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Abstract— The paper proposes a method to automatically de- approach (which combines the data set generation technique

sign a fuzzy controller for the mobile object following behavior in  with the COR learning methodology) are the following:
mobile robotics. The system has been tested in several simulated

situations using the Nomad 200 robot software. The proposed * €a@siness in the design,
approach obtains a knowledge base with a good interpretability ¢ Very quick learning, and
in a reduced time, and the designer only has to define the number « fuzzy controller with a good interpretability.
\c;grrir:tzﬁg.bershlp functions and the universe of discourse of each o aner is organized as follows. Section Il introduces
the mobile object following behavior. Section Il presents
|. INTRODUCTION the methodology that has been used. Section IV shows the

Modern control architectures for mobile robots are hybricgbtamed results and, finally, conclusions are discussed in

thus they are compound of layers [1]: at the lowest layehail t ection V.
reactive control(selection of control action from the current || AuToOMATIC DESIGN OF AFUZZY CONTROLLER:
sensorial information) is grouped, while on the top laye th FOLLOWING A MOBILE OBJECT

deliberative controlplanning tasks about future positions and i o
actions of the robot) is done. In that way, the robot is able N order to describe the methodology for obtaining a fuzzy

to implement complex tasks, and also react to changes in ffitroller in mobile robotics, the “follow a mobile object”
environment (obstacles are moved, people appear, ...). behavior is going to be useq as an example., but the same steps
The reactive layer is usually implemented with behavioGPuld be applied for learming other behaviors. Other result
(tasks like wall-following, go through a door, follow a pers with the \.Nall-followmg' behavior are available in [1.8]. '
avoid a moving obstacle, etc.) that are coordinated by the/ Mobile robot can implement the *follow a mobile object’
planning layer. The environments in which an autonomo§havior for tracking a person, or when it is cooperatingwit
robot moves are unconstrained, and have a high amo@Hfer robots in the implementation of a task and one of the
of uncertainty. Furthermore, information provided by robd©Pots is guiding the other ones. A good implementation of
sensors is noisy and unreliable. This problem becomes miig Pehavior has to place the robot at the objective point
important when using the ultrasound sensors data: low angufZebi: Yob;) (Fig- 1). This point is defined using the desired
resolution and specular reflection. Fuzzy logic has shown @§tanced..s, Fig. 1) between the robot and the mobile object,
be a useful tool when dealing with this uncertainty and h&@§'d the reference deviatiotic(v,.. s, Fig. 1), which is an angle
been widely used for the design of behaviors in robotics [2fhat indicates the position of the robot with respect to the
The design of fuzzy systems requires a deep knowledggvance direction of the mobile object. dtv,; = 0, the
on the task to be controlled and forces to spend long tinf@20t Will follow the mobile object exactly behind it, while
tuning the controller [3]. Due to that, in the last few yedrs t posmve_ values oflev,. |nd|C_ate t_hat the robof[ will be pl_aced
use of learning methods for the design of fuzzy controllers hat the right of the advance direction of the object, and negat
been generalized. There are different approaches: evohuii values to the left. Also, a good controller for a behavior mus

algorithms [4]—[7], neural networks [8], [9], reinforcente implement smooth changes in velocity and angle of the robot.
learning [10]-[15], etc. Before explaining the learning methodology, some steps in

In this paper we present the automatic design of a fuzJye design of a behavior must be described.

controller for the mobile object following behavior in mébi : -

. : . A. Preprocessing of the Variables
robotics using the COR (Cooperative Rules) methodology P 9
[16], [17]. To do that, we introduce a technique to auto- 'he first step in the design of the controller is the selection
matically generate a training data set that represents-statf the input and output variables. For this behavior, thaiinp
action pairs for the whole input space in the mobile obje¥griables are:
following problem. The main advantages of the proposed. The distance between the robot and the objective point
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possible to select an extended universe of discourse orer low
precision. In the worst case, a higher number of examplds wil
be generated (some of them useless) and learning will take
more time. For this behavior 6,435 examples have been used.

