
Online tuning of a fuzzy controller in mobile
robotics

Manuel Mucientes
Dept. of Elect. & Computer Science
Univ. of Santiago de Compostela

15782 Santiago de Compostela, Spain
manuel@dec.usc.es

Alberto Bugaŕın
Dept. of Elect. & Computer Science

Univ. of Santiago de Compostela
15782 Santiago de Compostela, Spain

alberto@dec.usc.es

Seńen Barro
Dept. of Elect. & Computer Science

Univ. of Santiago de Compostela
15782 Santiago de Compostela, Spain

senen@dec.usc.es

Abstract— The design of behaviors is essential for the con-
struction of complex control architectures in mobile robotics.
The controller that implements a behavior can be learned in
two stages: offline learning stage, and online tuning stage. In
this paper we propose a methodology for online tuning, based
on an evolutive strategy that is adequate to be implemented on
the real robot. In order to be able to analyze the behavior of
the robot along several control actions, we have considered the
behavior as a multi-step problem, which means that the payoff is
obtained after some control cycles (episode) using the Q-learning
technique. The methodology has been applied for tuning the wall-
following behavior using the Nomad 200 simulation software.

I. I NTRODUCTION

In mobile robotics, the control of the robot is usually
implemented by hybrid architectures in which at the higher
level the deliberative and planning tasks are solved, while
at the lower level the reactive control is done. This makes
the robot able to cope with complex tasks and, at the same
time, interact and move in real environments with reactive
capabilities. This reactive layer is generally composed of
different behaviors that are selected and coordinated by the
higher level. One of the main difficulties of mobile robotics is
the high amount of uncertainty present in the measurements
provided by the ultrasound sensors. Fuzzy logic has shown to
be an appropriate tool for the implementation of behaviors [1],
as the designed controllers can deal with the unreliable and
noisy data.

On the other hand, the implementation of a controller re-
quires expert knowledge, and a tedious tuning process in order
to adjust the control actions that are going to be implemented
on the real robot. This is not always possible, and is also
highly time consuming. For these reasons, different learning
techniques have been applied for obtaining controllers: evolu-
tionary algorithms, neural networks, etc. In particular, evolu-
tionary algorithms have been successfully applied for this task
[2], [3], [4], [5]. One of the great advantages of evolutionary
algorithms is that they let the designer to choose the most
adequate tradeoff between accuracy and interpretability.

Learning of knowledge bases using evolutionary algorithms
has three main approaches: Michigan, Pittsburgh and Iterative
Rule Learning (IRL) [6]. In the Michigan approach, each chro-
mosome represents an individual rule. Rules evolve through
time due to their interaction with the environment. The major

problem of this approach is that of resolving the conflict
between the performance of individual rules and that of the
rule base [7]. The objective is to obtain a good rule base,
which means to obtain good individual rules, but also rules
that cooperate with each other to get adequate outputs.

On the other hand, in the Pittsburgh approach each chro-
mosome represents a full knowledge base. This approach has
a higher computational cost, since several knowledge bases
have to be evaluated. Finally, in the IRL approach, each
chromosome represents an individual rule, but contrary to the
Michigan approach, a single rule is learned after each sequence
of iterations, and not the whole rule base.

Learning a behavior on the real robot from the beginning
is always very time consuming, difficult, and means that
the robot can reach hazardous situations, because some non-
adequate control actions can be selected during the learning
process. For these reasons it seems adequate to divide the
learning into two different stages: a first one in which the
behavior is learned offline using a set of examples [2], [8].
At this stage, the time spent for learning is not as important,
and also a wide range of control actions can be tested without
any risk for the robot. The second stage consists on tuning
the knowledge base obtained in the previous step on the real
robot. In this way, the learning process on the real robot is
faster and safer.

