
A Tabu Search Optimization Module for Scheduling
Design and Integration in the Open Source Tool LibrePlan for Project Management

A. González-Sieira, A. Bugarín, M. Mucientes
Centro de Investigación en Tecnoloxías da Información

(CITIUS)
University of Santiago de Compostela, Spain

{adrian.gonzalez, alberto.bugarin.diz,
manuel.mucientes}@usc.es

J. Morán
Igalia S.L.

Pontevedra, Spain
jmoran@igalia.com

Abstract—In this paper we describe a tabu search based
approach to the scheduling problem in project management and
its integration in the LibrePlan open source software tool. A
description of the key elements of the algorithm is provided,
together with the execution of three use cases with LibrePlan,
that shows how feasible plannings are obtained, achieving a
noticeable reduction in the makespan of the projects.

Keywords: tabu search, metaheuristics, scheduling, open
source, project management software tools.

I. INTRODUCTION

A Flexible Job Shop problem [5] is a scheduling problem
where the tasks are developed in an environment with limiting
parallel resources and each task can only be processed by a
subset of those resources. Optionally the task may need to be
processed more than once. The optimal assignation of the
resources demands to minimize the time necessary to complete
all tasks and their associated cost. To solve this problem it is
necessary to take into account the task dependencies and the
date restrictions, both at the beginning and at the end, and the
different work load of each resource. In a real project there is
also a calendar associated to each resource that defines its
availability (due to holidays, maintenance, etc.) which must be
considered to generate valid assignations and fi t to the
restrictions imposed by the project information.

The information about the dependencies between tasks and
the resource assignations can be modeled by a directed graph
[6] where the nodes are the tasks associated to the project, and
the rest of the information is contained in the arcs; thus, a
search space which contains the set of graphs obtained from
changing the resource assignation arcs is defined.

Different approximations have been described in the
literature to solve this type of problems: genetic algorithms [3],
hybrid search [2] and ant colonies [7], [9], etc. Genetic
algorithms are the most significant approximation, as they
explore the search space by combining and modifying different
candidate solutions, which allows having more control about
the diversity of the optimization process. The main
disadvantage of these methods is their high computational cost:
a very relevant factor taking in account the environment where
the module will be deployed, as the result should be shown to
the user in a reasonable time.

Another approximation is to use a descent search algorithm
to do the optimization starting from any point of the search
space. The candidate solution is used to generate a
neighborhood. The search space is explored iteratively,
selecting the most promising neighbor as in an informed search
algorithm. To keep the diversity of the exploration process and
avoid local minimums, a tabu search algorithm may be used.
Thus, the selection of the seed for the next iteration is limited
by the history of the changes made in previous iterations. In
this way both the exploration loops and the local minimums are
avoided as the exploration direction is forced to take other less
promising paths to preserve diversity. The main advantage of
this technique is that, if the neighborhood size is at the same
time small enough and representative, the algorithm may
converge to the optimal solution very fast, thus reducing the
execution time. This is the most important reason for using this
approximation to solve the scheduling problem.

In this paper we describe the implementation of a
scheduling module that was integrated into LibrePlan [8], a
web based open source tool for project management. The main
function of this module is to optimize the time, and indirectly
the cost, for completing a given set of tasks in a limiting
resource environment, obtaining the best resource assignations,
and observing all the restrictions introduced by the user.

The optimization is done by an iterative process that
performs re-assignations on the tasks in the critical path to
shorten it. It takes in account elements managed by LibrePlan
such as: resource calendars, restrictions of which resources can
be assigned to each task, dependencies, etc. Once the
optimization process is completed, the assignations can be
inspected and modified before saving the changes. The module
was developed in J2EE and integrated into LibrePlan, and the
optimization algorithm was developed in Java.

This paper is organized as follows: first, the tabu search
based optimization algorithm is detailed, including all the
components that make up it. Section 3 describes the integration
of the algorithm into LibrePlan, and Section 4 shows a use
case. Finally the conclusions of this work are presented.