C. Obijective Function

In this methodology, it is of great importance the definition
of the Scoring FunctionSF' (equation 5), a function that
scores the action of the rule base over an example. This
function is behavior dependent, and for this behavior ieeffi
as:

(X, y,) SF(RB (el)) =a1 +as +as %)

Fig. 1.  Description of the points, distances and angles ewkddr the

calculation of the input variables whereay, az, anda; are respectively:

d
a1 =100 ld] (6)
Pa
d . \/('/E’l‘ - xobj)Q + (yT - yobj)2 (1) a2 — 10 . |d€'l}| (7)
N dref Pdev
« The deviation of the robot with respect to the objective s = A 8)
point. A negative value indicates that the robot is moving Paw

in a direction to the left of the objective point, while a p,, p,.., andpa, are the precisions of the respective input
positive value means that it is moving to the right.  variables. Precisions are used in these equations in ooder t
evaluate the deviations of the values of the variables fiioen t
dev = arctan (yobﬂ_yr> -0, (2) desired ones in a relative manner (the deviation of the value
Lobj — Tr of variablen from the desired one is measured in units of
« The difference of velocity between the robot and the.). This makes possible the comparison of the deviations
object of different variables and, as a consequence, the assighmen
of the weights for each one of the variables. These weights
: : A3) (100, 10 and 1 for (6), (7), and (8) respectively) have been
mazximum velocity heuristically determined (no other values have been aed)yz
. The difference of angle between the object and the rob¥td indicate how much important the deviation in the value of
a variable is with respect to the deviation of other variable
N =0, —0, (4) The highest weight has been assigned to the distance, as the
robot must be close to the objective point. An intermediate
The output variables are the linear acceleration and t@ight is associated to the deviation and, finally, the least
angular velocity. important contribution to functior5F is for the difference
in velocity.
The index that measures the global quality of the encoded
The second step in the design is the definition of thgle set is:

Ur — Um

Av =

B. Universe of Discourse and Precision

universe of discourse, the number of fuzzy sets, and the 1 NE 9

‘o i i ; i RB) = ! 9
precision §,,) of each variable:. The universe of discourse is, f(RB) = 9. NE (g(e )) ©)
for some variablesd, Av, A#), a reduced version of the real =1

universe of discourse, and should contain those valueseof thhere NE is the number of examples, ande') is defined
variable that are meaningful for learning. For examplehhigs:

values of distances are not useful during learning, becfuse . (1 _ h(el)) 41, ifhE) <1

all of them_the robot will execufce the same action. _So, itis gle)= { exp (1 _ h(el)) ’ ’ otherwise (10)

enough to include only a few high values in the universe of

discourse. being ¢ a scaling factor that has been set to 1000, Afd):
The same occurs with the precision of the variables. Pre- min (SF(el)) +1

cision is used to generate the examples: very low values of h(e) = (12)

pn Will generate a higher number of examples, and many SF(RB(e')) +1

of them will not be meaningful because there will be verwhere min (SF(e')) is the minimum score that an action
similar examples. Selecting valid values for the universes can obtain for example! (using only the discrete values
discourse and the precisions is not difficult for somebody wiof the output variables). These equations (9, 10, and 11) are
has defined the input and output variables, and always itifglependent of the behavior that is going to be learned.



D. Robot Simulation
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A. COR Methodology

In order to reduce the time needed for learning, the simu-A family of efficient and simple methods to derive fuzzy
lation software of the Nomad 200 robot will only be used forules guided by covering criteria of the data in the example

testing the obtained controller. During learning, the nmogat

set, calledad hoc data-driven methodéias been proposed

of the robot will be modeled with the following set ofin the literature in the last few years. Their simplicity, in

equations (this model is valid but for all behaviors):

k_ k=1 k
vy = v, +a At

12)

whered” is the linear acceleration at timg and At is the
time between two control cycles (a value 6f = 1/3s has
been used);

addition to their quickness and easy understanding, make
them very suitable for learning tasks. However, ad hoc data-
driven methods usually look for the fuzzy rules with the best
individual performance (e.g. [19]) and therefore the globa
interaction among the rules of the rule base is not congiglere
thus involving knowledge bases with a bad accuracy.

oF = 0F1 — Wk AL, (13) With the aim of addressing these drawbacks keeping the
interesting advantages of ad hoc data-driven methods, the
wherew" is the angular velocity at timé; and COR methodology is proposed [16]. Instead of selecting the
. _ i consequent with the highest performance in each subsgace li
zy =y 4207 At cos (5 B 6’:) ’ (14) " these methods usually do, the COR methodology considers
. 1 . o . the possibility of using another consequent, differentrfrthe
Yy =y,  +2v; At sin (5 - 97") ; (15)  pest one, when it allows the fuzzy system to be more accurate

thanks to have a knowledge base with better cooperation.
COR consists of two stages:

1) Search space constructien- It obtains a set of candi-
date consequents for each rule.

