
Learning Weighted Linguistic Rules for Mobile Robotics ∗

M. Mucientes1 R. Alcalá2 J. Alcalá-Fdez2 J. Casillas2

1 Dept. Electronics and Computer Science. University of Santiago de Compostela. Spain, E-15782
2 Dept. Computer Science and Artificial Intelligence. University of Granada. Spain, E-18071

Email: manuel@dec.usc.es, alcala@decsai.ugr.es, jalcala@decsai.ugr.es, casillas@decsai.ugr.es

ABSTRACT:
A methodology for learning behaviors in mobile robotics

has been developed. The algorithm is based on obtaining co-
operative rules with weights, and uses a genetic algorithm to
do the combinatorial search. The methodology has been em-
ployed to learn the wall-following behavior, and the obtained
controller has been tested using the Nomad 200 simulation
software in different environments.

Keywords: Mobile robotics, behaviors, fuzzy modeling,
evolutionary algorithms.

1 Introduction

Control in mobile robotics requires different levels of action:
planning (high level) and reacting (low level). Usually, the
reactive layer is composed of behaviors that act directed by the
planning level. These behaviors are implemented in different
ways, being one of the most usual a fuzzy controller.

The characteristic that makes specially useful a fuzzy con-
troller for the implementation of a behavior is the ability that
fuzzy controllers have in order to cope with noisy inputs. This
noise appears when the sensors of the robot detect the sur-
rounding environment, and is particularly high when using ul-
trasound sensors (specular reflection, low angular resolution,
etc.).

However, learning or tuning a fuzzy controller is a tedious
task, and for this reason some learning techniques have been
applied (evolutionary algorithms, neural networks, ...). Evo-
lutionary algorithms have the advantage that can learn inter-
pretable rules and, also, that the designer can select the most
adequate tradeoff between interpretability and accuracy for
the knowledge base that is going to be learned.

In [2], a new learning methodology to induce a better co-
operation among the fuzzy rules was proposed: the Coopera-
tive Rules (COR) methodology. The learning philosophy was
based on the use of ad hoc data-driven methods1 to determine
the fuzzy input subspaces where a rule should exist and a set
of candidate consequents assigned to each rule. After that, a
combinatorial search was carried out in the set of candidate
consequents to obtain a set of rules with good cooperation
among them. In [3], different combinatorial search techniques
were considered with this aim.

∗This work was supported in part by the Spanish Ministry of Science
and Technology under grants no. TIC2003-09400-C04-03 and TIC2002-
04036-C05-01, and the DXID of the Xunta de Galicia under grant
PGIDIT04TIC206011PR.

1A family of efficient and simple methods guided by covering criteria of
the data in the example set.

On the other hand, other technique to improve the rule co-
operation is the use of weighted fuzzy rules [5, 8], in which
modifying the linguistic model structure an importance factor
(weight) is considered for each rule. By means of this tech-
nique, the way in which these rules interact with their neigh-
bor ones could be indicated.

In [1], the Weighted COR (WCOR) methodology was pre-
sented to include the weight learning within the original COR
methodology. In this way, both techniques were combined to
obtain weighted cooperative fuzzy rules. Thus, the system ac-
curacy is increased while the interpretability is maintained to
an acceptable level.

In this paper, a methodology, based on WCOR, for the de-
sign of behaviors in mobile robotics is presented. The algo-
rithm has been applied to the wall-following behavior. In or-
der to show the performance of the obtained controller, it has
been tested in several simulated environments, and it has also
been compared with a previous approach based on COR [7].
The paper is structured as follows: section 2 introduces the
wall-following behavior, section 3 describes the COR method-
ology, while in section 4 WCOR is presented. Finally, some
results are shown, and conclusions are pointed out.

2 Learning the wall-following behavior

In order to evaluate the proposed methodology, we have se-
lected the wall-following behavior, which is usually imple-
mented when the robot is exploring an unknown area, or
when it is moving between two points in a map. A good
wall-following controller is characterized by three features: to
maintain a suitable distance from the wall that is being fol-
lowed, to move at a high velocity whenever possible, and fi-
nally to avoid sharp movements, making smooth and progres-
sive turns and changes in velocity.

The controller can be configured modifying the values of
two parameters: the reference distance, which is the desired
distance between the robot and the selected wall, and the max-
imum velocity attainable by the robot. In what follows we as-
sume that the robot is going to follow a contour that is on its
right side. Of course, the robot could also follow the left-hand
wall, but this can be easily dealt with by simply interchanging
the sensorial inputs.

