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Abstract. Object detection has made remarkable progress in recent
years, driven by advancements in deep learning and the availability of
large-scale annotated datasets. However, these methods often require ex-
tensive labeled data, which may not be accessible for specific or emerging
applications. This limitation has generated interest in Unsupervised Do-
main Adaptation (UDA), which facilitates knowledge transfer from a
labeled source domain to an unlabeled and differently distributed target
domain.
This study addresses the challenge of UDA between synthetic and real-
world data. A methodology for generating synthetic datasets is proposed
using AirSim and Unreal Engine, enabling the creation of highly cus-
tomizable and diverse datasets. We also propose a Domain Adaptation
technique, MixUDA, that maximizes the utility of the synthetic dataset
to improve the performance of a model in a real domain. MixUDA is
a UDA approach which uses a Mean Teacher architecture and employs
pseudo-labels combined with two different image-mixing operations to
achieve a smooth and progressive transition from the synthetic to the
real domain: pseudo-mosaic and pseudo-mixup.
The obtained results demonstrate encouraging progress, as MixUDA sur-
passes state-of-the-art models D3T and MixPL by 1.18 and 4 AP points
respectively, approaching performance of oracle models trained directly
on the target domain. These findings suggest that synthetic datasets have
significant potential in addressing data scarcity and improving model
generalization, while also pointing to promising directions for further
exploration in this area.
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1 Introduction

Object detection has experienced significant advancements in recent years, pushed
forward by the development of sophisticated deep learning models and the avail-
ability of large-scale annotated datasets, such as ImageNet [2] or COCO [6].
However, the availability of large-scale and high-quality labeled data is not al-
ways feasible for specific, niche, or emerging applications. This limitation has
led to growing interest in the field of Domain Adaptation (DA), which aims to
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Fig. 1. Real domain image of SARD [11] dataset on the left and synthetic image on
the right.

transfer knowledge from a source domain to a different distributed target do-
main, so that all prior knowledge of a model is leveraged for the application. In
particular, Unsupervised Domain Adaptation (UDA) has concentrated increas-
ing attention, as it closely aligns with real-world scenarios where labeled data
in the target domain is nonexistent. Using techniques that bridge the distribu-
tional gap between source and target domains, UDA has the potential to enable
robust object detection in challenging scenarios, such as changing environmental
conditions and novel sensor modalities.

In this paper, we address the UDA challenge of transferring knowledge from
synthetic to real domain. Domain transfer between synthetic and real datasets
has many potential applications, since it allows the use of automatically gener-
ated data to train models in domains where acquiring large and varied quantities
of data is challenging. On the other hand, the necessity to manually annotate im-
ages is also eliminated, as this process can also be carried out automatically and
it is not necessary either to have labels in the real dataset, since this adaptation
is performed in an unsupervised manner.

To address this problem, this work proposes a methodology for the creation of
synthetic datasets, which serve as a basis for Domain Adaptation from synthetic
images to real domain. The proposed approach uses two powerful tools, AirSim
[12] and Unreal Engine, which allow the realistic simulation of diverse scenarios.
In Fig. 1 an example of real domain image and a synthetic domain image created
using these tools is shown.

However, creating a synthetic dataset that closely resembles the real domain
is not sufficient for the detector to generalize effectively. In addition to having a
realistic and varied dataset, it is essential to apply domain adaptation techniques
that increases the generalization of the model. Otherwise, the model may learn
to detect objects correctly in the synthetic domain but fail to generalize and
accurately detect real objects.

For this reason, we propose MixUDA. MixUDA is a UDA method based on
a Mean-Teacher architecture that leverages pseudo-labels to identify objects in
target domain images and employs image-mixing techniques to adapt the model
from the synthetic to the real domain. By using this method, the domain gap is
reduced, and the model’s performance on the target dataset is improved.
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As a summary, the main contributions of this paper are as follows:

– A method for creating a synthetic dataset that allows for automatic scaling
of the number of images, making it possible to train models in environments
where acquiring large amounts of data is challenging. Additionally, this cre-
ation method does not require manual annotations, since this process is also
automated.

– The MixUDA approach, a new UDA method that leverages a Mean-Teacher
architecture and a novel way of mixing source and target domain images to
enable a progressive adaptation through techniques inspired by the Semi-
Supervised learning field.

2 State of the art

Object detection is a fundamental task in computer vision, which consists of lo-
calizing and classifying objects within an image. Most state-of-the-art approaches
can be categorized into single-stage and two-stage detection models.