2) Selection of the most cooperative fuzzy rule set
It performs a combinatorial search among these sets
looking for the combination of consequents with the best
global accuracy.

A wider description of the COR-based rule generation
E. Construction of the Training Set process is shown in Fig. 2.

The controller learning is done using a set of examples
As has been mentioned, depending on the selected vaIuest
the universes of discourse and the precisions, the number oBince the search space tackled in step 2. is usually large,
examples will be different. In this paper, 6,435 examplesehait is necessary to use approximate search techniques. Jn [16
been used. Its automatic generation is as follows: staftorg  accurate linguistic models have been obtained using steuila
the minimum value of each variable and increasing the valaanealing. However, since one of our constrains is to dethl wi
in a quantity equal t@,, until the maximum value is reached,a computational expensive evaluation function, in thisgpap
a number of different values for the variables is obtaindte Tthe use of ant colony optimization (ACO) [20] is considered.
set of examples is created combining these values for all thiés a population search bio-inspired technique that aersi
variables of the antecedent part. heuristic information to allow it to get good solutions dklic

The values of the variables of the consequent part for eathis section briefly describes the main components of the
example will be determined trying all the possible combingonsidered COR-based ACO algorithm, that was previously
tions of their discrete output values, and selecting thdsielw proposed in [21].
let the robot reach the state closest to the ideal state {@e s 1) Problem Representation for Learning Cooperative Fuzzy
in which the robot is placed at the objective point and witRules: To apply ACO in the COR methodology, it is conve-

a linear velocity that is equal to the velocity of the mobil@ient to see it as a combinatorial optimization problem with
object). The function that determines how much close a stdke capability of being represented on a weighted grapthisn t
is from the ideal state iS$F: the lower the value of F, the way, we can face the problem considering a fixed number of
closer that the state is from the ideal state. subspaces and interpreting the learning process as thefway o
assigning consequents vectors—i.e., labels of the outpayfu
I1l. L EARNING METHODOLOGY BASED ONCOR partitions—to these subspaces with respect to an optimality

The process followed to learn the fuzzy controller is basexiterion (i.e., following the COR methodology).
on the COR methodology (proposed in [16] and extendedTherefore, according to notation introduced in Fig. 2, each
in [17]). We have selected this process due to its goaowde S;, € ST is assigned to each candidate consequent
properties to quickly obtain knowledge bases with a higtBl",..., Bk ) e C(S,) and to the special symbol “don't
interpretability. The two following subsections descrittee care” (Ry) that stands for absence of rules in such a subspace.
learning methodology and the proposed algorithm based onFitg. 3 shows the explored graph built from an example of

wherez® andy” are the coordinates of the robot at tirhe

The model assumes that the final and 6, are reached
without time delay. To simulate the inertia of the robot i it
movements, the new position is calculated as if there weoe tw
control cycles between order8 {n equations 14 and 15), so
the selected accelerations and turnings are smootherofbioé r
will move a longer distance) and, on the contrary, decetarat
must be harder.

oiCOR Methodology with Ant Colony Optimization
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Inputs:

¢ Aninput-output data set—FE = {e1,...,¢e,...,en}, Withe; =
(b, ... zh o vh), L e {1,..., N}, N being the data set
size, and n (m) being the number of input (output) variables—
representing the behavior of the problem being solved.

« A fuzzy partition of the variable spaces. In our case, uniformly
distributed fuzzy sets are regarded. Let 4; be the set of
linguistic terms of the i-th input variable, with ¢ € {1,...,n},
and B; be the set of linguistic terms of the j-th output variable,
with j € {1,...,m}, with | A;| (|B;]) being the number of labels
of the i-th (j-th) input (output) variable.