The input variables of the control system are the right-hand
distance (RD), the distances quotient (DQ), which is calcu-
lated as:

DQ =
le f t −hand distance

RD
(1)

1

DQ shows the relative position of the robot inside a corri-
dor, which provides with information that is more relevant to
the problem than simply using the left-hand distance. A high
value for DQ means that the robot is closer to the right-hand
wall, whilst a low value indicates that the closer wall is the
left-hand one. The other input variables are the linear velocity
of the robot (LV) and the orientation of the robot with respect
to the wall it is following. A positive value of the orientation
indicates that the robot is approaching to the wall, whilst a
negative value means the robot is moving away from the wall.
The output variables are the linear acceleration and the angu-
lar velocity.

The values for the distances and the orientation are obtained
from the distances measured by the ultrasound sensors of the
robot. We use the distributed perception [10]: distance is mea-
sured as the minimum distance of a set of sensors, and the
orientation will be a weighted sum of the orientation of each
sensor in the set, giving more weight to those sensors that de-
tect closer obstacles.

A set of examples (1638) has been chosen for learning the
knowledge base. These examples cover the universe of dis-
course of all the variables in the antecedent part of the rule.
The universes of discourse have been discretized, in order to
minimize the search space, with a step or precision pn, where
n is the variable. Function SF, that scores the action of the
rule base over an example, is defined as:

SF
(

RB(el)
)

= α1 +α2 +α3 (2)

where el is an example, and α1, α2, and α3 are respectively:

α1 = 100 ·
|RD− re f erencedistance|

pRD
(3)

α2 = 10 ·
|maximumvelocity−LV|

pLV
(4)

α3 =
|orientation|

porientation
(5)

Thus, low values of SF indicate a good control action (a
score of 0 means that the robot has reached the best state).
pRD, pLV , and porientation are the precisions of the respective
input variables. Precisions are used in these equations in or-
der to evaluate the deviations of the values of the variables
from the desired ones in a relative manner (the deviation of
the value of variable n from the desired one is measured in
units of pn). This makes possible the comparison of the de-
viations of different variables and, as a consequence, the as-
signment of the weights for each one of the variables. These
weights (100, 10 and 1 for (3), (4), and (5) respectively) have
been heuristically determined, and indicate how much impor-
tant the deviation in the value of a variable is with respect to
the deviation of other variables. The highest weight has been
assigned to the distance, as small variations of RD with respect
to the reference distance should be highly penalized. An inter-
mediate weight is associated to velocity and, finally, the least
important contribution to function SF is for the orientation of
the robot.

The index that measures the global quality of the encoded
rule set is:

f (RB) =
1

2 ·NE

NE

∑
l=1

(

g(el)
)2

(6)

where NE is the number of examples, and g(el) is defined as:

g(el) =

{(

1−h(el)
)

·ω+1 i f h(el) ≤ 1
exp

(

1−h(el)
)

i f h(el) > 1

}

(7)

being ω a scaling factor that has been set to 1000, and h(el):

h(el) =
min

(

SF(el)
)

+1
SF (RB(el))+1

(8)

where min
(

SF(el)
)

is the minimum score that an action can
obtain for example el (using only the discrete values of the
output variables). These values are obtained before the be-
ginning of the algorithm, trying and scoring all the possible
actions for each example.

3 The COR Methodology

The process followed to learn the fuzzy controller is based on
the COR methodology (proposed in [2] and extended in [4]).
The COR methodology is guided by example covering crite-
ria to obtain antecedents (fuzzy input subspaces) and candi-
date consequents [3]. Depending on the combination of this
technique with different ad hoc data-driven methods, differ-
ent learning approaches arise. In this work, we will consider
the Wang and Mendel’s method [11] (WM) for this purpose
—approach guided by examples—. The COR methodology
following this approach consists of two stages:

1. Search space construction — It obtains a set of candidate
consequents for each rule.

2. Selection of the most cooperative fuzzy rule set — It per-
forms a combinatorial search among these sets looking
for the combination of consequents with the best global
accuracy.

A wider description of the COR-based rule generation pro-
cess is shown in Fig. 1.

