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Abstrucf- The paper presents the design of a fuzzy controller 
for the wall-following behavior in mobile robotics using the COR 
(Cooperative Rules) methodology with Ant Colony Optimization. 
The system has been tested in several simulated environments 
using the Nomad 200 robot software, and compared with other 
controller based on genetic algorithms. The proposed approach 
obtains a highly interpretable knowledge base in a reduced time, 
and the designer only has to define the number of membership 
functions and the universe of discourse of each variable. 

I. INTRODUCTION 

The field of mobile robotics is characterized by the high 
amount of uncertainty presented in real and unconstrained 
environments. Furthermore, information provided by robot 
sensors is noisy and unreliable. Fuzzy logic has shown to 
be a useful tool when dealing with this uncertainty, and has 
been widely used for the design of behaviors in robotics [l]. 
The design of Fuzzy Rule-Based Systems (FRBS) requires a 
deep knowledge on the task to be controlled and forces to 
spend long time tuning the controller [ 2 ] .  Due to that, in the 
last few years the use of learning methods for the design of 
fuzzy controllers has been generalized. The main approaches 
are evolutionary algorithms [3] and neural networks [4]. 

In this paper we present the design of a fuzzy controller 
for the wall-following behavior in mobile robotics using the 
COR (Cooperative Rules) methodology [ 5 ] ,  [6].  The main 
advantages of the proposed approach are the easiness in the 
design, as only the number of membership functions and the 
universe of discourse of each variable have to be defined. Other 
advantages are the speed in the obtaining of the knowledge 
base (due to the search space reduction) and its high degree 
of interpretability. Finally, the use of a function that scores 
the action of the controller over each of the examples of the 
training set (which cover the universe of discourse of all the 
variables) allows that the quality of the learned behavior does 
not depend on the environment, and also that the robot will 
be capable to face any situation. 

The paper is organized as follows. Section I1 introduces the 
wall-following behavior. Section I11 presents the methodology 
that has been used. Section IV shows the obtained results and, 
finally, conclusions are discussed. 
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11. LEARNING THE WALL-FOLLOWING BEHAVIOR 

The wall-following behavior is usually implemented when 
the robot is exploring an unknown area, or when it is moving 
between two points in a map. A good wall-following controller 
is characterized by three features: to maintain a suitable 
distance from the wall that is being followed, to move at a 
high velocity whenever possible, and finally to avoid sharp 
movements, making smooth and progressive turns and changes 
in velocity. The controller can be configured modifying the 
values of two parameters: the reference distance, which is the 
desired distance between the robot and the selected wall, and 
the maximum velocity attainable by the robot. In what follows 
we assume that the robot is going to follow a contour that is 
on its right side. Of course, the robot could also follow the 
left-hand wall, but this can be easily dealt with by simply 
interchanging the sensorial inputs. 

The input variables of the control system are the right- 
hand distance (RD),  the distances quotient (DQ), which is 
calculated as: 

(1) 

As it can be seen (Fig. l), DQ shows the relative position of 
the robot inside a corridor, which provides with information 
that is more relevant to the problem than simply using the 
left-hand distance. A high value for DQ means that the robot 
is closer to the right-hand wall, whilst a low value indicates 
that the closer wall is the left-hand one. The other input 
variables are the linear velocity of the robot (LV) and the 
orientation of the robot with respect to the wall it is following. 
A positive value of the orientation indicates that the robot is 
approaching to the wall, whilst a negative value means the 
robot is moving away from the wall. The output variables are 
the linear acceleration and the angular velocity. 

All the information used to calculate distances and orien- 
tations is obtained from the ultrasound sensors of the robot. 
The distances and the orientation are obtained in two ways: if 
any of the walls (left or right) can be modeled with a straight 
line using a least square mean of the raw sensor data, then the 
corresponding distance and orientation are measured from that 
line. Otherwise. distance is measured as the minimum distance 

l e f t  - hand distance 
RD DQ = 
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of a set of sensors, and the orientation will be the orientation 
of that sensor with respect to the advance direction. 