A number of different approaches have been described in
the literature for learning behaviors in mobile robotics. They
have different shortcomings: some of them spend a lot of
time to learn the behaviors [2], [9], [10], [11]. Others need
the definition of a lot of parameters, or a partial description
of a knowledge base [12], which makes the design of new
behaviors more difficult: parameters must be tuned and expert
knowledge has to be acquired. Besides, sometimes the learned
behavior is not general [11], [12], [13], thus the performance is
adequate in some environments, but poor in others: the learned
behavior is not reliable, and its implementation on the real
robot will not be adequate. Finally, the interpretability of some
of the learned controllers is low [2], [10], [13], [14] and, as
a consequence, it will be difficult to detect and solve errors
during the operation of the controller.

In this paper, a methodology for the tuning of a fuzzy
controller on a mobile robot is presented. This approach

is valid for the tuning of different kinds of behaviors, as
the designer has only to redefine the function that scores
the states the robot has reached. The methodology is quite
fast, only a few parameters must be defined, the obtained
behavior is general (as will be shown with the results), and
the interpretability of the knowledge base is high.

Among the three main approaches for learning knowledge
bases, Michigan has been selected. The other two approaches
are not adequate because they require a high amount of time
to obtain a valid knowledge base. Tuning is implemented
with a (1, 1)-ES (Evolution Strategy) that is applied to the
consequents of the rules. It has been considered as a multi-step
problem, in order to analyze the states reached by the robot
along a number of iterations of the controller (episode). That
way, the influence of the noisy measurements from the sensors,
and the changes in the state of the robot due to its movement
(detection of new features in the environment, movement of
people, ...) can be reduced. The methodology has been applied
for the tuning of the wall-following behavior using the Nomad
200 simulation software.

The paper is structured as follows: in the next section
the tuning methodology is presented. Section 3 describes
the application of the methodology to the wall-following
behavior. Then, the obtained results are presented and, finally,
conclusions and future work are commented.

II. ONLINE TUNING OF BEHAVIORS

The rules that are going to be tuned have been obtained
during a previous offline learning process, as described in [2],
[8]. They are conventional fuzzy rules in Disjunctive Normal
Form (DNF) like:

Ri : If X1 is Ãi
1 and . . . and XNA is Ãi

NA

ThenY1 isBi
1 and . . . and YNC isBi

NC

(1)

whereRi, i=1, ..., NR, is the i-th rule,Xi
j , j=1, ..., NA, and

Y i
k , k=1, ...,NC, are linguistic variables of the antecedent and

consequent parts, respectively.NR is the number of rules,NA
the number of input variables, andNC the number of output
variables.̃Ai

j is a subset of all the possible linguistic values of
variablej, which are connected by a t-conorm (the maximum
has been used):

Ãi
j = Aj, 1 ∨ . . . ∨Aj, NLi

j
(2)

andAj,l andBi
k are linguistic values, andNLi

j is the number

of linguistic labels inÃi
j .

Prior to the beginning of the tuning process, the initialization
of the population is done. The initial population will consist
of κ copies of the rules of the previously obtained knowledge
base (NR = κ ·#RB0), where#RB0 is the number of rules
of the previous rule base. Then,κ− 1 copies of each rule are
mutated in its consequent part, until not repeated rules remain.
The mutation operator simply increases or decreases, with
equal probability, the integer value that represents a linguistic
label of a variable.

For each rule of the population the chromosome is con-
structed in the following way:

Ci = ci
1, ..., ci

NC (3)

where ci
k is an integer number that represents the linguistic

label of the output variablek for rule i.
The tuning algorithm is as follows:

1) Construct the match set
2) Construct the subsets of rules
3) Select the subset of rules to be fired
4) Calculate payoff of previous action
5) If episode is over

a) Calculate weights of the individuals
b) Adjust fitness of the individuals
c) Apply (1, 1)-ES

In each control cycle, the match set will be composed of
all the rules that fulfill:

µi = Ãi
1 (x1) ∧ . . . ∧ Ãi

NA (xNA) > 0 (4)

Taking into account all the rules of the match set, the active
niches (input subspaces) for this iteration are determined. The
subsets of rules are constructed using all the combinations
of the rules of the match set, considering the following
constraints:

• All the active niches must be covered by each subset.
• Two rules covering the same active niche are not allowed

in a subset.