The above mentioned methodology has some interesting
advantages that make it very useful to learn fuzzy controllers
in mobile robots navigation. We can mainly highlight two
characteristics:

1. Search space reduction — The COR methodology re-
duces the search space respect to other rule base learning
methods [9] and allows it to be quicker and to make a
better solution exploration. It is due to two main reasons:

• The fact of assigning each example to only one sub-
space will involve to reduce the number of candi-
date consequents, since the positive example sets
are reduced.

• The use of a restrictive condition to construct C(Sh)
(see eq. (10) in Fig. 1) that generates a low number
of candidate rules.

This is an important issue for the learning of fuzzy con-
trollers, where a high number of examples is used. In the
wall-following behavior presented in this paper, 1638 ex-
amples have been used, and the employed methodology
spends around one hour (with an Intel Pentium 4 2.4 GHz
processor) in order to obtain the controller.

Inputs:
• An input-output data set—E = {e1, . . . ,el , . . . ,eN}, with el =

(xl
1, . . . ,x

l
n,y

l
1 , . . . ,yl

m), l ∈ {1, . . . ,N}, N being the data set size,
and n (m) being the number of input (output) variables—
representing the behavior of the problem being solved.

• A fuzzy partition of the variable spaces. In our case, uniformly
distributed fuzzy sets are regarded. Let Ai be the set of lin-
guistic terms of the i-th input variable, with i ∈ {1, . . . ,n}, and
B j be the set of linguistic terms of the j-th output variable, with
j ∈ {1, . . . ,m}, with |Ai| (|B j |) being the number of labels of the
i-th (j-th) input (output) variable.

Algorithm:
1. Search space construction:

1.1. Define the fuzzy input subspaces containing positive
examples: To do so, we should define the positive
example set (E+(Ss)) for each fuzzy input subspace
Ss = (As

1, . . . ,A
s
i , . . . ,A

s
n), with As

i ∈ Ai being a label, s ∈
{1, . . . ,NS}, and NS = ∏n

i=1 |Ai| being the number of fuzzy
input subspaces. In this paper, we use the following:

E+(Ss) = { el ∈ E | ∀i ∈ {1, . . . ,n},
∀A′

i ∈ Ai,µAs
i
(xl

i) ≥ µA′
i
(xl

i) }
(9)

with µAs
i
(·) being the membership function associated

with the label As
i .

Among all the NS possible fuzzy input subspaces, con-
sider only those containing at least one positive example.
To do so, the set of subspaces with positive examples is
defined as S+ = {Sh | E+(Sh) 6= /0}.

1.2. Generate the set of candidate rules in each subspace
with positive examples: Firstly, the candidate conse-
quent set associated with each subspace containing at
least an example, Sh ∈ S+, is defined. In this paper, we
use the following:

C(Sh) = { (Bkh
1 , . . . ,Bkh

m) ∈ B1 ×·· ·×Bm |

∃el ∈ E+(Sh) where ∀ j ∈ {1, . . . ,m},
∀B′

j ∈ B j, µ
B

kh
j

(yl
j) ≥ µB′

j
(yl

j) }.
(10)

Then, the candidate rule set for each subspace is de-
fined as CR(Sh) = {Rkh = [IF X1 is Ah

1 and ... and Xn

is Ah
n THEN Y1 is Bkh

1 and ... and Ym is Bkh
m] such that

(Bkh
1 , . . . ,Bkh

m) ∈C(Sh)}.
To allow COR to reduce the initial number for fuzzy rules,
the special element R /0 (which means “do not care”) is
added to each candidate rule set, i.e., CR(Sh) = CR(Sh)∪
R /0. If it is selected, no rules are used in the correspond-
ing fuzzy input subspace.

2. Selection of the most cooperative fuzzy rule set — This
stage is performed by running a combinatorial search algo-
rithm to look for the combination RB = {R1 ∈ CR(S1), . . . ,Rh ∈
CR(Sh), . . . ,R|S+| ∈ CR(S|S+|)} with the best accuracy. Since
the tackled search space is usually large, approximate search
techniques should be used.
An index f (RB) measuring the global quality of the encoded
rule set is considered to evaluate the quality of each solution.
In order to obtain solutions with a high interpretability, the orig-
inal function is modified to penalize excessive number of rules:

f ′(RB) = f (RB)+β · f (RB0) ·
#RB
|S+|

(11)

with β ∈ [0,1] being a parameter defined by the designer
to regulate the importance of the number of rules, #RB be-
ing the number of rules used in the evaluated solution (i.e.,
|S+| − |{Rh ∈ RB such that Rh = R /0}|), and RB0 being the initial
rule base considered by the search algorithm.