The common process shared by both single-stage and two-stage detectors is
feature extraction, where the backbone processes the input image to generate
a feature map encoding spatial and semantic information. Two-stage detectors,
such as Faster R-CNN [10], use a Region Proposal Network (RPN) to generate
candidate object regions, which are then refined and classified. In contrast, single-
stage detectors such as FCOS [14] and YOLO [9] eliminate the Region Proposal
Network (RPN) and directly perform dense predictions across the entire spa-
tial domain of the image. This design offers faster performance but potentially
sacrificing some accuracy.

Training this models requires large amounts of annotated data, so it leads to
the increasing interest in synthetic data generation. Some approaches repurpose
video games, such as DeepGTAV [5], which uses Grand Theft Auto V (GTAV)
to generate high-quality annotated datasets. Alternatively, simulation platforms
like AirSim [12], built on Unreal Engine, offer greater flexibility in creating photo-
realistic virtual environments tailored to specific tasks. The advanced rendering
capabilities of Unreal Engine make it a powerful tool for generating diverse and
high-fidelity synthetic datasets.

Although synthetic datasets can be used to train detection models, achiev-
ing good performance on real-world images requires applying a Domain Adapta-
tion (DA) process. The objective of Domain Adaptation consists of transferring
knowledge from a labeled source domain to an unlabeled or sparsely labeled
target domain, addressing distributional shifts due to environmental differences
such as lighting or textures, as well as shifts in label distributions. There are
different types of Domain Adaptation depending on the problem’s context, but
in this paper, we will focus on Unsupervised Domain Adaptation (UDA), which
performs adaptation without using labeled images from the target domain.

UDA techniques align source and target domains using strategies such as
Optimal Transport (OT) [7], which maps feature distributions at the cluster
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level to reduce computational costs and class imbalance effects. Additionally,
vision-language models like CLIP [8] have been integrated into UDA, as seen
in DAMP [4], which employs visual and textual prompts for domain-invariant
representations. Another key strategy is pseudo-labeling, exemplified by D3T [3],
which addresses RGB-Thermal adaptation through a dual-teacher framework.

In this paper, we propose a novel UDA method inspired by techniques from
Semi-Supervised Learning (SSL), as both fields share common characteristics,
given that the objective os SSL is to leverage unlabeled data for model training.
Specifically, we employ pseudo-mosaic and pseudo-mixup techniques, which are
used in MixPL [1]. However, since the objectives of both approaches differ, there
are also significant differences, such as the incorporation of a burn-in stage and
the separate processing of images from each domain within the pipeline.

3 Synthetic Dataset Creation Process

This section details the creation of a synthetic dataset using AirSim, a tool based
on the Unreal Engine graphics engine which allows the creation of very realistic
environments. AirSim enables image capture from the created environment with
multiple perspectives, including RGB, depth maps, and segmentation masks,
facilitating the automatic extraction of object coordinates for computer vision
tasks. The described process to create a synthetic dataset can be applied to a
wide range of different problems.

The dataset generation begins with asset selection, including primary objects
of interest and secondary elements to enhance diversity. It is also necessary to
have a virtual environment in which to position the assets. Both the models and
the virtual environment can be downloaded, reusing models that were originally
created for other purposes, or they can be specifically created for the dataset.
To place the models in the environment, different techniques can be used, or the
assets can just be positioned randomly.

Once the virtual environment is constructed, the next step involves image
extraction. Airsim’s camera can be positioned in the environment simulating
several perspectives. It is important to change the position and orientation of
the camera to ensure good variability in the dataset, while performing a complete
sweep over the plane of the environment. So instead of using fixed distances to
move the camera, minor variations could be added.

For each captured image, AirSim can generate corresponding segmentation
maps, providing pixel-level ground-truth. Bounding boxes can be extracted from
these masks through color segmentation and contour detection. The process is
described in Alg. 1 and an example of segmentation ground-truth images is
shown in Fig. 2. Finally, in Fig. 3 examples of images from the dataset extracted
under varying lighting conditions are shown.



MixUDA: From Synthetic to Real Object Detection 5

Algorithm 1 Synth Dataset Bounding Box Calculation
foreach category_colors in category_color_list do

foreach color in category_colors do
- Generate a binary mask of the image for the given color
- Extract contours from the mask using the Suzuki-Abe algorithm [13].
foreach contour in contours do

- Determine the bounding rectangle using the contour’s extreme points
- Store the bounding box coordinates

- Remove bounding boxes with an area smaller than the predefined threshold

Fig. 2. On the left, RGB image extracted from the virtual environment, and on the
right, the ground-truth image of the same scene.