II. OPTIMIZATION ALGORITHM

To use a tabu search process two main elements need to be
determined: the neighborhood function and the estimation cost

This work was supported by Igalia, S.L. and the Xunta de Galicia under
grants 2011/CG247 and PGIDIT10DPI031E. Support from Spanish Ministry
of Economy and Competitiveness under grants TIN2011-22935 and TIN2011-
29827-C02-02 is also acknowledged. A. González-Sieira is supported by a
FPU grant (ref. FPU12/05712) from the Spanish Ministry of Education,
Culture and Sports. M. Mucientes is supported by the Ramón y Cajal program
of the Spanish Ministry of Economy and Competitiveness. This work was also
supported in part by the European Regional Development Fund
(ERDF/FEDER) under the project CN2012/151 of the Galician Ministry of
Culture, Education and Universities.

function. As the solution of the scheduling problem is
represented as a directed graph, its cost can only be reduced by
introducing changes in the critical path. So, the neighborhood
of a candidate solution will contain graphs obtained by re-
assigning critical tasks to other resources, or to the same
resource but in different processing order. It is necessary to
keep reduced the number of neighbors to improve the
efficiency of the algorithm, but always maintaining the
representativeness of the set of changes.

The estimation cost function acts as a heuristic to guide the
exploration process through the most promising zones of the
search space. It was implemented following the principle that
the temporal marks of the predecessor and successor tasks of
the one to be re-assigned will not change, so accumulating
these marks to the processing time in the new resource is a
good estimation for the new cost of the solution.

The tabu tenure is also an important concept managed by
the algorithm. It represents the number of iterations that the
prohibition of moving to a neighbor will last. This parameter
should not be static: it will be set taking into account the
complexity of the neighborhood in order to avoid a different
behavior depending on a heuristically defined parameter.

The following subsections detail the structure of the
solution graph, the generation of the initial seed, the
neighborhood function, the estimation cost function and the
complete tabu search process.

A. Solution graph

The dependencies between tasks and the order of the
assignations can be modeled as a directed graph [6], called the
solution graph. Each node in the graph represents a task, the
atomic work elements of the algorithm. Each task is defined by
the number of work hours to complete it and the calendar
associated to the task. It is a common situation that all tasks of
the project share this calendar, but it is not mandatory (there
may be tasks developed in other regions with different holiday
days). Two artificial nodes, 0 and * nodes, are added to the
graph to represent the beginning and the end of the execution
of the tasks. These nodes do not have any work load, neither
can be assigned to any resource.

The arcs of the graph codify different information
depending on their type: P arcs represent dependencies
between tasks (the algorithm must respect the order given by
these arcs to perform valid assignations); M arcs represent the
processing order of the tasks assigned to the same resource
(modifications over these arcs represent re-assignations of the
tasks to other resources, or in the same resource in different
processing order); and D arcs connect each task with nodes 0
and * when there is no equivalent connection of different type,
to keep the connectivity of all tasks in the solution graph.

To execute the optimization algorithm, it is necessary to
generate an initial graph, where the assignations are done
stochastically, containing all the relevant input data for the
optimization process. To generate this graph the following
information is used:

 The set of tasks, each one with its calendar and
associated work hours. Not always the whole set of

tasks is used to generate the solution graph, since in
LibrePlan the tasks with lower relevance can be
grouped into higher-level tasks and be omitted in the
optimization algorithm. Tasks considered in the
optimization process are called planning points.

 The list of resources: in LibrePlan some assignation
criteria (location, category, etc.) can be imposed to the
tasks, so only the resources that match those criteria
can do the work.

 The list of dependencies between tasks.

B. Initial graph generation

To generate the initial graph, first the artificial nodes 0 and
* are added to define the opposite sides of the graph. Then, a
node for each task that is also a planning point is created. In
each node, the algorithm stores the number of working hours
and the calendar associated to the task. The initialization
process is detailed in Algorithm 1, where ݐ is the initial task, כݐ the final one, ܵܬሾݐሿ are the dependent tasks of ݐ through P
arcs and ܲܯሾݐሿ is the previous one in the processing queue of ݐ.

Each node in the graph is labeled with the earliest starting
time of the associated task, ݏ௫ ൌ ݈ሺͲǡ ௫ݐ ,ሻ, the later tail timeݔ ൌ ݈ሺݔǡכሻ, and the processing time of the task in the assigned
resource, ௫ǡ . The cost of a solution graph, also called
makespan, is calculated by adding all of the processing times
of the tasks in the longest path that connects the nodes 0 and *.
This is the critical path of the graph, ݈ሺͲǡכሻ

C. Neighborhood function

The neighborhood function used in this work was extracted
from the work by Mastrolilli et al. [4]. The neighbors of a
solution graph are obtained changing the assignments of tasks
to other resources, or in the same resource with different
processing order. In order to minimize the makespan of the
neighbors with respect to the original graph, only the tasks
belonging to the critical paths are re-assigned. Otherwise the
value of the makespan could increase or remain the same, since
the changes made on the graph do not guarantee the reduction
of the number of critical tasks and, in the worst case, this could
increase it.