Lefthand distance RD 

Fig. 1 .  Description of some of the distances used to calculate input variables 

A set of examples (23085) has been chosen for leaming 
the knowledge base. These examples cover the universe of 
discourse of all the variables in the antecedent part of the rule. 
The universes of discourse have been discretized, in order to 
minimize the search space, with a step or granularity gn, where 
n is the variable. Function SF,  that scores the action of the 
rule base over an example, is defined as: 

1 
a1 + a2 + a3 + 1 SF (RB ( e ' ) )  = ( 2 )  

where a1, a2, and a3 are respectively: 

( 3 )  

(4) 

a3 = ( 5 )  

and g R D ,  g L v ,  and gorLentatzon are the granularities of the 
respective input variables. The granularities are used in these 
equations in order to evaluate the deviations of the values 
of the variables from the desired ones in a relative manner 
(the deviation of the value of variable n from the desired 
one is measured in units of gn). This makes possible the 
comparison of the deviations of different variables and, as a 
consequence, the assignment of the weights for each one of 
the variables. These weights (100, 10 and 1 for ( 3 ) ,  (4), and ( 5 )  
respectively) have been heuristically determined, and indicate 
how much important the deviation in the value of a variable 
is with respect to the deviation of other variables. The highest 
weight has been assigned to the distance, as small variations 
of RD with respect to the reference distance should be highly 
penalized. An intermediate weight is associated to velocity 
and, finally, the least important contribution to function SF is 
for the orientation of the robot. 

The index that measures the global quality of the encoded 
rule set is: 

IRD - reference distance1 
QRD 

lmaxinaum velocity - LV( 
QLV 

a1 = 100. 

a2 = 10.  

I orientation I 
Qorzentatzon 

L ! N E L  ( ( -  max(SF ( e ' ) )  J J 
1=1 

where N E  is the number of examples, w is a scaling factor 
that has been set to 1000, and max ( S F  (e ' ) )  is the maximum 
score that an action can obtain for example e'. These values 
are obtained before the beginning of the algorithm, trying and 
scoring all the possible actions for each example. 

111. LEARNING METHODOLOGY BASED ON COR 
The process followed to learn the fuzzy controller is based 

on the COR methodology (proposed in [5] and extended 
in [6]). We have selected this process due to its good properties 
to quickly obtain knowledge bases with a high interpretability. 
The three following subsections describe the learning method- 
ology, an analysis of its main properties, and the proposed 
algorithm based on it. 

A. COR Methodology 
A family of efficient and simple methods to derive fuzzy 

rules guided by covering criteria of the data in the example 
set, called ad hoc data-driven methods, has been proposed 
in the literature in the last few years. Their simplicity, in 
addition to their quickness and easy understanding, make 
them very suitable for learning tasks. However, ad hoc data- 
driven methods usually look for the fuzzy rules with the 
best individual performance (e.g. [7]) and therefore the global 
interaction among the rules of the rule base is not considered, 
thus involving knowledge bases with a bad accuracy. 

With the aim of addressing these drawbacks keeping the 
interesting advantages of ad hoc data-driven methods, the 
COR methodology is proposed [ 5 ] .  Instead of selecting the 
consequent with the highest performance in each subspace like 
these methods usually do, the COR methodology considers the 
possibility of using another consequent, different from the best 
one, when it allows the FRBS to be more accurate thanks to 
have a knowledge base with better cooperation. 

COR consists of two stages: 
1) Search space construction - It obtains a set of candi- 

date consequents for each rule. 
2 )  Selection of the most cooperative fuzzy rule set - 

It performs a combinatorial search among these sets 
looking for the combination of consequents with the best 
global accuracy. 

A wider description of the COR-based rule generation 
process is shown in Fig. 2 .  

B. Advantages of the COR Methodology to Learn Fuzzy 
Controllers in Mobile Robots Navigatiorz 

The above mentioned methodology has some interesting 
advantages that make it very useful to leam fuzzy controllers 
in mobile robots navigation. We can mainly highlight two 
characteristics: 

1) Search space reduction - The COR methodology re- 
duces the search space basing on heuristic information. 
This fact differences COR from other rule base leaming 
methods [8] and allows it to be quicker and to make a 
better solution exploration. This is an important issue for 
the learning of fuzzy controllers, where a high number 
of examples is used. In the wall-following behavior 
presented in this paper, 23085 examples have been used, 
and the employed methodology spends only 20 minutes 
in order to obtain the controller. As opposed to this, 
a solution based on genetic algorithms with the same 
number of examples could spent several hours. 
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Inputs: 
An input-output data set--E = {el, .  . . , e l , .  . . , e N } ,  with el = 
($, . . . ,xi, y!, . . . , yk),  I E (1,. . . , N } ,  N being the data set 
size, and n (m) being the number of input (output) variables- 
representing the behavior of the problem being solved. 
A fuzzypartition o f  the variable spaces. In our case, uniformly 
distributed fuzzy sets are regarded. Let Ai be the set of 
linguistic terms of the i-th input variable, with i E (1, . . . , n}, 
and Bj be the set of linguistic terms of the j - th  output variable, 
withj E (1,. . . , m}, with JAil (lB,-l) being the numberof labels 
of the i-th (j-th) input (output) variable. 

