.

The population size is 300 individuals, and the maximum number of gen-
erations is 50. Once that value is reached, the best rule of the population
is added to the final knowledge base. The process is repeated until the fi-
nal knowledge base covers all the examples. Different values for parameter δ

(3) have been tried. All the parameters of evolutionary learning have been
heuristically obtained.

Figure 3 shows the variation of the number of rules and the average velocity
change of the final knowledge base with δ. As δ increases the number of rules
rises. Values of δ < 0.06 have been discarded since they did not produce valid
controllers. The average velocity change of the robot was measured for the
environment shown in figure 4(b). This variable evaluates the average change
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of the robot’s velocity between two consecutive control iterations. Low values
of the average velocity change indicate smooth and progressive changes in
velocity, reflecting more accuracy and quality in the control actions. As can
be seen in figure 3, as δ increases the average velocity change decreases, and
consequently the accuracy and quality of the controller rises.
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Fig. 3. Variation of the number of rules and the average velocity change of the final
knowledge base with δ.

All the controllers that have been obtained were tested in three simulated
environments using the Nomad 200 robot simulation software. We have to
emphasize that the environments training set is different from the testing set.
Learning only depends on function SF , which has to be carefully selected,
and also on the examples, that must be chosen covering the input space with
an adequate granularity (selection of the granularity of the variables is also
of high importance). None of the environments shown in this paper (figure 4)
have been used during the learning process.

Figure 4 shows as an example the robot path in three simulated environ-
ments for δ = 0.06. The robot trajectory is represented by circular marks. A
higher concentration of marks indicates lower velocity. The learned controller
has 100 rules, the maximum velocity the robot can reach is 61 cm/s, and the
reference distance at which the robot should follow the right wall is 51 cm.
Ten tests have been done for each one of the environments. The average val-
ues measured for some parameters that reflect the controller performance are
shown in table 1.

Environment RD (cm) Velocity (cm/s) Velocity change (cm/s) Time (s)

4(a) 70 57 4.23 62

4(b) 65 51 4.59 106

4(c) 63 48 5.48 87

Table 1. Average values of some parameters for the environments of figure 4.
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direction
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corner
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Movement

direction
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Fig. 4. Path of the robot in different simulated environments for δ = 0.06.

Environment 4(b) is quite complex, with three concave corners and seven
convex corners in a circuit of a length of 54 meters. Convex corners are truly
difficult situations, because the robot’s sensors may cease to correctly detect
the wall at some given moments, even though some of them may occasionally
detect it. The controller must also significantly reduce velocity at corners. In
spite of these difficulties, the obtained average velocity has been quite high,
and the distance at which the robot should follow the wall is near the desired
reference distance. The difference between both distances is caused by the
high number of corners, in which the orientation of the robot is very bad (at
concave corners the robot is detecting two perpendicular walls, and sometimes
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at convex corners it detects no wall), and a fast turning is prioritised over a
correct distance.

Nevertheless, some aspects could be improved. Thus, comparing this con-
troller with [10, 11] (Fuzzy Temporal Rule-based controller, hand-designed
involving 313 rules), the obtained behaviour provokes sharp changes in veloc-
ity. For this reason, one of the aspects that characterizes a good wall-following
controller (smooth and progressive turns and changes in velocity) is not ful-
filled. Also, the controller proposed in [10, 11] gets a trajectory closer to the
shape of the contour being followed.

6 Conclusions and future work

A genetic algorithm based on the IRL approach for the learning of fuzzy
controllers has been described. Learning has no restrictions neither in the
number of linguistic values for each variable, nor in the values that define the
membership functions. The process only depends on function SF , and on the
selected granularities of the variables, which are application dependent and
must be carefully chosen. The algorithm has been applied to the learning of the
wall-following behaviour. The learned control systems (for different values of
δ) have been tested in a simulated environment with a high number of corners,
showing a good performance both in the distance the wall was followed and
in the average velocity.

Some aspects must be improved in the future, in order to get a better
cooperation among rules of the final knowledge base, and enhance the in-
terpretability of the rules. Another challenging work will be the learning of
Fuzzy Temporal Rule-based controllers [12, 10, 11], which have a high degree
of expressiveness and of analysing the evolution of variables, whilst taking
past values into account.
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