Algorithm:
1) Search space construction:

1.1. Define the fuzzy input subspaces containing positive
examples: To do so, we should define the positive
example set (E+(Ss)) for each fuzzy input subspace
Ss = (A3,...,As,...,A), with A? € A; being a
label, s € {1,...,Ns}, and Ns = []_ |A;| being
the number of fuzzy input subspaces. In this paper, we
use the following:

Et(Ss)={ e€E|Vie{l,...,n},
VA] € A, pas (@) = par (z) }

(16)

with 145 (-) being the membership function associated

with the label As.

Among all the Ng possible fuzzy input subspaces,

consider only those containing at least one positive

example. To do so, the set of subspaces with positive

examples is defined as St = {S;, | ET(Sy) # 0}.

1.2. Generate the set of candidate rules in each subspace
with positive examples: Firstly, the candidate conse-
quent set associated with each subspace containing at
least an example, S, € ST, is defined. In this paper, we
use the following:

C(Sp)={ (B¥™,....B)eBix...xBm|
e, € E1(Sy) whereVj € {1,...,m},

VB! € B;, gt (v)) = mpr (v5) }-
' 17

Then, the candidate rule set for each subspace is de-
fined as CR(Sy) = {Ry, = [IF X1 is A} and ... and
X, is A THEN Y is BF" and ... and Yy, is By"] such
that (Bf",..., BEl) € C(Sh)}-

To allow COR to reduce the initial number for fuzzy
rules, the special element Ry (which means “do
not care”) is added to each candidate rule set, i.e.,
CR(Sy) = CR(Sh) U Ry. If it is selected, no rules are
used in the corresponding fuzzy input subspace.

2) Selection of the most cooperative fuzzy rule set — This stage
is performed by running a combinatorial search algorithm to
look for the combination RB = {R; € CR(S1),...,Rp €
CR(Sh),‘..,R|S+‘ € CR(S|S+|)} with the best accuracy.
Since the tackled search space is usually large, approximate
search technigues should be used.

An index f(RB) measuring the global quality of the encoded
rule set is considered to evaluate the quality of each solution.
In order to obtain solutions with a high interpretability, the
original function is modified to penalize excessive number of

les:
rules 4RB
[S+]

with 8 € [0, 1] being a parameter defined by the designer to
regulate the importance of the number of rules, #RB being
the number of rules used in the evaluated solution (i.e., |S*|—
[{Rr € RB such that R, = Ry}|), and RBy being the initial
rule base considered by the search algorithm.

f'(RB) = f(RB) + 3 f(RBo) - (18)

Fig. 2. COR algorithm

XN S M L
SI
s [l BB, "
dc
54 I8
M[BiBaBy BB, i
dc dc
54
There are not [There are not
L | exam ples | examples | By ¢

Fig. 3. Example of a graph built from sets of candidate rulesegated by
COR

candidate rule sets. To construct a complete solution, &n an
iteratively goes over each rule and chooses a consequént wit
a probability that depends on the pheromone tradnd the
heuristic informatiory associated to each decision. The order
of selecting the rules is irrelevant.

2) Heuristic Information: The heuristic information on the
potential preference of selecting a specific consequenbrec
B*r, in each antecedent combination (subspace) is determined
as described in Fig. 4.

For each subspace S;, € S* do:
1) Build the sets E™(S,,) and C(Sy) as shown in Fig. 2.

2) For each B*» = (B ... BEM) ¢ C(Sh), make
use of an initialization function based on a covering
criterion to give a heuristic preference degree to each
choice. In this paper, we use the following:

= Mi ("), h). @9
e, = max  Min (uAh (") Hghn (y )) (19)

3) For each B ¢ C(Sy,), make nuk, = 0.
4) Finally, for the “don’t care” symbol, make the follow-

ing:
1
Nh,|B1|...s| Bm |+1 = . (20)
max nhkh
kpe{l,....|C(Sp)l}

Fig. 4. Heuristic assignment process

3) Pheromone Initialization:The initial pheromone value
of each assignment is obtained as follows:

1
o= —— max  pk, - (22)
‘Sﬂ S;+ BkheC(Sh) "

In this way, the initial pheromone will be the mean value of
the path constructed taking the best consequent in each rule
according to the heuristic information (a greedy assigrjnen

4) Fitness Function:The fitness function will be the said
objective function, defined in eq. (18) in Fig. 2.