The score of each subsetm is calculated as:

ssm =
∑

p

µp · fp (5)

where fp is the fitness of individualp. The subset of rules
that will be fired can be selected in different ways: choosing
the best subset, with a non-deterministic procedure (roulette
wheel selection, etc.), ... In this paper we have applied the
selection of the best subset.

An episode is defined as a number of control cycles,le,
along which the payoff is calculated. At the end of the
episode the reward is distributed among the rules. As will
be explained when commenting the obtained results, using an
episode withle > 1 increases the robustness of the learned
behavior, because it minimizes the importance of the noisy
measurements and the changes in the state of the robot due to
the movement.

PayoffP is estimated using the Q-learning technique, which
is a classic model-free algorithm for reinforcement learning
from delayed rewards [15]. Q-learning is applied along the
iterations of the episode in the following way:

P (t) = P (t− 1) + γt · SF (s sst−1(x(t− 1))) (6)

wheret is the iteration of the episode,γ ∈ [0, 1] is the discount
factor, andSF (s sst−1(x(t−1))) is the score assigned to the
state reached by the robot starting from statex(t − 1) and
applying the control actions proposed by the subset of rules

s sst−1 (the one selected in the previous iteration). Scoring
function,SF , must be defined by the designer and is behavior
dependent.

Once the maximum number of iterations (le) of the episode
is reached, the payoff must be distributed among the rules. To
do this, the weight of each rule is calculated:

wi =
∑le

t=1 µt
i · smt

i · (γ)t

∑le
t=1(γ)t

(7)

whereµt
i is the degree of fulfillment of rulei at iterationt,

and smt
i measures the similarity between the output of the

controller and the output proposed by rulei in the following
way:

smt
i =

NC∏

k=0

max
(
0, σk −

∣∣∣yt
k − ỹt

ik

∣∣∣
)

σk
(8)

where yt
k is the value for output variablek selected by the

controller at iterationt, ỹt
ik is the center of gravity of̃Bi

k

(Bi
k after inference), andσk is the maximum difference that

is permitted.
Thus the weight of a rule is proportional to the degree of

fulfillment of the rule, but also to the closeness of the output
proposed by the rule to the controller output. Similarity (smt

i)
is useful in that situations in which a rule that is good for a
state of the robot is fired with other rules that are bad for the
same state, and also the selected action is not adequate (and
vice versa). If similarity is not taken into account, the good
rule would be penalized.

The point is that a good control action does not mean that
the rules that contribute to that output are also good. As an
example, suppose that four rules have been fired with equal
degree of fulfillment: one of them with−1 as value for the
output variable, two with0, and the other one with+1. The
control output will be0 and, if this is a good output for that
state, the payoff will be high. Without considering similarity
all the rules will get the same payoff, while when including the
similarity to calculate the weight, the first and last rules will
not receive payoff. So the closer the output of the rule to the
controller output the higher the similarity (and the weight) of
the rule, and the proportion of the payoff the rule will receive.
Of course, there can occur that sometimes a good rule does
not receive payoff although it has been fired, but this only
means that its fitness will not be adjusted at this iteration (the
rule is neither penalized, nor rewarded). The same applies for
bad rules.

The fitness for each individual is adjusted using the standard
Widrow-Hoff delta rule [16], but taking into account the
weights of the rules to distribute the adjustment [17]:

fi ← fi + β · wi · (P − fi) (9)

whereP is the payoff at the end of the episode, andβ ∈ [0, 1]
is the learning rate parameter. In that way the difference
between the payoff of the episode and the fitness of the
rule contributes to change the fitness of the individual, but
proportionally to the weight of the rule and the learning rate.

As in [16], the Widrow-Hoff procedure is applied only after the
individual has been adjusted at least1/β times. Prior to that,
the MAM technique is applied. This technique lets the fitness
values approach faster to their true values, and makes the
system less sensitive to the initial values of some parameters
[16]. In this case, we have used a weighted average of the
payoff values:

fi =
1/β∑
t=1

vi · P (t) (10)

wherevi is defined as:

vi =
∑1/β

t=1 µt
i · (γ)t

∑1/β
t=1(γ)t

(11)

After the adjustment of the fitness values, an evolution
strategy (1, 1)-ES is applied to those individualsi, for which
wi > 0 at the end of the episode, and that have been fired at
least1/β times since the beginning of the algorithm.(µ, λ)-
strategies [18] useµ parents to createλ descendants, and the
µ best individuals, out of the descendants only, are selected
for the next population (µ ≤ λ). The (1, 1)-ES is applied to
the consequents of the rules (individuals) with probabilityθm.