To reduce the number of neighbors, a special definition of
critical path is used: the path P. This path is obtained by
selecting tasks belonging to any critical path in the graph in a
random way, as detailed in Algorithm 2, where ܵܯሾݐሿ is the
next task in the processing order of the resource assigned to ݐ.
To generate the neighborhood of a solution graph, the tasks
contained in its path P are reassigned to other resources
capable to process them, or in the same resource but with
different processing order. The length of this path gives the
number of neighbors obtained from the graph. Each re-
assignation is defined by a task, ݒ, and a resource, k. This is
also called ݇ -insertion of ݒ. To perform an insertion of ݒ in
resource ݇ two actions must be done: first, the M arcs adjacent
to the task ݒ are removed; then ݒ is assigned to the resource
selecting an adequate processing order, adding the
corresponding M arcs to the graph.

The neighborhood function, Nopt1 (Alg. 3), is defined as
the set of re-assignations, ܨ௩, obtained from inserting the tasks ݒ א ܲ after all operations in ܮ̳ܴ and before all operations in ܴ̳ܮ, where ܴ and ܮ are the subsets of tasks located before
and after the removed operation ݒ, contained in the processing
queue of the resource ݇, ܳ .

It is demonstrated that the set of solution graphs obtained
after inserting ݒ after all operations of ܮ̳ܴ and before all
operations of ܴ ̳ܮ contains an optimal change. The best
solutions are always obtained after inserting ݒ as a successor of
the last task in ܮ̳ܴ, or as a predecesor of the first task in ܴ̳ܮ. If ܮ ת ܴ ൌ all possible insertions are optimal, and ,
one of them is selected stochastically.

D. Estimation cost

The optimization process consists in an iterative search
based in the tabu metaheuristic. This process uses a heuristic
value to select the most promising direction to explore the
search space. The exact cost of the longest path in the graph
can be calculated in ܱሺܰሻ . Although this is not a high
computational complexity process, repeating it for all
neighbors generated in each iteration of the algorithm means a
high cost. To keep the execution time as low as possible and
give the user a quick response, an estimation of the cost is used
instead of the actual value. Using this estimation as heuristic,
the actual cost of the solution graph is calculated only once per
iteration.

The estimation of the makespan is explained in [4] and
detailed in Algorithm 4. The value obtained is an upper bound
of the real makespan of a solution graph after performing a ݇-
insertion and the average deviation of the values obtained is not
more than 1% from the real ones.

The value is obtained by adding the early beginning time of
the predecessors of ݏ ,ݒ௩ି ; the later tail time of the successors, ݐ௩ି ; and the processing time of the task after its re-assignation, ௩ . This is a good estimation of the solution cost after
performing the re-assignation since the time marks after the
removal of ݒ do not change. A different situation is when the
re-assignation is done in the same resource but in a different
position in the processing queue. As the processing order of the
tasks assigned to the resource ݇ will change when performing
the ݇ -insertion, the time marks of the predecessor and
successors of ݒ will be outdated. In this case, a different
method is used to calculate the makespan estimation, described
in [1] and detailed in Algorithm 5.

E. Tabu search

The optimization algorithm is a search process executed
iteratively that stores a list of tabu motions, TM, that are
forbidden ݇ -insertions for a certain number of iterations. This
list allows having more diversity in the exploration of the

search space, avoiding local minimums. This also maximizes
the probability of finding the optimal solution. Iteratively, the
neighborhood of the current solution graph is generated and
ordered by ascending estimated makespan. The neighbors that
are tabu motions are filtered: if non-tabu neighbors were
generated, one of the best two is selected; if only tabu
neighbors are available, one of both the two with the
prohibition near to expire is selected. There is also an
aspiration criterion: if the most promising of the generated
neighbors is better than the best solution found at the current
iteration, that ݇ -insertion is selected without checking the tabu
list content. Every time that a ݇-insertion is selected to be the
seed of the next iteration, the tabu list is updated by adding that
motion and the prohibition expiration iteration. The expiration
value is calculated dynamically, depending on the size of the
neighborhood and the number of alternatives of re-assignation
of the selected motion. The higher the number of neighbors or
the number of resources capable to execute the re-assigned
task, the higher is the number of iterations that repeated ݇-
insertions will be forbidden. The complete process is detailed
in Algorithm 6.