5) Ant Colony Optimization Scheme: Best-Worst Ant System
Algorithm: Once the previous components have been defined,
an ACO algorithm has to be given to solve the problem. In
this contribution, the BWAS algorithm [22] is considerets |
global scheme is shown in Fig. 5. The adaptation of these
components to COR can be consulted in [21].



1) Give an initial pheromone value, 7y, to each edge.
2) While (termination_condition is not satisfied) do:

a) Perform the track of each ant by the solution
construction process.

b) Apply the pheromone evaporation mecha-
nism.

c) Apply the local search process on the current-
best solution.

d) Update Sglobal best and Scu'rrent worst-

e) Apply the Best-Worst pheromone trail up-
date rule.

f) Apply the pheromone trail mutation.

g) If (stuck_condition is satisfied) then apply
restart.

Fig. 5. BWAS algorithm

IV. EXPERIMENTAL RESULTS

The learnt fuzzy controller has been tested using the Nomad

International Conference on Machine Intelligence, Tozeur — Tunisia, November 5-7, 2005 570

between them of 3.3s (ten control cycles).

Ten tests have been done for each one of the three analyzed
types of trajectories (Fig. 7). The average values measured
for some parameters that reflect the controller performance
are shown in Table I. These parameters are the average
distance errordd = |d — d,.¢|), the average deviation error
(0dev = |dev — dev,.¢]), and the average velocity change.
The latter parameter measures the change in the linearityeloc
between two consecutive cycles, reflecting the smoothriess o
the behavior (a low value indicates a smooth behavior).

TABLE |
AVERAGE VALUES OF SOME PARAMETERS FOR THE THREE TYPES OF
TRAJECTORIES

od (cm) | ddev (degrees)| Vel. change (cm/s)
Fig. 7(a) 29 22 6.13
Fig. 7(b) 10 4 11.71
Fig. 7(c) 20 10 6.47

200 simulation software. The position, velocity and adeanc
direction of the mobile object were directly obtained from N order to show the accuracy of the controller, the three

the simulation software and passed to the control system
order to calculate the input variables. Tests have beeffutigre

trgjectories of Fig. 7 are going to be described:
« Fig. 7(a): this example shows a behavior of the mobile

chosen, trying to present the controller with a wide range object that makes quite difficult to implement the “follow

of situations of velocity and turning of the mobile objedt. |

a mobile object” task. At the beginning the robot is placed

is important to remark that these tests have not been used at A, and the object is placed at,, (remember that
during training. The training set is only composed of a list really they coordinate is the same for both points). The
of examples (6,435) that have been chosen covering the input mobile object has a linear velocity of 38 cm/s along all the
space with an adequate precision. These conditions wagant  path, and implements turnings with the maximum angular
that the quality of the learnt behavior does not depend on the Velocity @5°/s). These sudden and very sharp changes
movements of the mobile objects because the behavior can be in direction make very difficult for the robot to be at the

generalized.

right reference distance and with the adequate reference

We have used the following parameter values for the COR- deviation in the next control cycles. As a result, the errors

based ACO algorithm: 50 iterations, 30 antss= 0.8, o = 2,
6 =2 P, =03, 0 =4, LSi = 10, LSn = 30, and

are the highest ones of the three types of trajectories
(Table ).

R = 5. No experiments were made with different values for « Fig. 7(b): this is the easiest example, as there are few
these parameters. Therefore, the results shown below maybe turns of the mobile object. The object moves with a high

could be improved with a more exhaustive parameter val

ue Velocity (51 cm/s) except between poini,-C,, and

selection. The learnt controller (shown in Fig. 6) has 112 Gm-Hyn,, where velocity is decreased to 25 cm/s in order
linguistic rules and has been learned in only 36m (with an to test the controller. Also, turning are implemented with

Intel(R) Pentium(R) 1l 1400 MHz processor) using a valu

e an angular velocity oB0°/s. With these conditions, the

of v = 0.2 (eq. 18). If for any situation no rule is fired, then a  errors in distance and deviation are low, but the change

null linear acceleration and angular velocity are selectéu

in velocity is high due to the abrupt changes in the speed

maximum linear velocity the robot can reach is 61 cm/s, and ©of the object.

the maximum angular velocity i$5°/s.