Algorithm: 

1.1. Define the fuzzy input subspaces containing positive 
examples: To do so, we should define the positive 
example set (E+(S,)) for each fuzzy input subspace 
S, = ( A ; , .  . . , A ;  , . . . ,  A ; ) ,  with AS E Ai being a 
label, s E (1, . . . , Ns}, and N s  = n:=, [Ail being the 
number of fuzzy input subspaces. In this paper, we use 
the following: 

1) Search space construction: 

E+(s , )={  e l E E I ’ d i E ( 1 ,  . . . ,  n} ,  
E A % , P A p ( X f )  2 PA;.(Xa) } 

(7) 
with (.) being the membership function associated 
with thellabel A;.  
Among all the N s  possible fuzzy input subspaces, 
consider only those containing at least one positive 
example. To do so, the set of subspaces with positive 
examples is defined as S+ = (Sh I E+(S,) # O}. 

1.2. Generafe the set of candidate rules m each subspace 
with positive examples: Firstly, the candidate conse- 
quent set associated with each subspace containing at 
least an example, sh E Sf, is defined. In this paper, we 
use the following: 

C(Sh)  = { ( B p , .  . . ~ B k )  E B1 x .“  x B, I 
gel E E + ( S h ) u r h e r e V ~ ~ { 1 !  . . . ,  m}, 

(8) 

Then, the candidate rule set for each subspace is d e  
fined as CR(Sh) = { R k l L  = [IF X1 is A t  and ... and 
XT2 is A; THEN Yl is Blki’ and ... and Y, is B 2 ]  such 
that ( B t h , .  . . , B 2 )  E C(Sh)} .  
To allow COR to reduce the initial number for fuzzy 
rules, the special element Rm (which means “dc 
not care”) is added to each candidate rule set, i.e., 
CR(Sh)  = CR(Sh)  U Rm. If it is selected, no rules are 
used in the corresponding fuzzy input subspace. 

2 )  Selection of the most cooperative fuzzy rule set -This stage 
is performed by running a combinatorial search algorithm tc 
look for the combination RB = {RI  E CR(S1), . . . , Rh E 
CR(Sh) ,  . . . , R ls+ l  E CR(Slsll)} with the best accuracy 
Since the tackled search space is usually large, approximate 
search techniques should be used. 
An index f ( R B )  measuring the global quality of the encodec 
rule set is considered to evaluate the quality of each solution 
In order to obtain solutions with a high interpretability, the 
original function is modified to penalize excessive number o 
rules: 

(9 

with p E [0,1] being a parameter defined by the designer tc 
regulate the importance of the number of rules, #RB beinc 
the number of rules used in the evaluated solution (i.e., 1.971,- 

E RB such that RI, = Rm}[), and RBo being the initia 
rule base considered by the search algorithm. 

‘dBi E Bj, @ k,, (vi) 2 @ L g : ( ! 4 : )  1. 
B3 

#RB 
IS+I f ’ ( R B )  = f ( R B )  + P .  f (RBo)  

Fig. 2. COR algorithm 

This search space reduction is performed by two con- 
straints: 

a) Maxinzuni number of fuzzy input subspaces: The 
maximum number of fuzzy input subspaces, and 
therefore maximum number of fuzzy rules, is lim- 
ited by the positive example sets. The constrains 
imposed to construct E + ( S s )  (see eq. (7) in Fig. 2) 
divides the input space with a crisp grid bounded 
by the cross points between labels and, therefore, 
each example contributes to generate a single rule. 
It is a conservative subspace set selection that 
generates the least possible number of rules that 
guarantee a whole covering of the examples. 
In our problem, since the example data are uni- 
formly distributed in the whole input space (as 
described in Sect. 11), no reduction of the number 
of fuzzy input subspaces is done. Nevertheless, 
the fact of assigning each example to only one 
subspace will involve to reduce the number of 
candidate consequents, since the positive example 
sets are reduced. 

b) Candidate rule set in each subspace: Once the 
fuzzy input subspaces are defined, a second search 
space reduction is made by constraining the set of 
possible consequents for each antecedent combi- 
nation, i.e., the candidate rules in each subspace. 
Again, we use a restrictive condition to construct 
C(Sh) (see eq. (8) in Fig. 2 )  that generates a low 
number of candidate rules. 