Figure 1: COR algorithm

2. Interpretability issues — The proposed methodology has
also some interesting advantages from the interpretabil-
ity of the obtained fuzzy knowledge point of view. In this
case, the membership functions and the model structure
keep invariable, since the COR methodology improves
the accuracy by only inducing cooperation among lin-
guistic fuzzy rules. Furthermore, the COR methodol-
ogy achieves a rule reduction process at the same time as
the learning one with the aim of improving the accuracy
(the cooperation among rules and thus the system per-
formance can be improved by removing rules) and inter-
pretability (a model with less rules is more interpretable)
of the learned model. These are important issues in fuzzy
control for mobile robot navigation, as the actions of the
robot are easily understandable.

Finally, since the search space tackled in step 2. is usually
large, it is necessary to use approximate search techniques.
In [3] four different well-known techniques were proposed
for this purpose. One of them, the ant colony optimization
(ACO) [6], was first applied to the fuzzy control for mobile
robot navigation in [7]. We will consider this approach for
comparison in the experiments section.

4 Learning Weighted Linguistic Rules based on COR

In this section we present an extension of the COR method-
ology to obtain a cooperative set of weighted linguistic rules.
In the following, we present the use of the weighted linguistic
rules and the said WCOR methodology (learning scheme and
evolutionary algorithm).

4.1 The Use of Weighted Linguistic Rules

Using rule weights [5, 8] has been usually considered to im-
prove the way in which rules interact, improving the accuracy
of the learned model. In this way, rule weights suppose an ef-
fective extension of the conventional fuzzy reasoning system
that allow the tuning of the system to be developed at the rule
level [5, 8].

When weights are applied to complete rules, the corre-
sponding weight is used to modulate the firing strength of a
rule in the process of computing the defuzzified value. From
human beings, it is very near to consider this weight as an im-
portance degree associated to the rule, determining how this
rule interacts with its neighbor ones. We will follow this ap-
proach, since the interpretability of the system is appropriately
maintained. In addition, we will only consider weight values
in [0,1] since it preserves the model readability. In this way,
the use of rule weights represents an ideal framework for ex-
tended linguistic fuzzy modeling when we search for a trade-
off between accuracy and interpretability. In order to do so,
we will follow the weighted rule structure and the inference
system proposed in [8] extended for multiple output variables:

IF X1 is A1 and . . . and Xn is An
THEN Y1 is B1 and . . . and Ym is Bm with [w],

(12)

where Xi (Yj) are the linguistic input (output) variables, Ai (B j)
are the linguistic labels used in the input (output) variables, w

is the real-valued rule weight, and with is the operator model-
ing the weighting of a rule.

With this structure, the fuzzy reasoning must be extended.
The classical approach is to infer with the FITA (First Infer,
Then Aggregate) scheme and compute the defuzzified output
of the j-th variable as the following weighted sum:

y(j) =
∑h mh ·wh ·Ph(j)

∑h mh ·wh
, (13)

with mh being the matching degree of the h-th rule, wh be-
ing the weight associated to the h-th rule, and Ph j being the
characteristic value of the output fuzzy set corresponding to
that rule in the j-th variable. In this contribution, the center
of gravity will be considered as characteristic value and the
minimum t-norm will play the role of the implication and con-
junctive operators.

A simple approximation for weighted rule learning would
consist in considering an optimization technique to derive the
associated weights of the previously obtained rules (e.g., by
means of ad hoc data-driven methods as WM, or even COR).

4.2 The WCOR Methodology

This methodology involves an extension of the original COR
methodology. Therefore, WCOR [1] consists of the following
steps:

1. Obtain the subspaces with positive examples Sh ∈ S+ and
a set of candidate consequents C(Sh) associated to them.

2. Problem representation. For each rule Rh we have: Sh,
C(Sh), and wh ∈ [0,1].

Since Sh is kept fixed, the problem will consist of de-
termining the consequents and the weight associated to
each rule. Two vectors, c1 and c2, of size |S+| (number
of rules finally obtained) are defined to represent this in-
formation, where,

c1[h] = kh | Rkh ∈CR(Sh) (14)

c2[h] = wh, ∀h ∈ {1, . . . , |S+|} (15)

In this way, the c1 part is an integer-valued vector in
which each cell represents the index of the consequents
used to build the corresponding rule. The c2 part is a real-
valued vector in which each cell represents the weight
associated to this rule. Finally, a problem solution is rep-
resented as follows:

c = c1 c2 (16)

3. Perform a search on the c vector, looking for the combi-
nation of consequents and weights with the best coopera-
tion. To do that, we consider the use of a simple Genetic
Algorithm (GA).