III. LIBREPLAN INTEGRATION

LibrePlan [8] is a collaborative open-source tool to plan,
monitor and control projects endowed with a rich web interface
which provides a desktop alike user experience. It is an open
source software developed by the Galician software company

Igalia S.L. as an evolution of the previous alike tool NavalPlan,
which initially was developed to satisfy the scheduling needs
of the projects in the Galician naval industry. Nowadays the
software is oriented to solve general purpose scheduling
problems. The integration of this optimization algorithm as a
module of LibrePlan provides users an easy way of generating
optimal resource assignations with the purpose of minimizing
the time necessary to complete the projects and, indirectly,
their associated cost.

There are two main changes made on the algorithm
behavior to adapt it to run into LibrePlan: the calculation of the
real time needed to complete the working hours associated to a
task, and the resource assignation limitations that can be
managed by the program. Below, these changes are described
more in detail.

A. From working hours to real time

The basic data model managed by the algorithm does only
support the static definition of the duration of the tasks, where
this value depends only on the resource assigned to execute the
task. This implies that the result of the algorithm is the same
with independence of the beginning date of the project. In
LibrePlan, however, a more complex context is defined to
know the real duration of the task, as it depends on the
following elements:

 The working time necessary to complete the task

 The project calendar, that defines the holidays days
associated to national, regional or local feast days, and
the maximum dedication time in working days.

 The resource calendar, which contains information
about the availability of the resource with
independence of the project calendar (due to holidays,
maintenance, medical conditions, half day working
days, etc.).

With this new scenario, the beginning date of a task
becomes a new element to be considered in the optimization
process, as its duration will be very sensitive to any change
produced in the calendar information: e.g., a 9 hour task
typically needs an entire day and one extra hour to be
completed, but if the beginning day is Friday, two additional
days are added because the weekend corresponds to non
working days.

As in the basic data model of the algorithm the real
duration of a task is static and only depends on the resource
that processes it, it was necessary to improve it and add support
for calendar management: the algorithm considers the
beginning date of the project and propagates the beginning
dates of the tasks to be able to correctly calculate the real
duration. As the calendar restrictions come from different
information sources (the project calendar, the task calendar and
the resource calendar), it is necessary to merge all restrictions
to check the real dedication that can be applied by date.

B. Resource assignations validation

Resources in LibrePlan are used to model machines,
workers and virtual workers. Also, all these types of resources
can contain information about their category, localization, etc.

All this information can be used to determine the ability of the
resources to process certain types of tasks, e.g. there are high-
level tasks that can be only done by project managers due to
qualification restrictions.

To manage these situations, there is an option in LibrePlan
to add resource assignation criteria to each task individually.
These criteria act as a filter of which type of tasks can be
assigned to each resource, being valid only the assignations
where the criteria match the information of the resource. There
are some predefined criteria, like the localization, the category
or the type of resource (worker, machine, etc.), but the user is
free to use his own.

To reduce the execution time of the optimization process,
the information about the compatibility between tasks and
resources is calculated during the generation of the initial
solution graph. From that moment, each task contains the
resources that can process it, without considering the calendar
restrictions, i.e., the compatibility and the availability of the
resources are problems that are solved separately.

IV. USE CASES

The tabu search algorithm was tested with a set of
repositories widely used in the literature to prove the
performance and abilities of scheduling algorithms [11]. After
concluding the first testing phase, the implementation was
modified [10] in order to include the restrictions managed by
LibrePlan: the resource and project calendars, the restrictions in
the starting and ending dates of the tasks and the assignation
criteria. Also the web interface was modified in order to
include the option to calculate the optimal assignations of a
project and to show the results at the end of the execution.

A subset of three use cases based on the scheduling
problems in the standard repositories was selected and
introduced in LibrePlan (Fig. 1) to represent different user
needs: Mk01 contains short tasks with low diversity of
assignations, Mk02 has longer tasks and higher diversity and
Mk05 contains long tasks with low assignation variability. The
definition of each problem in the repository includes the real
duration of each task and each assignable resource. Since the
duration of the tasks are calculated in LibrePlan from the

Figure 1. Part of the Gantt diagram that shows the project of this use case.

working hours, the resources information and the project
calendars, a different interpretation of the input data was made
(without losing generality): we took the maximum of the
durations specified for each task, and treated it as working
hours instead of natural hours. In addition, to introduce
differences in the execution time of the tasks depending on the
resource, half of them were configured to work part time, 4
hours a day. In Table I the optimization results for each use
case are detailed. The values obtained for each problem are the
average of 5 executions of the algorithm in each case.