Fig. 3. Image examples of different iterations of the virtual environment. The light,
asset position and orientation are different on each of the sweeps along the simulation.
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Fig. 4. Overview of MixUDA framework. The pipeline integrates labeled and unlabeled
data on the training process. Labeled images –source domain– undergo a specific set of
augmentations, while the unlabeled images –target domain– undergo weak augmenta-
tions in the case of the teacher, and strong in the case of the student. Through a cache
of pseudo-labels created by the teacher, mosaic and mixup operations are applied and
added to the set of input images of the student.

4 Methodology

We propose MixUDA, a novel UDA framework that is based on a Mean Teacher
architecture which is trained using labeled data from a source –synthetic data–
domain and pseudo-labeled data from both source and target –real data– do-
mains. The key feature of this framework is the use of two distinct transforma-
tions for the progressive alignment between source and target domain images:
pseudo-mixup and pseudo-mosaic. In Fig. 4 a schematic view of the approach is
shown.

First, the model is trained in a fully supervised manner with the source
dataset during the burn-in stage. These weights are then used as the starting
point for both the teacher model and the student model in the mean-teacher
framework.

Images from each of the domains receive a different type of transformations.
Images from source domain are all augmented with the same set of operations.
On the other hand, in the target domain, images which are used as input for
the teacher model are transformed using weak augmentations such as image flip.
In the case of the target domain images that are passed to the student model,
strong augmentations are used like color and geometric transformations.

The teacher model is used to generate pseudo-labels for images, which are
stored in the pseudo-label cache. Pseudo-labels are predicted detections assigned
to unlabeled data by a pretrained model, in this case the teacher model. Images
and pseudo-labels from both the source and target domains are stored, four per
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Fig. 5. The image on the left illustrates an example of the MixUp operation. The image
on the right shows an example of the Mosaic operation. Images extracted from COCO
dataset [6].

iteration, and even though the source data is labeled, we still generate pseudo-
labels to add data from both domains to the cache. The pseudo-label cache has
a size of 8 images, so only images from the last 2 iterations are kept.

The pseudo-labels are used as ground-truth to train the student model, but
using them over the strongly augmented images in the case of the target do-
main images, ensuring that the teacher model generates accurate pseudo-labels
while the student model learns to detect invariant features across the different
strong augmentations. In the case of the source images, both models were already
trained using them, so only strong augmentations are applied.

One of the core ideas of this proposal lies in its strategic use of Mosaic
and MixUp operations to improve data diversity and to gradually adapt the
model from source to target domain. Mosaic operation combines four images
into a single one, while MixUp blends two images and their corresponding labels
through a linear interpolation. An example of each of these transformations can
be seen in Fig. 5.

These operations are applied relying on the following principles:

– Progressive adaptation: Since the model has already been trained with
source domain images in the burn-in stage, introducing images that combine
both domains allows for a gradual learning process of target domain features,
ensuring that the transition is not abrupt in the early stages while reducing
progressively the domain gap.

– Scale: During training, it is common for large object detections to exceed
the number of ground-truth annotations, while medium and small objects are
underrepresented. To address this imbalance, the mosaic operation is intro-
duced, which effectively reduces the size of large objects, thereby increasing
the representation of smaller objects in the dataset.
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MixUp images are created using 4 images from the cache and 4 from the new
batch, so 4 images are generated. To create the mosaic, 4 images from the cache
are used having as a result 1 mosaic per batch. Moreover, The student model
receives one source image with ground-truth detections. The student model’s
loss is computed based on these images as follows:

L = Lsup + wun ∗ Lun (1)

where:

– Lsup represents the loss calculated from supervised images. For classification,
focal loss is used, while for regression generalized intersection over union loss
is employed.

– Lun represents the loss calculated from pseudo-labeled images. Same loss
functions as supervised loss are used.

– wun refers to the weight associated with the unsupervised loss.

On the other hand, the teacher model is updated using Exponential Moving
Average (EMA), which maintains a smoothed version of the student’s weights by
exponentially decaying past parameters and providing more stable and consistent
supervision, as follows:

θTt = α · θTt-1 + (1− α) · θSt (2)

where:

– θTt represents the weights of the teacher model at the current step t.
– θTt-1 represents the weights of the teacher model from the previous step t−1.
– θSt referts to the weights of the student model at the current step t.
– α represents the momentum coefficient, which controls the weight given to

the previous teacher parameters versus the current student parameters dur-
ing the update.