Figure 7 shows some trajectories of the robot when it
following different mobile objects at a reference distande
1.5m and with a reference deviation 0f. The trajectories
are represented by circular marks. A higher concentratfon
marks indicates lower velocity. In order to visualize acegly
both trajectories, in Fig. 7 the trajectory of the mobile emthj
has been shifted in the y-axis direction. Thus, at the béginn
(points A,. for the robot andA,,, for the mobile object), both
the robot and the object have the sagneoordinate, and their

« Fig. 7(c): the last type of trajectory is also quite difficult
is because the mobile object is changing its movement
direction for a long time. Between point4,,-C,, and

G.n-L,, the object moves straight and at 38 cm/s, but

o betweenC,,-G,, the speed is increased to 51 cm/s, and
a continuous turning &0°/s is implemented. Due to this
continuous change in the direction of the mobile object,
the values of the errors (Table I) take a value higher than
the previous type of trajectory.

As a resume, the accuracy of the controller is good, but

2 coordinate is the one represented in the figure (the robotwben the mobile object implements continuous or sharp

placed 1.5m to the left of the mobile object). The labels th
have been placed along the trajectories represent a time

ahanges in direction the controller needs a few controlagycl
tapeach the reference distance and deviation. On the other
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(a) Data base

Distance Deviation Difference_of_velocity
Close Medium Far HL SL z SR HR Slower Equal Quicker
1 1 4 1 4
0.5 0.5 1 0.5
0 0 0
0 0.25 0.5 0.75 1 -1800 -900 0 900 1800 -1 0.5 0 0.5 1
Difference_of_angle Linear_acceleration Angular_velocity
R z L VHB HB MB SB Z SA MA HA VHA VHR HR MR SR Z SL ML HL VHL
14 1 14
0.5 1 0.5 1 0.5 1
0 ; ‘ ; 0 ‘ Y ‘ 0 ‘ ‘ !
-200 -100 0 100 200 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
(b) Rule base
Rule d dev Av A6 | Lin.acc. Ang. vel|[| Rule d dev Av A6 | Lin.acc. Ang. vel.
R1 Near HL  Slower R HA MR Rs7 Medium Z Equal R SA SL
Ro Near HL  Slower Z SA SL Rss Medium Z Equal Z MA SL
R3 Near HL  Slower L HA VHL Rs9 Medium Z Equal L MA HL
R4 Near HL  Equal R A MR Rso Medium Z uicker Z SB SL
Rs5 Near HL uicker R VHB MR Rg1 Medium SR lower R HA VHL
Rg Near HL uicker Z VHB SL Rg2 Medium SR  Slower Z VHA
R~ Near HL uicker L HB Rgs3 Medium SR Slower L VHA
Rg Near SL lower Z HA HL Rg4 Medium SR Equal Z SA
Ro Near SL  Slower L HA VHL Rgs Medium SR  Equal L MA
Rio Near SL Equal R SB HR Ree Medium SR chker R HB
Ri1 Near SL Equal L z HL Rg7 Medium SR uicker Z HB
Ri2 Near SL uicker R HB MR Rgs Medium SR uicker L MB
Ri3 Near SL uicker Z VHB HL Rgo Medium HR  Slower R Z
R14 Near SL uicker L VHB VHL R7o Medium HR  Slower Z SA
Ri5 Near Z Slower R HA Z R71 Medium HR  Slower L SA
Ri6 Near z Slower z HA HL R72 Medium HR Equal R SB SL
R17 Near Z Slower L VHA VHL R73 Medium HR  Equal Z HB
Ris Near Z Equal R Z MR R74 Medium HR  Equal L SB
Rig Near Z Equal Z Z SL R75 Medium HR uicker R VHB SL
R2o Near Z Equal L z VHL R7g Medium HR uicker L VHB
Ro1 Near Z uicker R HB MR R77 Far HL  Slower R SB
R2o Near Z uicker Z HB SL R7s Far HL  Slower Z SB SL
Ro3 Near SR lower VA MA VHL R79 Far HL  Slower L MB HR
Roy4 Near SR Slower L HA VHL Rso Far HL  Equal Z VHB SL
Ra25 Near SR  Equal R |Z V4 Rs1 Far HL  Equal L VHB HR
Rog Near SR Equal VA SB SL Rs2 Far HL uicker Z VHB VHR
Ro7 Near SR Equal L SB VHL Rsg3 Far HL uicker L VHB VHR
Ros Near SR uicker Z HB SL Rs4 Far SL lower R VHA VHR
R29 Near SR uicker L HB 35 Far SL Slower VA VHA VHR
Rso Near HR  Slower R SA HR Rse Far SL Slower L VHA VHR
R31 Near HR  Slower Z HA SL Rg7 Far SL Equal R MA HR
R32 Near HR  Slower L HA VHL Rss Far SL Equal VA MA VHR
R33 Near HR  Equal Z z SL Rsgg Far SL Quicker R SB VHR
R34 Near HR uicker R HB MR Roo Far SL uicker Z SB VHR
R35 Near HR uicker Z VHB SL Ro1 Far SL uicker L SB VHR
R36 Medium HL  Slower R SB Rgo Far Z Slower z VHA SL
R37 Medium HL  Slower Z MA VHR Ros Far A Slower L VHA HL
R3s Medium HL  Slower L SA Ro4 Far Zz Equal R VHA MR
R39 Medium HL Equal R HB VHR Ros Far z Equal Z VHA MR
R40 Medium HL  Equal Z MB HR Rog Far Z uicker R Z HL
R41 Medium HL Equal L HB VHR Ro7 Far Z uicker Z Z SL
R42 Medium HL Quicker R VHB VHR Rog Far A uicker L Z HL
R43 Medium  HL uicker Z VHB SL Rog Far SR lower R HA
R44 Medium HL uicker L VHB HL Rioo | Far SR  Slower Z VHA
R45 Medium  SL lower R VHA HR Rio1 | Far SR Slower L VHA
R46 Medium  SL Slower Z VHA VHR Rig2 | Far SR Equal R Z VHL
R47 Medium SL  Slower L HA HR Rio3 | Far SR Equal Z MA
R4s Medium  SL Equal R MA VHR Rio4 | Far SR uicker Z SB
R49 Medium  SL Equal Z Z VHR Rio5 | Far SR uicker L SB
Rs50 Medium  SL Equal L Z MR Rios | Far HR  Slower R SB VHR
R51 Medium  SL 8wcker R MB HR Rio7 | Far HR  Slower L HB HR
Rs52 Medium  SL uicker Z MB VHR Rios | Far HR  Equal R VHB
Rs3 Medium  SL Quicker L HB HR Rigo | Far HR  Equal Z VHB SL
Rs54 Medium Z Slower R VHA MR Ri10 | Far HR  Equal L VHB MR
Rs5 Medium Z Slower Z VHA Z Ri11 | Far HR  Quicker R VHB VHR
Rs6 Medium Z Slower L VHA HL Ri12 | Far HR  Quicker Z VHB VHR
Fig. 6. Knowledge base generated by the COR-based algorithm
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Mobile object

