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Abstract

Open-vocabulary object detection (OvOD) is set to revo-
lutionize security screening by enabling systems to recog-
nize any item in X-ray scans. However, developing effective
OvOD models for X-ray imaging presents unique challenges
due to data scarcity and the modality gap that prevents di-
rect adoption of RGB-based solutions. To overcome these
limitations, we propose RAXO, a training-free framework
that repurposes off-the-shelf RGB OvOD detectors for ro-
bust X-ray detection. RAXO builds high-quality X-ray class
descriptors using a dual-source retrieval strategy. It gathers
relevant RGB images from the web and enriches them via
a novel X-ray material transfer mechanism, eliminating the
need for labeled databases. These visual descriptors replace
text-based classification in OvOD, leveraging intra-modal
feature distances for robust detection. Extensive experi-
ments demonstrate that RAXO consistently improves OvOD
performance, providing an average mAP increase of up to
17.0 points over base detectors. To further support research
in this emerging field, we also introduce DET-COMPASS,
a new benchmark featuring bounding box annotations for
over 300 object categories, enabling large-scale evalua-
tion of OvOD in X-ray. Code and dataset available at:
https://github.com/PAGF188/RAXO.

1. Introduction
Automated object detection technologies for X-ray imaging
are essential to maintain public safety, enabling the identi-
fication of prohibited items at checkpoints in high-risk en-
vironments such as airports, train stations, museums and
stadiums [28]. These systems improve security while si-
multaneously reducing the workload of human inspectors.

Conventional X-ray object detectors rely on supervised
learning [2, 13, 19] and are inherently limited by the object
categories present in their training datasets (see Fig. 1a).
This limitation is exacerbated by the high cost of X-ray
machinery and the requirement for expert annotation, often
restricting these systems to fewer than 20 object classes [31],
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Figure 1. (a) Traditional X-ray object detectors are constrained by
the limited categories in their training datasets. (b) We introduce
the task of open-vocabulary object detection (OvOD) for X-ray
imaging and propose RAXO, a training-free method that adapts
off-the-shelf RGB OvOD models to X-ray data. (c) RAXO greatly
improves detection performance across multiple benchmarks.

thereby hindering broader real-world applications.
In light of the expanding diversity of man-made objects

and evolving security demands, an open-vocabulary object
detection (OvOD) framework capable of recognizing arbi-
trary X-ray object categories defined by the user is imper-
ative. Despite its importance, open-vocabulary detection
in the X-ray domain remains largely unexplored. Concur-
rent works aiming to extend beyond base categories have
managed to generalize to at most four unseen classes [15],
thereby highlighting the inherent challenges of the task.

Recent advances in OvOD for conventional RGB images
have been driven by large-scale annotated datasets, which
facilitate effective alignment between visual and textual fea-
tures [14, 17, 43]. However, these advancements do not
directly transfer to X-ray imagery. In practice, applying
state-of-the-art RGB-based OvOD models to X-ray scans
leads to significant performance degradation, as illustrated
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in Fig. 1c. Moreover, retraining these models on X-ray data
is often impractical given the scarcity of large-scale anno-
tated X-ray datasets.

Motivated by these challenges, this work opens up open-
vocabulary object detection for X-ray imaging by repur-
posing robust, off-the-shelf RGB-based detectors. To this
end, we propose RAXO (tRAining-free adaptation for X-
ray Open-vocabulary detection), a training-free method that
seamlessly adapts RGB OvOD models to X-ray. (Fig. 1b).

We find that the main reason RGB-based OvOD detectors
fail in the X-ray domain is the disruption of text-visual fea-
ture alignment. The appearance disparity between the same
object in RGB and X-ray modalities causes textual embed-
dings, aligned with RGB features, to mismatch with X-ray
visual features. RAXO adresses this issue on three simple
steps: (1) visual sample acquisition, which involves ob-
taining X-ray images that represent user-defined categories;
(2) class descriptor modeling, which uses these images to
construct descriptors that effectively encode the visual ap-
pearance of each category within the X-ray domain; and (3)
classifier construction, where the computed descriptors are
used to build a visual classifier that replaces the inter-modal
(i.e., text-to-visual) classification of conventional OvODs.
This new classifier exploits the fact that, despite the modal-
ity shift, intra-modal (e.g., visual-to-visual) feature distances
remain reliable indicators for object identification. In this
way RAXO enables any OvOD to successfully detect X-ray
objects based on their inherent visual properties.