5 Experimentation

5.1 Dataset description

The real domain dataset that has been selected to address the described problem
is the Search and Rescue Image Dataset for Person Detection (SARD) [11].
This dataset, specifically designed for person detection in search and rescue
scenarios, contains a total of 1,979 annotated aerial images. These images are
captured from Unmanned Aerial Vehicles (UAV) in outdoor environments and
include annotations for various poses of people, such as standing, sitting, or lying
down, but for this study, only the "person" category is considered. The dataset
provides high-resolution images (1920x1080 pixels), enabling precise annotation
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and detection tasks. The domain is challenging due to the diversity of scenes,
lighting conditions, and the small size of individuals in the aerial perspective.

Given that the SARD dataset consists of images extracted from four distinct
aerial videos, this structure was split into training and testing subsets. Specifi-
cally, two videos were selected for training, resulting in 1,025 images, while the
other two videos were allocated to testing, resulting in 954 images. This split
ensures minimal overlap in scene content between the training and testing sets,
thereby promoting a fair evaluation of models’ performance. The train set labels
are not used in the Domain Adaptation training processes.

The synthetic dataset is composed of a total of 9,683 images with a reso-
lution of 1920x1080 pixels. The images were captured in a virtual environment
simulating a forest and mountain landscape, viewed from a UAV perspective. To
introduce variability, the dataset includes diverse lighting conditions.

This dataset focuses on the person class, with the positions of individuals
varying across images to simulate movement. Examples of such images can be
found in Sec. 3.

5.2 Results

The results of the different experiments are shown in Tab. 1, using AP and AP50
as metrics, which are the standard in object detection. AP50 is calculated as the
area under the Precision-Recall curve using a 0.5 IoU threshold for considering a
detection correct, while AP averages AP values over IoU thresholds from 0.5 to
0.95 in 0.05 increments. In the table, the results are divided based on the used
detector model: Faster R-CNN and FCOS. For each detector, a fully supervised
result is presented as a reference, since it is trained using the training set of
the real dataset with its annotations. There is also a base model result, trained
exclusively on the synthetic domain dataset, and finally, the results of the tech-
niques used to adapt the synthetic domain to the real one along with their AP
and AP50 improvements compared to the Base model. We compare MixUDA
with MixPL [1], a Semi-Supervised Object Detection model implemented using
Faster R-CNN and FCOS among other detectors, and D3T, a domain adaptation
method based on FCOS.

Focusing first on the results of Faster R-CNN, we observe that our approach
achieves the best performance, increasing AP by 4.6 points and AP50 by 11
points compared to the base model. These results outperform those obtained
with MixPL, increasing AP by 4 points and AP50 by 5 points. Additionally, it is
worth highlighting that, in terms of AP, our approach surpasses even the results
obtained by training directly on the target domain, while it still lags slightly
behind in AP50. This could be due to the fact that the synthetic training set is
bigger than real one and offers greater diversity. As a result, applying domain
adaptation enables better generalization, leading to improved object detection
performance.

On the other hand, using FCOS detector, our approach again achieves the
best results. MixUDA improves the results by 4.4 AP points and 8.4 AP50 points
compared to the base model. These results also surpass D3T by 1.18 AP points
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Table 1. The results are for two different detectors: Faster R-CNN and FCOS. For
each detector, there is a fully supervised model trained directly on the target dataset
highlighted in gray. We also have the Base model, which is trained exclusively on
the source dataset, and the different domain adaptation techniques, also trained using
labels from source dataset and whose results are compared against the Base model.

Model AP AP50

Fully supervised (Faster R-CNN) 22.91 55.29

Base (Faster R-CNN) 18.80 40.40

MixPL [1] (Faster R-CNN) 19.40+0.60 46.40+6.00

MixUDA (Faster R-CNN) 23.40+4.60 51.40+11.00

Fully supervised (FCOS) 18.40 50.30

Base (FCOS) 16.10 39.00

D3T [3] (FCOS) 19.32+3.22 41.90+2.90

MixPL [1] (FCOS) 18.10+2.00 45.40+6.40

MixUDA (FCOS) 20.50+4.40 47.40+8.40

and more notably, 5.5 AP50 points, and MixPL, by 2.4 points in AP and 2
points in AP50. As in the case of Faster R-CNN, our approach surpasses the
oracle model in terms of AP, while still not reaching its AP50 value.