4.3 Genetic Algorithm Applied to the WCOR Method-
ology

The proposed GA performs an approximate search among the
candidate rules with the main aim of selecting the set of conse-
quents with the best cooperation and simultaneously learning
the weights associated to the obtained rules. The main charac-
teristics of the said algorithm are presented in the following:

• Genetic Approach — An elitist generational GA with the
Baker’s stochastic universal sampling procedure.

• Initial Pool — The initial pool is obtained by generating
a possible combination at random for the c1 part of each
individual in the population. And for the c2 part, it is ob-
tained with an individual having all the genes with value
‘1’, and the remaining individuals generated at random
in [0,1].

• Fitness Function — The fitness function will be the said
objective function, defined in eq. (11) in Fig. 1.

• Crossover — The standard two-point crossover in the c1
part combined with the max-min-arithmetical crossover
in the c2 part. By using the max-min-arithmetical
crossover, if cv

2 = (c[1], . . . ,c[k], . . . ,c[n]) and cw
2 =

(c′[1], . . . ,c′[k], . . . ,c′[n]) are crossed, the next four off-
spring are obtained:

c1
2 = acw

2 +(1−a)cv
2 (17)

c2
2 = acv

2 +(1−a)cw
2 (18)

c3
2 with c3[k] = min{c[k],c′[k]} (19)

c4
2 with c4[k] = max{c[k],c′[k]} (20)

with a ∈ [0,1] being a parameter chosen by the GA de-
signer.

In this case, eight offspring are generated by combin-
ing the two ones from the c1 part (two-point crossover)
with the four ones from the c2 part (max-min-arithmetical
crossover). The two best offspring so obtained replace
the two corresponding parents in the population.

• Mutation — The operator considered in the c1 part ran-
domly selects a gene (h ∈ {1, . . . , |S+|}) and changes at
random the current consequent Bkh by other consequent
Bkh

′ such that Rk′h
∈ CR(Sh). On the other hand, the se-

lected gene in the c2 part takes a value at random within
the interval [0,1].

5 Results

The learned controller has been tested using the Nomad 200
simulation software. Six environments have been chosen
which include very different situations that the robot usually
faces during navigation: straight walls of different lengths,
followed and/or preceded of a number of concave and con-
vex corners, gaps, ... thus covering a wide range of contours
to follow and truly defining very complex test environments.
It is important to remark that none of these environments have
been used during the learning process. Thus, the training set
has been a set of 1638 examples that uniformly cover the uni-
verse of discourse of the input variables.

Figure 2 shows the robot path along one of the test environ-
ments. The robot trajectory is represented by circular marks.
A higher concentration of marks indicates lower velocity. The
maximum velocity the robot can reach is 61 cm/s, and the ref-
erence distance at which the robot should follow the right wall
is 51 cm.

Several controllers have been learned for different values of
β (equation 11), a parameter to regulate the importance of the

Concave

corner

Convex

corner

Movement

direction

1 meter

Figure 2: Path of the robot along environment E.

number of rules. Finally, the controller with β = 0.2 has been
selected. This controller has also been compared with another
one obtained using the methodology presented in [7]. In [7]
the COR methodology without weights had been applied for
the same purpose, but in that case the search technique was
the ant colony optimization algorithm, while in this approach
a genetic algorithm has been used.

The controllers have 46 rules (WCOR) and 55 rules (COR)
[7] respectively (both learned for β = 0.2). Ten tests have
been done for each one of the analyzed environments. The
average values measured for some parameters that reflect the
controllers performance are shown in table 1, while table 2
shows the values of these parameters for the COR controller
[7]. The parameters are the average distance to the right wall
(the wall that is being followed), the average linear velocity,
the time spent by the robot along the path, and the average
velocity change. The latter parameter measures the change in
the linear velocity between two consecutive cycles, reflecting
the smoothness of the behavior.

Table 1: Average values of some parameters for WCOR con-
troller (46 rules).