To illustrate the effect of this search space reduction, 
from the example data set proposed in Sect. 11, and 
using the following number of linguistic terms for each 
inputloutput variable, = 5, (A21 = 2 ,  Id31 = 5, 
/d4/ = 2 ,  IBlI = 9, lBzl = 9, our methodology 
generates a search space of n,,,,,+ IC(Sh)l = 9.8e+89 
combinations, while the total of possible combinations 
(considering the JS+I = 100 input subspaces analyzed) 
is (12311. 1B21)100 = 7.le+190. 
Interpretability issues - The proposed methodology 
has also some interesting advantages from the inter- 
pretability of the obtained fuzzy knowledge point of 
view. This is an important issue in fuzzy control for 
mobile robot navigation, as the actions of the robot 
are easily understandable and can be communicated to 
other modules that supervise the behavior in the control 
architecture. Basically, we can remark the two following 
aspects: 

Model structure and membership functions keep in- 
variable for an excellent interpretability: The COR 
methodology is an effort to exploit the accuracy 
ability of linguistic FRBSs by exclusively focusing 
on the rule base design. In this case, the membership 
functions and the model structure keep invariable, 
thus resulting in the highest interpretability. Indeed, 
instead of improving the accuracy by deriving the 
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shape of the membership functions or by extend- 
ing the model structure (weighted rules, linguistic 
hedges, hierarchical knowledge bases, etc.), COR 
methodology improves the accuracy inducing coop- 
eration among linguistic fuzzy rules. 
Rule base reduction to improve interpretability and 
accuracy: A problem when defining a rule base 
is that one can not be sure whether the rules are 
correctly defined, i.e., without redundant rules or 
rules that generate conflicts with others in certain 
situations. Moreover, a high number of rules is 
difficult to be interpreted, even when a linguistic 
fuzzy rule structure is considered. 
To face this problem, a rule reduction post- 
processing is usually developed. When no restriction 
to the interpretability is considered, the rules can 
be merged [3], thus generating a scatter structure 
where each fuzzy rule uses different fuzzy sets for 
each variable. 
On the other hand, if we want to obtain linguistic 
fuzzy rules with high interpretability, a selection 
process can be developed to obtain a subset of the 
original rule base. However, this approach does not 
seem to be appropriate to generate an accurate final 
rule set since it is not considered interdependency 
between the learning and reduction tasks. That is, it 
is sure that after reducing the rule set, the new set 
of rules that best cooperate will be different. 
The COR methodology achieves the reduction pro- 
cess at the same time as the learning one with 
the aim of improving the accuracy (the cooperation 
among rules and thus the system performance can 
be improved by removing rules) and interpretability 
(a model with less rules is more interpretable) of 
the learned model. 
This process is performed by adding the null rule 
(Re) to the candidate rule set corresponding to each 
subspace, as shown in the step 1.2. of Fig. 2. In 
this way, if such a element is selected for a specific 
subspace, this will mean that no rules will take 
part for the corresponding antecedent combination. 
Notice that the addition of Re in each candidate rule 
set slightly increases the search space. Moreover, 
the objective function used to guide the search 
algorithm (see eq. (9) in Fig. 2) is modified to 
penalizing solutions with a high number of rules. 

C. COR Methodology with Ant Colony Optimization 

Since the search space tackled in step 2. is usually large, 
it is necessary to use approximate search techniques. In [5], 
accurate linguistic models have been obtained using simulated 
annealing. However, since one of our constrains is to deal with 
a computational expensive evaluation function, in this paper 
the use of ant colony optimization (ACO) [9] is proposed (the 
metaheuristic is briefly described in Appendix A). This section 
describes the components of the proposed algorithm. 

1 )  Problem Representation for Leaming Cooperative Fuzzy 
Rules: To apply ACO in the COR methodology, it is conve- 
nient to see it as a combinatorial optimization problem with 
the capability of being represented on a weighted graph. In this 
way, we can face the problem considering a fixed number of 
subspaces and interpreting the learning process as the way of 
assigning consequents vectors-i.e., labels of the output fuzzy 
partitions-to these subspaces with respect to an optimality 
criterion (i.e., following the COR methodology). 

Therefore, according to Fig. 2,  each node S h  E Sf is 
assigned to each candidate consequent (@&, . . . , Bk ) E 
C(Sh)  and to the special symbol “don’t care” (Ro) that stands 
for absence of rules in such a subspace. 