The procedure is as follows: once an individual is selected
for applying the ES, the consequents of this rule are copied on
the worst individual of the niche that rule belongs to. Then,
the (1, 1)-ES is performed on this modified worst individual.
With this strategy we maintain the best individual (elitism),
and we modify the worst individual of the niche. The mutation
operator is the same used in the initialization of the population.

III. T UNING THE WALL -FOLLOWING BEHAVIOR

In order to evaluate the proposed methodology, we have
selected the wall-following behavior, which is usually imple-
mented when the robot is exploring an unknown area, or
when it is moving between two points in a map. A good
wall-following controller is characterized by three features:
to maintain a suitable distance from the wall that is being
followed, to move at a high velocity whenever possible,
and finally to avoid sharp movements, making smooth and
progressive turns and changes in velocity.

The controller can be configured modifying the values of
two parameters: the reference distance, which is the desired
distance between the robot and the selected wall, and the
maximum velocity attainable by the robot. In what follows
we assume that the robot is going to follow a contour that
is on its right side. Of course, the robot could also follow
the left-hand wall, but this can be easily dealt with by simply
interchanging the sensorial inputs.

The input variables of the control system are the right-
hand distance (RD), the distances quotient (DQ), which is
calculated as:

DQ =
left− hand distance

RD
(12)

As it can be seen (figure 1),DQ shows the relative position
of the robot inside a corridor, which provides with information

that is more relevant to the problem than simply using the
left-hand distance. A high value forDQ means that the robot
is closer to the right-hand wall, whilst a low value indicates
that the closer wall is the left-hand one. The other input
variables are the linear velocity of the robot (LV) and the
orientation of the robot with respect to the wall it is following.
A positive value of the orientation indicates that the robot is
approaching to the wall, whilst a negative value means the
robot is moving away from the wall. The output variables are
the linear acceleration and the angular velocity.

Left-hand distance RD

Fig. 1. Description of some of the distances used to calculate input variables.

The values for the distances and the orientation are obtained
from the distances measured by the ultrasound sensors of
the robot. We use thedistributed perception[19]: distance is
measured as the minimum distance of a set of sensors, and
the orientation will be a weighted sum of the orientation of
each sensor in the set, giving more weight to those sensors
that detect closer obstacles.

FunctionSF , that scores the state reached by the robot, is
defined as:

SF (x) =
√

1
α1 + α2 + α3 + 1

· ω (13)

wherex is the state of the robot,ω is a scaling factor, andα1,
α2, andα3 are respectively:

α1 = 100 · |RD − reference distance|
pRD

(14)

α2 = 10 · |maximum velocity − LV |
pLV

(15)

α3 =
|orientation|
porientation

(16)

pRD, pLV , andporientation are the precisions of the respec-
tive input variables. Precisions are used in these equations in
order to evaluate the deviations of the values of the variables
from the desired ones in a relative manner (the deviation of the
value of variablen from the desired one is measured in units
of pn). This makes possible the comparison of the deviations
of different variables and, as a consequence, the assignment
of the weights for each one of the variables. These weights
(100, 10 and 1 for (14), (15), and (16) respectively) have been
heuristically determined, and indicate how much important
the deviation in the value of a variable is with respect to
the deviation of other variables. The highest weight has been
assigned to the distance, as small variations ofRD with
respect to the reference distance should be highly penalized.
An intermediate weight is associated to velocity and, finally,
the least important contribution to functionSF is for the
orientation of the robot.

When learning a behavior on the real robot or with the sim-
ulation software, a collision avoidance module must oversee
that none of the control actions that are implemented is going
to provoke a collision. This module, taking into account the
current velocity, advance direction, distances to the obstacles,
and the linear acceleration and angular velocity that are going
to be implemented, determines if this will make the robot reach
a hazardous situation. In that case, the module tries to stop the
robot, the episode ends, and the payoff is set to 0, so the rules
that have been fired along the episode are penalized decreasing
their fitness.