Mobile object

(b)

©

Fig. 7. Trajectories of the robot following different mobibbgjects
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hand, the interpretability of the obtained rules is good, ag]
all the linguistic labels have the same shape (trianguéag,
uniformly distributed along the universes of discoursed an

have the same meaning for all the rules. [7]

V. CONCLUSIONS AND FUTURE WORK

A methodology for the design of behaviors in mobile[s]
robotics has been presented. The main characteristicseof th
approach are: first, the designer only needs to define tHe
universe of discourse, number of labels and precision dfieac
variable, together with the scoring functio§ ). In second
place, learning is done using a set of training examples tHE!
have been automatically generated covering the whole tg@vey; g
of discourse of each one of the variables. This makes the
learnt behavior very general, so the robot will be capabﬁg]
to face any situation. In third place, the learning process i
very fast. Finally, the obtained knowledge base has a high
interpretability, which makes easy to detect possible rerrg1Sl
during the design or the learning process.

This methodology has been applied to the design of tfie]
“follow a mobile object” behavior. The controller with 112
linguistic rules has been tested with three complex types @
trajectories for the mobile object showing good resultshia t
average values of some parameters that reflect the quality[l%]
the behavior. In a near future, a system for the detection 0
moving objects will be implemented to provide the contnolle

with the information of the object. [17]
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