Env. RD (cm) Vel. (cm/s) ∆Vel. (cm/s) Time (s)
A 57 54 3.87 101
B 58 56 3.96 61
C 51 54 3.09 74
D 55 56 3.60 108
E 49 50 6.17 114
F 55 54 4.13 101

As can be seen, the controller learned using WCOR has

Table 2: Average values of some parameters for COR con-
troller (55 rules) [7].

Env. RD (cm) Vel. (cm/s) ∆Vel. (cm/s) Time (s)
A 55 49 5.57 113
B 57 50 7.52 69
C 52 41 5.65 97
D 54 54 5.59 112
E 50 48 7.00 121
F 53 49 7.19 111

increased the average velocity in most of the environments
around a 10% without getting worse the average right-hand
distance. Also the smoothness of the behavior has been im-
proved in all of the environments. The improvement of these
parameters due to the use of weights for the rules has been ob-
tained without loosing interpretability of the knowledge base.

The Data Base and the Rule Base of the model obtained by
WCOR are respectively presented in Figures 3 and 4. In Fig-
ure 4, each row of the table represents a fuzzy subspace and
contains its associated output consequents, i.e., the correspon-
dent labels together with its respective rounded rule weight.
Moreover, these weights have been graphically showed by
means of the gray scale, from black (1.0) to white (0.0).

In order to show the quality of the controller we are going to
describe in detail the path of the robot in environment E (fig-
ure 2). As it has been said, this environment is quite complex,
with ten concave corners and six convex corners in a circuit
of a length of 57 meters. The measurements of the ultrasound
sensors are quite noisy due to the gaps present in the wall, and
also because of the convex corners. These are truly difficult

situations, because the robot’s sensors may cease to correctly
detect the wall at some given moments. The controller must
also significantly reduce velocity at corners. All these situa-
tions provoke a reduction in the average distance and velocity.
As can be seen, the robot follows the wall with a high pre-
cision, except at the corners, where it approaches to the wall
(concave corners) or gets away from it (convex corners) in or-
der to turn.

X1

l1 l2 l3 l4

X2/X4

l1 l2

X3

l1 l2 l3 l4 l5

Y1/Y2

l1 l2 l3 l4 l5 l6 l7 l8 l9

Figure 3: Data Base of the obtained model.

#R: 46

X1 X2 X3 X4 Y1,Y2 with
l1 l1 l2 l2 l1,l2 [0.660]
l1 l1 l3 l1 l5,l5 [0.297]
l1 l1 l3 l2 l4,l3 [0.360]
l1 l1 l4 l2 l8,l2 [0.333]
l1 l2 l1 l2 l1,l2 [0.334]
l1 l2 l2 l1 l3,l6 [0.932]
l1 l2 l2 l2 l4,l3 [0.382]
l1 l2 l3 l1 l7,l6 [0.743]
l1 l2 l3 l2 l8,l3 [0.610]
l1 l2 l4 l1 l9,l6 [0.986]
l1 l2 l4 l2 l9,l2 [0.947]
l1 l2 l5 l1 l9,l1 [0.873]
l2 l1 l1 l1 l1,l1 [0.417]
l2 l1 l1 l2 l1,l1 [0.965]
l2 l1 l2 l1 l1,l8 [0.771]
l2 l1 l3 l1 l1,l7 [0.408]

X1 X2 X3 X4 Y1,Y2 with

l2 l1 l3 l2 l3,l4 [0.440]
l2 l1 l4 l1 l7,l7 [0.729]
l2 l1 l4 l2 l7,l4 [0.466]
l2 l1 l5 l1 l9,l6 [0.519]
l2 l1 l5 l2 l9,l3 [0.698]
l2 l2 l2 l1 l1,l8 [0.976]
l2 l2 l2 l2 l1,l6 [0.957]

l2 l2 l3 l1 l8,l8 [0.751]
l2 l2 l3 l2 l7,l6 [0.559]
l2 l2 l5 l2 l9,l1 [0.465]
l3 l1 l1 l2 l1,l1 [0.981]
l3 l1 l2 l2 l1,l6 [0.981]
l3 l1 l3 l1 l2,l8 [0.879]
l3 l1 l3 l2 l1,l4 [0.273]
l3 l1 l4 l1 l8,l8 [0.498]
l3 l1 l4 l2 l7,l6 [0.425]
l3 l1 l5 l1 l9,l8 [0.765]
l3 l1 l5 l2 l9,l4 [0.683]
l3 l2 l3 l1 l1,l8 [0.647]
l3 l2 l3 l2 l1,l6 [0.426]
l3 l2 l4 l2 l7,l6 [0.368]
l4 l1 l1 l1 l1,l1 [0.929]
l4 l1 l2 l2 l1,l6 [0.195]
l4 l1 l3 l1 l1,l8 [0.982]
l4 l1 l3 l2 l1,l6 [0.960]
l4 l1 l4 l1 l1,l8 [0.585]
l4 l1 l4 l2 l1,l6 [0.374]
l4 l1 l5 l1 l5,l8 [0.528]
l4 l1 l5 l2 l6,l6 [0.365]
l4 l2 l4 l1 l2,l8 [0.600]

Figure 4: Rule Base of the obtained model.