2)  Heuristic Infornzation: The heuristic information on the 
potential preference of selecting a specific consequent vector, 
I?’!’. , in each antecedent combination (subspace) is determined 
as described in Fig. 3. 

I I 
For each subspace Sh E S+ do: 

1) Build the sets E+(&) and c ( s h )  as shown in Fig. 2. 

2) For each BkJi = (B?, . . . , B 2 )  E C(Sh) ,  make 
use of an initialization function based on a covering 
criterion to give a heuristic preference degree to each 
choice. In this paper, we use the following: 

3) For each BkiL f C(Sh),  make Thk ,  = 0. 
4) Finally, for the “don’t care” symbol, make the follow- I ing: 

1 

I I 

Fig. 3. Heuristic assignment process 

3) Pheromone Initialization: The initial pheromone value 
of each assignment is obtained as follows: 

In this way, the initial pheromone will be the mean value of 
the path constructed taking the best consequent in each rule 
according to the heuristic information (a greedy assignment). 

4 )  Fitness Function: The fitness function will be the said 
objective function, defined in eq. (9) in Fig. 2. 

5 )  Ant Colony Optirnizatioii Scheme: Best- Worst Ant System 
Algorithm: Once the previous components have been defined, 
an ACO algorithm has to be given to solve the problem. In 
this contribution, the BWAS algorithm [lo] is considered. Its 
global scheme is shown in Fig. 4. 

IV. RESULTS 

The learned controller has been tested in four simulated 
environments using the Nomad 200 simulation software. These 
environments include very different situations that the robot 
usually faces during navigation: straight walls of different 
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Env. RD (cm) Velocity ( c d s )  Vel. change (cds)  
A 65 55 5.73 
B 5 1  52 5.75 
c 5 5  50 4.10 

1)  Give an initial pheromone value, T ~ ,  to each edge. 
2) While (termination-condition is not satisfied) do: 

a) Perform the track of each ant by the solution 
construction process. 

b) Apply the pheromone evaporation mecha- 
nism. 

c) Apply the local search process on the current- 
best solution. 

d) Update Sglobal best  and SCZLrTent w o r s t .  
e) Apply the Best-Worst pheromone trail u p  

date rule. 
f) Apply the pheromone trail mutation. 
g) If (stuckcondition is satisfied) then apply 

restart. 

Fig. 4. BWAS algorithm 

Time (s) 
62 
103 
84 

lengths, followed and/or preceded of a number of concave and 
convex comers, ... thus covering a wide range of contours to 
follow and truly defining very complex test environments. It 
is important to remark that these environments have not been 
used during training. The training set is only composed of 
a list of examples that have been chosen covering the input 
space with an adequate precision. These conditions warrantee 
that the quality of the leamed behavior does not depend on the 
environment, and also that the robot will be capable to face 
any situation. 

Figure 5 shows the robot path along one of the environments 
(named D) used for testing. The robot trajectory is represented 
by circular marks. A higher concentration of marks indicates 
lower velocity. The learned controller has 77 linguistic rules 
and has been leamed in less than 20 minutes. If for any 
situation no rule is fired, then a null linear acceleration and 
angular velocity are selected. The maximum velocity the robot 
can reach is 61 c d s ,  and the reference distance at which the 
robot should follow the right wall is 51 cm. Ten tests have 
been done for each one of the analyzed environments. The 
average values measured for some parameters that reflect the 
controller performance are shown in Table I. These parameters 
are the average distance to the right wall (the wall that is being 
followed), the average linear velocity, the time spent by the 
robot along the path, and the average velocity change. The 
latter parameter measures the change in the linear velocity 
between two consecutive cycles, reflecting the smoothness of 
the behavior. 

In order to show the quality of the controller we are going 
to describe in detail the path of the robot in environment D 
(Fig. 5). This environment is quite complex, with four concave 
corners and six convex corners in a circuit of a length of 59 
meters. Convex corners are truly difficult situations, because 
the robot’s sensors may cease to correctly detect the wall 
at some given moments, even though some of them may 
occasionally detect it. The controller must also significantly 
reduce velocity at corners. In spite of these difficulties, the 
obtained average velocity has been quite high, and the distance 
at which the robot should follow the wall is near the desired 
reference distance. The difference between both distances is 

Convex 
comer 

Fig. 5. Path of the robot along environment D 

caused by the high number of corners, in which the orientation 
of the robot is very bad (at concave corners the robot is 
detecting two perpendicular walls, and sometimes at convex 
corners it detects no wall), and a fast turning is prioritized 
over a correct distance. 