IV. RESULTS

The proposed system has been tested using the Nomad
200 simulation software. The initial rule base has been
obtained using a set of 48 examples and a hand-designed
data base with the labels uniformly distributed along the
universes of discourse of the variables. The number of la-
bels is {3, 2, 3, 2, 9, 9} for RD, DQ, orientation, LV ,
linear acceleration andangular velocity, respectively. This
generates 36 rules, one for each niche or input subspace. An
example belongs to the niche that better covers its antecedent
part. In the same way, the linguistic labels of the output
variables for each rule are selected choosing those that better
cover an example of the niche to which the rule belongs.
The values of the parameters used for the online tuning
methodology are:κ = 5, #RB0 = 36, le = 5, γ = 0.8,
β = 0.1, θm = 0.05, ω = 100, andσ1 = σ2 = 0.5.

Tuning of the rule base was made in environmentA (figure
2), and lasted five laps (approximately 11 minutes). Six
environments (including environmentA) have been chosen for
comparing the tuned rule base with the initial rule base. These
environments include very different situations that the robot
usually faces during navigation: straight walls of different
lengths, followed and/or preceded of a number of concave and
convex corners, gaps, ... thus covering a wide range of contours
to follow and truly defining very complex test environments.

Figure 2 shows the robot path along environmentA, where
tuning took place. The robot trajectory is represented by
circular marks. A higher concentration of marks indicates
lower velocity. The maximum velocity the robot can reach is
61 cm/s, and the reference distance at which the robot should
follow the right wall is 51 cm. It is important to choose a
training environment which covers as many different situations
as possible in order to tune the rules of all the niches. However,
there will be rules in some niches that will not be fired enough
times (1/β times), and in these cases the original rule will be
selected for the final rule base.

It is of great importance to consider the behavior that is
being tuned as a multi-step problem. The reason is twofold:
firstly, in a real environment the ultrasound sensor measure-
ments are very noisy and unreliable. So, a good control action
can be taken in a situation (robot state) that is not truly the
real one. As a result, a good rule will be penalized because
of a failure in the estimation of the state of the robot, or vice
versa. In the same way, it sometimes occurs that the controller

corner

direction
Movement

Convex
corner

Concave

Fig. 2. Path of the robot along environmentA for the tuned rule base.

Movement direction

Fig. 3. Path of the robot along environmentB for the tuned rule base.

selects an adequate control action for an state of the robot,
but in the next cycle (when the action has to be evaluated) the
configuration of the environment is completely different.

This can be seen in figure 4: at the first position, the robot
is following the wall at an adequate distance and orientation
and selects a rule that increases its speed, maintaining the
orientation with the wall (a good control action for that state).
At the second position, the wall has finished (there is a convex
corner) and the current state of the robot indicates that the

distance to the wall is too high and the orientation is bad.
These measures are also unreliable because of the difficulties
in the detection of the wall at that position: the angle between
the direction of the different ultrasound sensors (that are in the
right-front sector, thus the ones used to calculate the right-
hand distance) and the direction perpendicular to the wall
is high. That means that probably they will not be able to
properly measure that distance due to the specular reflection
for high angles. Again, a good action will produce a low

payoff. These situations are more frequent in environments
with many corners, gaps, ...

For all these reasons, the evaluation of the actions of
the controller along an episode is more robust and tends to
minimize these kind of problems, as several control actions
contribute to the calculation of the payoff, and also the
robot has time to recover from a bad action. We have found
significant differences in the quality of the tuned behavior: if
the length of the episode (le) is 1, the obtained behavior is
very poor, with le = 3 the quality increases a lot, while for
le = 5 the best results are obtained.

Initial position

RD

RD

Final position

Fig. 4. Change of the state of the robot after one control cycle.