6 Conclusions

A methodology for the design of behaviors in mobile robotics
has been presented. It is based on COR (Cooperative Rules)
with weights (WCOR), and uses a genetic algorithm to per-
form the search. Using rule weights improves the accuracy of
the knowledge base (the way rules interact), while maintain-
ing a good interpretability.

The system has been tested learning the wall-following
behavior in mobile robotics using the Nomad 200 software,
showing a good performance in the different environments in
which it has been tested. Also, the learned controller has been

compared with another one obtained using the COR method-
ology [7]. The WCOR controller improves the average linear
velocity and the smoothness of the behavior maintaining an
adequate distance to the right-hand wall.

REFERENCES

[1] R. Alcalá, J. Casillas, O. Cordón, and F. Herrera. Im-
proving simple linguistic fuzzy models by means of the
weighted cor methodology. In Advances in Artificial
Intelligence - IBERAMIA 2002, number 2527 in Lec-
ture Notes in Artificial Intelligence, pp. 294–302, Sevilla
(Spain), 2002. Springer-Verlag.

[2] J. Casillas, O. Cordón, and F. Herrera. Cor: A methodol-
ogy to improve ad hoc data-driven linguistic rule learn-
ing methods by inducing cooperation among rules. IEEE
Trans. Syst., Man, Cybern. B, 32(4):526–537, 2002.

[3] J. Casillas, O. Cordón, and F. Herrera. Different ap-
proaches to induce cooperation in fuzzy linguistic mod-
els under the cor methodology. In B. Bouchon-Meunier,
J. Gutiérrez-Rı́os, L. Magdalena, and R. R. Yager, ed-
itors, Techniques for Constructing Intelligent Systems,
pp. 321–334. Springer-Verlag, 2002.

[4] J. Casillas, O. Cordón, and F. Herrera. COR method-
ology: a simple way to obtain linguistic fuzzy models
with good interpretability and accuracy. In J. Casil-
las, O. Cordón, F. Herrera, and L. Magdalena, edi-
tors, Accuracy improvements in linguistic fuzzy model-
ing. Springer, Heidelberg, Germany, 2003.

[5] J. S. Cho and D. J. Park. Novel fuzzy logic control based
on weighting of partially inconsistent rules using neural
network. J. Intell. Fuzzy Systems, 8:99–110, 2000.

[6] M. Dorigo, V. Maniezzo, and A. Colorni. The ant sys-
tem: optimization by a colony of cooperating agents.
IEEE Trans. Syst., Man, Cybern. B, 26(1):29–41, 1996.

[7] M. Mucientes and J. Casillas. Obtaining a fuzzy con-
troller with high interpretability in mobile robots navi-
gation. In Proc. Fuzz-IEEE 2004, pp. 1637–1642, Bu-
dapest (Hungary), 2004.

[8] N. R. Pal and K. Pal. Handling of inconsistent rules with
an extended model of fuzzy reasoning. J. Intell. Fuzzy
Systems, 7:55–73, 1999.

[9] P. Thrift. Fuzzy logic synthesis with genetic algorithms.
In R.K. Belew and L.B. Booker, editors, Proc. 4th Int.
Conf. on Genetic Algorithms, pp. 509–513, San Mateo,
CA, USA, 1991. Morgan Kaufmann Publishers.

[10] J. Urzelai, J. P. Uribe, and M. Ezkerra. Fuzzy con-
troller for wall-following with a non-holonomous mo-
bile robot. In Proc. Fuzz-IEEE’97, pp. 1361–1368,
Barcelona (Spain), 1997.

[11] L.-X. Wang and J.M. Mendel. Generating fuzzy rules
by learning from examples. IEEE Trans. Syst., Man, Cy-
bern., 22(6):1414–1427, 1992.