6 Conclusions

In this study, we have focused on the task of using synthetic data to train de-
tection models in the context of object detection in real images. Using synthetic
data offers advantages such as scalability in the number of images and not requir-
ing human-annotated labels. To achieve this, we first established a methodology
for creating synthetic datasets using the AirSim tool alongside the Unreal En-
gine graphics engine. Following this methodology, we built a synthetic dataset
for person detection in natural environments from a UAV perspective.

We developed a novel UDA framework: MixUDA. This method is based on
a Mean Teacher architecture, where the teacher model generates pseudo-labels
for images from both domains. The key feature of this approach is the use of
two operations for progressive alignment between the source and target domain
images: pseudo-mixup and pseudo-mosaic.

The results demonstrate that MixUDA successfully outperforms other meth-
ods in terms of both AP and AP50, even surpassing the performance of a fully
supervised model trained on the target dataset in the case of FCOS. Findings
demonstrate that using a synthetic dataset can yield performance comparable to
using real-world annotated images in the context of person detection, and Mix-
UDA has proven to be an effective methodology to perform UDA from synthetic
to real domain.
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For future research, it would be valuable to extend the synthetic dataset
creation methodology to other problem domains to evaluate its robustness and
generalization. Additionally, exploring the applicability of MixUDA across dif-
ferent datasets would provide further insights into its effectiveness for various
types of problems.

7 Acknowledgments

This research was partially funded by the Spanish Ministerio de Ciencia e In-
novación (grant number PID2020-112623GB-I00, PID2023-149549NB-I00), and
the Galician Consellería de Cultura, Educación e Universidade (grant numbers
ED431C 2018/29 and ED431G2019/04). These grants are co-funded by the Eu-
ropean Regional Development Fund (ERDF). Pablo Gil-Pérez is supported by
the Spanish Ministerio de Universidades under the FPI national plan (grant
number PRE2023-000607).

References

1. Chen, Z., Zhang, W., Wang, X., Chen, K., Wang, Z.: Mixed pseudo labels for
semi-supervised object detection. arXiv preprint arXiv:2312.07006 (2023)

2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) pp. 248–255 (2009)

3. Do, D.P., Kim, T., Na, J., Kim, J., Lee, K., Cho, K., Hwang, W.: D3t: Distinctive
dual-domain teacher zigzagging across rgb-thermal gap for domain-adaptive object
detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 23313–23322 (2024)

4. Du, Z., Li, X., Li, F., Lu, K., Zhu, L., Li, J.: Domain-agnostic mutual prompting
for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 23375–23384 (2024)

5. Kiefer, B., Ott, D., Zell, A.: Leveraging synthetic data in object detection on
unmanned aerial vehicles. In: 2022 26th international conference on pattern recog-
nition (ICPR). pp. 3564–3571. IEEE (2022)

6. Lin, T.Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P.,
Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft coco: Common objects in context.
In: European conference on computer vision (ECCV). pp. 740–755. Springer (2014)

7. Liu, Y., Zhou, Z., Sun, B.: Cot: Unsupervised domain adaptation with clustering
and optimal transport. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 19998–20007 (2023)

8. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International conference on machine learning. pp.
8748–8763. PMLR (2021)

9. Redmon, J.: You only look once: Unified, real-time object detection. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition (2016)

10. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object
detection with region proposal networks. IEEE transactions on pattern analysis
and machine intelligence 39(6), 1137–1149 (2016)



12 P. Gil-Pérez et al.

11. Sambolek, S., Ivasic-Kos, M.: Search and rescue image dataset for person detection
- sard (2021). https://doi.org/10.21227/ahxm-k331, https://dx.doi.org/10.
21227/ahxm-k331

12. Shah, S., Dey, D., Lovett, C., Kapoor, A.: Airsim: High-fidelity visual and physical
simulation for autonomous vehicles. In: Field and Service Robotics: Results of the
11th International Conference. pp. 621–635. Springer (2018)

13. Suzuki, S., et al.: Topological structural analysis of digitized binary images by
border following. Computer vision, graphics, and image processing 30(1), 32–46
(1985)

14. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: A simple and strong anchor-free object
detector. IEEE transactions on pattern analysis and machine intelligence 44(4),
1922–1933 (2020)

https://doi.org/10.21227/ahxm-k331
https://doi.org/10.21227/ahxm-k331
https://dx.doi.org/10.21227/ahxm-k331
https://dx.doi.org/10.21227/ahxm-k331

	MixUDA: From Synthetic to Real Object Detection