In robotics, it is difficult to compare the learned controllers
with another ones proposed by other authors. The reasons
are mainly due to the different characteristics of the robots
(dynamic specifications, sensors of various kinds and with
different distributions, ...), and also because each author de-
signs their own environments for the test, due to the absence
of a standardtest bank. For these reasons, and in order to
evaluate the obtained controller, the average values of some
parameters that reflect the controller performance have been
measured. The parameters are the average distance to the
right wall (the wall that is being followed), the average linear
velocity, the time spent by the robot along the path, and the
average velocity change. The latter parameter measures the
change in the linear velocity between two consecutive cycles,
reflecting the smoothness of the behavior. Ten tests have been
done for each one of the analyzed environments. The values
of the parameters are shown in table I, while table II shows
the values for the initial rule base.

TABLE I

AVERAGE VALUES OF SOME PARAMETERS FOR THE TUNED CONTROLLER.

Env. RD (cm) Velocity (cm/s) Vel. change (cm/s) Time (s)
A 44 45 4.41 125
B 51 51 2.83 105
C 51 51 3.94 66
D 49 54 2.15 72
E 50 55 2.18 109
F 51 52 3.08 105

TABLE II

AVERAGE VALUES OF SOME PARAMETERS FOR THE ORIGINAL

CONTROLLER.

Env. RD (cm) Velocity (cm/s) Vel. change (cm/s) Time (s)

A 41 41 4.01 139
B 47 47 2.81 114
C 47 46 3.41 70
D 49 49 2.42 80
E 48 49 2.33 121
F 49 48 2.98 112

As can be seen, the tuned controller has increased the
average velocity in all the environments around a 10% without
degrading the smoothness of the behavior. On the other hand,
the average right-hand distance has also been improved, and
in some cases the reference distance has been maintained (as
an average) along all the path. The worst case corresponds
to environmentA (the training environment), where the tuned
system also beats the original one, but due to the complexity of
the environment and the number of gaps, the average distance
is not close to the reference distance.

In order to show the quality of the controller we are going
to describe in detail the path of the robot in environmentA
(figure. 2). As said before, this environment is quite complex,
with ten concave corners and six convex corners in a circuit
of a length of 57 meters. The measurements of the ultrasound
sensors are quite noisy due to the gaps present in the wall,
and also because of the convex corners. These are truly
difficult situations, because the robot’s sensors may cease
to correctly detect the wall at some given moments. The
controller must also significantly reduce velocity at corners.
All these situations provoke a reduction in the average distance
and velocity. As can be seen, the robot follows the wall with
a high precision, except at the corners, where it approaches
to the wall (concave corners) or gets away from it (convex
corners) in order to turn.

V. CONCLUSIONS AND FUTURE WORK

A methodology for rule base tuning of a fuzzy controller has
been described. This field is of special importance in mobile
robotics, where different behaviors have to be designed and
integrated on the real robot. The design of behaviors on the
real robot is very difficult and time consuming, so a better
approach consists in dividing design in two stages: learning
the behavior offline, and tuning it online.

The proposed algorithm has been tested for the online
tuning of the wall-following behavior using the Nomad 200
simulation software, showing a good performance, increasing
the speed of the robot around a 10%, and also improving the
average distance to the wall. The results are promising for
the application of the methodology on the real robot, where
the performance of the initial rule base will be worst, and the
enhancement of the behavior due to the tuning will be more
relevant.

ACKNOWLEDGMENT

This work was supported in part by the Spanish Ministry
of Science and Technology under grant no. TIC2003-09400-
C04-03, and the DXID of the Xunta de Galicia under grant
PGIDIT04TIC206011PR.

REFERENCES

[1] A. Saffiotti, “The uses of fuzzy logic in autonomous robot navigation,”
Soft Computing, vol. 1, no. 4, pp. 180–197, 1997.

[2] M. Mucientes, D. L. Moreno, C. V. Regueiro, A. Bugarı́n, and S. Barro,
“Design of a fuzzy controller for the wall-following behavior in mobile
robotics with evolutionary algorithms,” inProceedings of the Inter-
national Conference of Information Processing and Management of
Uncertainty in Knowledge-based Systems (IPMU’2004), Perugia (Italy),
2004, pp. 175–182.