TABLE I. USE CASES EXECUTION RESULTS

Case
Input Mean Result

(5 executions)

Working
Hours Tasks Resources Va) Iter. Optim. Natural

Hours

Mk01 250 55 6 2 2329 43 % 86

Mk02 262 58 6 3.5 1110 48 % 103

Mk05 737 106 4 1.5 1644 38 % 281

a) V stands for variability (mean of resources assignable to each task)

The algorithm starts the exploration with a random solution
generated observing the task assignation restrictions. With the
first iterations the makespan of the best solution decrease very
fast, but the algorithm needs a higher number of iterations to
converge to the optimal solution, what is very adequate to do
the integration in LibrePlan, because a maximum execution
time of the optimization module can be configured, returning
the best found solution at that point. This behavior is detailed
in Fig. 2, which shows the best found makespan respect to the
number of iterations.

The output of the optimization module was integrated in the
web interface of LibrePlan showing the optimization results
when the execution finishes, as shown in Fig. 3.

V. CONCLUSIONS

In this work, a tabu search algorithm was developed to
optimize flexible job shop scheduling problems. The search

space is formed by all the possible resource assignations
observing the project restrictions: dependencies, dates and
assignation criterions. The algorithm was integrated as a
module of LibrePlan, an open source tool for project
management, and several use cases were presented showing the
optimization abilities of the algorithm for different
combinations of tasks length and assignation variability. As
part of future work we plan to improve the integration of the
module in the web interface and do a more exhaustive
validation including corporate projects.

REFERENCES
[1] Mauro Dell'Amico and Marco Trubian. “Applying tabu search to the

job-shop scheduling problem”. In Annals of Operations Research, vol.
41(3) pp. 231-252, September 1993.

[2] P. Fattahi, M. Saidi Mehrabad, and F. Jolai. “Mathematical modeling
and heuristic approaches to fexible job shop scheduling problems”. In
Journal of Intelligent Manufacturing, vol. 18(3) pp. 331-342, 2007.

[3] J. Gao, L. Sun, and M. Gen. “A hybrid genetic and variable
neighborhood descent algorithm for flexible job shop scheduling
problems”. In Computers & Operations Research, vol. 35(9) pp. 2892-
2907, 2008.

[4] Monaldo Mastrolilli and Luca Maria Gambardella. “Effective
neighborhood functions for the flexible job shop problem”. In Journal of
Scheduling, vol. 3(1) pp. 3-20, 1999.

[5] Michael L. Pinedo. “Scheduling: Theory, Algorithms, and Systems”
(Chapter 2). In American Society of Mechanical Engineers, Springer
Verlag, 2008 pp. 13-34.

[6] Michael L. Pinedo. Scheduling: “Theory, Algorithms, and Systems”
(Chapter 7). In American Society of Mechanical Engineers, Springer
Verlag, 2008, pp. 179-216.

[7] A. Rossi and G. Dini. “Flexible job-shop scheduling with routing
exibility and separable setup times using ant colony optimisation
method”. In Robotics and Computer-Integrated Manufacturing, vol.
23(5) pp. 503-516, 2007.

[8] Igalia S.L. Libreplan online demo. http://demo.libreplan.org, October
2012.

[9] L.N. Xing, Y.W. Chen, P. Wang, Q.S. Zhao, and J. Xiong. “A
knowledge-based ant colony optimization for flexible job shop
scheduling problems”. In Applied Soft Computing, vol. 10(3) pp. 888-
896, 2010.

[10] A. Gonzalez-Sieira, A. Bugarín, M. Mucientes and M. Rego. Optiplan
for LibrePlan online demo. http://demos.citius.usc.es/optiplan4libreplan,
December 2012.

[11] Monaldo Mastrolilli. Problem instances and computational study.
http://www.idsia.ch/~monaldo/fjsp.html, 1998.

Figure 3. Result window of the web interface with the execution

details of the optimization.

Figure 2. Evolution of the best makespan for each use case.