To facilitate comprehensive evaluation, we also intro-
duce DET-COMPASS, a detection dataset comprising 370
distinct object classes with paired X-ray and RGB annota-
tions. Extensive experiments demonstrate that our approach
consistently improves detection performance by an average
of ↑8.4 AP across multiple benchmarks and OvOD models,
with gains that scale as the underlying detectors become
more powerful (Tab. 2). In summary, our contributions are:
• We formally introduce the problem of open-vocabulary

object detection for X-ray imagery without training, ad-
dressing a critical need for security in real-world scenarios.

• We introduce DET-COMPASS, a novel benchmark with
bounding box annotations across 370 object categories,
enabling standardized evaluation of OvOD methods in
the X-ray modality.

• We propose RAXO, a novel training-free approach that
repurposes off-the-shelf RGB-based OvOD models for X-
ray detection by constructing robust visual descriptors.
RAXO achieves new state-of-the-art results across multi-
ple benchmarks.

2. Related work
Open-vocabulary Object Detection has advanced rapidly
with the advent of Vision-Language Models (VLMs), en-
abling detectors to generalize beyond fixed categories.

OvOD detectors leverage weak supervision signals to im-
prove detection accuracy. Based on the type of weak super-
vision utilized, OvOD methods can be categorized into (i)
region-aware training, (ii) pseudo-labeling, (iii) knowledge
distillation, and (iv) transfer learning.

Region-aware training methods aim to improve localiza-
tion and feature representation by refining the alignment
between image regions and their corresponding textual de-
scriptions. Approaches such as DetCLIP [39], DetCLIPv2
[40], CORA [38], and VLDet [14] adopt this strategy.
Pseudo-labeling methods, rely on large pretrained VLMs
to generate pseudo-labels, effectively expanding the training
set. Methods like RegionCLIP [42], PromptDet [5], CoDET
[20], GLIP [12], Detic [43], and Grounding DINO [17] fol-
low this approach. Knowledge distillation techniques, such
as BARON [36], DK-DETR [11], CLIPSelf [37], and SIC-
CADS [4], employ VLMs as teachers in a teacher-student
framework, transferring knowledge from the VLM image en-
coder to enhance the detector backbone. In contrast, transfer
learning approaches integrate the VLM encoder directly, ei-
ther through fine-tuning, as seen in OWL-ViT [22], or by
freezing the encoder, as in F-VLM [10].

Regardless of the training strategy, OvOD methods heav-
ily depend on VLMs trained on large-scale datasets. How-
ever, such datasets are unavailable in the X-ray modality,
making this approach impractical. To address this, RAXO
seamlessly adapts existing RGB-based OvOD methods for
X-ray object detection without requiring additional training.
X-ray object detection. Several datasets have been de-
veloped to tackle the challenge of object detection in X-
ray imagery [1, 32]. SIXray [21], OPIXray [35], and
CLCXray [41] focused on detecting occluded objects, intro-
ducing strategies to identify deliberately hidden prohibited
object. To enhance dataset scale and diversity, PIDray [33]
and HiXray [29] provided larger benchmarks, significantly
increasing the number of annotated images. Meanwhile,
PIXray [18] pioneered the introduction of an X-ray seg-
mentation dataset and proposed a real-time framework for
segmenting prohibited objects, further advancing automated
threat detection in security screening applications.

Previous X-ray object detectors [27, 30, 34] considered
mainly a closed-set paradigm, thus being limited to localize
objects of a small set of predefined categories. More re-
cently, Lin et al. [15] proposed fine-tuning a CLIP adapter
to bridge the modality gap between CLIP’s training data and
X-ray images, thereby achieving OvOD in X-ray data. They
demonstrated generalization on four novel object classes, but
both training and evaluation were limited by the lack of large-
scale, well-annotated X-ray data. To address these issues,
RAXO leverages data retrieval from the web to expand detec-
tion capabilities to a broader range of common objects. Fur-
thermore, our proposed re-labeled DET-COMPASS dataset
enables evaluation across a wider variety of classes.
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Venue Images Classes Modality
DvXray [19] TIFS’24 32,000 15 X-ray
PIXray [18] TMM’22 5,046 15 X-ray
CLCXray [41] TIFS’22 9,565 12 X-ray
FSOD [31] ACMMM’22 12,333 20 X-ray
EDS [30] CVPR’22 14,219 10 X-ray
PIDray [33] ICCV’21 47,677 12 X-ray
HiXray [29] ICCV’21 45,365 8 X-ray

DET-COMPASS (Ours) – 1,928 370 X-ray+RGB

Table 1. Existing X-ray detection datasets. DET-COMPASS is
the dataset with the highest number of categories and the only one
providing pixel-level alignment between X-ray and RGB data.