[3] D. K. Pratihar, K. Deb, and A. Ghosh, “Optimal path and gait genera-
tions simultaneously of a six-legged robot using a ga-fuzzy approach,”
Robotics and Autonomous Systems, vol. 41, pp. 1–20, 2002.

[4] D. Gu, H. Hu, and L. Spacek, “Learning fuzzy logic controller for
reactive robot behaviours,” inProceedings of the 2003 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM
2003), 2003, pp. 46–51.

[5] A. Bonarini and V. Trianni, “Learning fuzzy classifier systems for multi-
agent coordination,”Information Sciences, vol. 136, pp. 215–239, 2001.

[6] O. Cord́on, F. Herrera, F. Hoffmann, and L. Magdalena,Genetic fuzzy
systems: evolutionary tuning and learning of fuzzy knowledge bases,
ser. Advances in Fuzzy Systems - Applications and Theory. World
Scientific, 2001, vol. 19.

[7] A. Bonarini, “Evolutionary Learning of Fuzzy rules: competition and
cooperation,” inFuzzy Modelling: Paradigms and Practice, W. Pedrycz,
Ed. Norwell (USA): Kluwer Academic Press, 1996, pp. 265–284.

[8] M. Mucientes and J. Casillas, “Obtaining a fuzzy controller with high
interpretability in mobile robots navigation,” inProceedings of the IEEE
International Conference on Fuzzy Systems (Fuzz-IEEE 2004), Budapest
(Hungary), 2004, pp. 1637–1642.

[9] C. Zhou, “Robot learning with ga-based fuzzy reinforcement learning
agents,”Information Sciences, vol. 145, pp. 45–68, 2002.

[10] S. Thongchai, “Behavior-based learning fuzzy rules for mobile robots,”
in Proceedings of the American Control Conference, Anchorage, AK
(USA), 2002, pp. 995–1000.

[11] H. Hagras, V. Callaghan, and M. Collin, “Learning and adaptation of an
intelligent mobile robot navigator operating in unstructured environment
based on a novel online fuzzy-genetic system,”Fuzzy Sets and Systems,
vol. 141, pp. 107–160, 2004.

[12] D. Gu, H. Hu, J. Reynolds, and E. Tsang, “Ga-based learning in be-
haviour based robotics,” inProceedings of the 2003 IEEE International
Symposium on Computational Intelligence in Robotics and Automation,
Kobe (Japan), 2003, pp. 1521–1526.

[13] O. Fuentes, R. Rao, and M. V. Wie, “Hierarchical learning of reactive
behaviors in an autonomous mobile robot,” inIEEE International
Conference on Systems, Man and Cybernetics, 1995, pp. 4691–4695.

[14] A. Berlanga, A. Sanchis, P. Isasi, and J. M. Molina, “A general learning
co-evolution method to generalize autonomous robot navigation behav-
ior,” in Proceedings of the 2000 Congress on Evolutionary Computation,
La Jolla, CA (USA), 2000, pp. 769–776.

[15] L. Kaelbling, M. Littman, and A. Moore, “Reinforcement learning: A
survey,”Journal of Artificial Intelligence Research, vol. 4, pp. 237–285,
1996.

[16] S. W. Wilson, “Classifier fitness based on accuracy,”Evolutionary
computation, vol. 3, no. 2, pp. 149–175, 1995.

[17] J. Casillas, B. Carse, and L. Bull, “Fuzzy-xcs: an accuracy-based fuzzy
classifier system,” inProceedings of the XII Congreso Español sobre
Tecnoloǵıa y Lógica Fuzzy (ESTYLF 2004), Jáen (Spain), 2004, pp.
369–376.

[18] T. Bäck and H. P. Schwefel,Genetic Algorithms in Engineering and
Computer Science. John Wiley & Sons, 1996, ch. Evolution Strategies
I: Variants and their computational implementation.

[19] J. Urzelai, J. P. Uribe, and M. Ezkerra, “Fuzzy controller for wall-
following with a non-holonomous mobile robot,” inProceedings of the
sixth IEEE International Conference on Fuzzy Systems (Fuzz-IEEE’97),
Barcelona (Spain), 1997, pp. 1361–1368.