TABLE I 
AVERAGE VALUES OF SOME PARAMETERS (77 LINGUISTIC RULES) 

~~ _ _  I 

/ D l  55 I 54 I 4.27 I 112 I 

For evaluating the obtained controller, a comparison with 
another wall-following controller designed using genetic al- 
gorithms [3] has been done. Strict comparison of the results 
obtained with other control systems described in the literature 
is not possible, because it is not viable to propose a standard 
test bank which would allow us to compare controllers in 
similar environments, and to consider the different mechanical 
and dynamic features of the different robots. The design in 
[3] comprised two stages: learning of the data base and a 
general rule base (Pittsburgh approach), and reduction of the 
generated rule base merging adjacent membership functions. 
This reduction provokes a loss in the interpretability of the 
final knowledge base since a different fuzzy set is built 
for each fuzzy rule. thus losing the legibility provided by 
the use of linguistic variables with global semantics. That 
controller has 46 fuzzy rules, and the average values of some 
parameters for the test environments are presented in Table 11. 
The time employed to learn the system is very high (several 
hours) compared with less than 20 minutes for the controller 
presented in this paper. 

The controller described in this paper has a high number 
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A 59 46 8.69 72 
B 54 43 9.70 120 
C 54 36 7.15 114 
D 54 46 7.18 127 

TABLE I1 
each trail. In this way, the depositions of pheromone terminate 
in constructing a path between the nest and the food that can 
be followed by new ants. The shortest paths are finally the 

AVERAGE VALUES OF SOME PARAMETERS FOR THE SYSTEM DESCRIBED 

I N  [3] (46 FUZZY RULES) 

concentration is higher on them. 
The basic operation mode of ACO algorithms is as fol- 

lows [9]: at each iteration, a population of a specific number 

according to a probabilistic transition rule that depends on the 
available information (heuristic information and pheromone 
trails). After that, the pheromone trails are updated by firstly 
decreasing them by some constant factor (corresponding to 
the evaporation of the pheromone) and then reinforcing the 
attributes of the constructed solutions considering their quality. 
This task is developed by the global pheromone trail update 
rule. Several extensions to this basic operation mode (different 
transition and update rules, new components, local search ...) 
have been proposed. 

of rules (77 vs. 46), but clearly improves the results of the 
controller presented in [3]. The average velocity is higher in 
all the environments, reducing the time spent by the robot 
in the circuit. The average right-hand distance is very similar 
in both controllers and, finally, the average velocity change 
is drastically reduced in the present controller, which reflects 
the quality of the obtained behavior as compared with [3]. 
On the other hand, the interpretability of the obtained rules is 
very high, as opposed to [3]. This makes easier to understand 
the actions taken by the robot. The controller selects a strong 
braking when, due to the orientation and velocity, the robot is 
going to be in the next iteration very close to a wall, or quite far 
from the wall it must follow. A medium or hard acceleration 
is selected when the following position of the robot is going 
to have a good right-hand distance. In resume, the objective 
is firstly to place the robot to an adequate distance from the 
right-hand wall, then to select a high velocity if possible. and 
finally to orient it parallel to the wall. 

V. CONCLUSIONS 

We have presented the design of a fuzzy controller for the 
wall-following behavior in mobile robotics using the COR 
methodology. The main advantages of the proposed approach 
are the easiness in the design, the speed in the obtaining of 
the knowledge base, the high degree of interpretability of that 
knowledge base and, finally, that the quality of the learned 
behavior does not depend on the training set. 

The controller has been tested in a number of simulated 
environments showing good results in the average values 
of some parameters that reflect the quality of the behavior. 
The system has also been compared with a previous design 
based on genetic algorithms, increasing the quality and the 
interpretability of it. 

APPENDIX A: ANT COLONY OPTIMIZATION 

ACO algorithms constitute a new family of global search 
bio-inspired algorithms that has been recently proposed. Since 
the first proposal, the ant system algorithm [9]-applied to the 
traveling salesman problem-, numerous models have been 
developed to solve a wide set of optimization problems. 

ACO algorithms draw inspiration from the social behavior 
of ants to provide food to the colony. In the food search 
process, ants deposit a substance called pheromone. Ants 
have the ability of smelling the pheromone. When an ant is 
located at a branch, it decides to take the path according to 
a probability defined by the amount of pheromone existing in 
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