3. DET-COMPASS
Object detection in security X-ray scans has advanced signif-
icantly in recent years. However, evaluating OvOD detectors
in this modality remains challenging due to the limited num-
ber of annotated object categories in existing X-ray bench-
marks. For instance, the largest X-ray detection dataset,
FSOD [31], includes annotations for only 20 classes (see
Tab. 1). This limitation severely constrains the comprehen-
sive evaluation of OvOD methods, which require a broad
and diverse category set (or say vocabulary) to assess gen-
eralization to unseen object semantics.

To address this gap, we introduce DET-COMPASS, a
novel benchmark that repurposes the COMPASS-XP clas-
sification dataset [8] for object detection through meticu-
lous manual bounding box annotation. DET-COMPASS
comprises 370 distinct object classes, offering an order-
of-magnitude increase in vocabulary size over previous X-
ray detection benchmarks. Additionally, it provides pixel-
aligned RGB images, ensuring precise spatial correspon-
dence across modalities and facilitating the development of
multimodal models. Each object is also labeled with a visi-
bility attribute, indicating whether it produces a discernible
signature in the X-ray spectrum. Further details are provided
in Appendix C.

As summarized in Tab. 1, DET-COMPASS sets a new
standard in class diversity and uniquely integrates multi-
modal, pixel-aligned X-ray and RGB data. The dataset will
be released under an open license, serving as a valuable re-
source for advancing OvOD research in security screening
and industrial inspection.

4. OvOD for X-ray imaging
Preliminaries: OvOD in the RGB domain. Most RGB
OvOD detectors [43, 44] follow a two-stage pipeline. During
training, a region proposal network (RPN) is learned to yield
a set of 𝑀 proposals by {z𝑚}𝑀𝑚=1 = ΦRPN (I𝑅𝐺𝐵), where
z𝑚 ∈ R𝐷 is a 𝐷-dimensional region-of-interest (RoI) feature
embedding. Then, a bounding box regressor predicts coor-
dinates for each proposed region via b̂𝑚 = ΦREG (z𝑚). A set
of text-based classifiers W = {w𝑐 |w𝑐 ∈ R𝐷} | C

train |
𝑐=1 are used

to compute classification scores for each region as ⟨w𝑐, z𝑚⟩,
where ⟨·, ·⟩ is the cosine similarity function and Ctrain de-
notes the training vocabulary. In this way, each region’s
class is determined by the class with the highest score. Here,
the classifier W is constructed by encoding class names in
Ctrain using a pre-trained VLM text encoder, e.g., CLIP [25].
During training, OvOD models update all parameters while
keeping W frozen. This enables RGB-region-class align-
ment by leveraging large-scale RGB data and the pre-aligned
vision-language semantic space of VLMs, facilitating open-
vocabulary inference with any test vocabulary Ctest. The
vocabularies Ctrain and Ctest may be disjoint or overlapping.

Problem formulation. In this work, we study open-
vocabulary object detection (OvOD) in X-ray modality.
Specifically, given an input X-ray image I and a vocabulary
Ctest defined by users at test time, an X-ray OvOD detector
FX-ray aims to detect objects specified in Ctest from I (e.g., a
“Power bank” in a passenger’s backpack scan at an airport
security checkpoint). Theoretically, this detection process
can be formulated as FX-ray : I → {(b𝑚, 𝑐𝑚)}𝑀𝑚=1, where
b𝑚 ∈ R4 denotes the coordinates of each bounding box, and
𝑐𝑚 ∈ Ctest denotes the class label of each bounding box.

X-ray OvOD presents significant challenges due to the
following reasons: i) Directly applying a pre-trained RGB
OvOD detectors to X-ray images leads to suboptimal perfor-
mance due to the visual modality gap, as shown in Fig. 1;
ii) The scarcity of large-scale security X-ray datasets limits
the application of RGB OvOD training techniques. These
techniques typically rely on extensive image-text annotated
data for strong supervision. To tackle these challenges,
we introduce RAXO, a plug-and-play module that adapts
any off-the-shelf RGB OvOD detectors to X-ray modalities.
RAXO requires no training or in-domain detection annota-
tions. Next, we present our approach.

5. RAXO: Training-free Modality Adaptation

As illustrated in Fig. 2, RAXO enables X-ray OvOD by
constructing high-quality visual descriptors, X𝑐, for each
class 𝑐 in the user-defined vocabulary, Ctest. To achieve
this, RAXO first acquires X-ray samples in an open-ended
manner, leveraging both in-house and web-based retrieval
sources (Sec. 5.1). Then, it extracts the features of these
samples and segments the relevant information, modeling
the visual descriptor X𝑐 (Sec. 5.2). Once the visual descrip-
tors are constructed offline, they can be directly applied to
any off-the-shelf OvOD detector by replacing the conven-
tional text-based classifier W, with our visual-based clas-
sifier X (Sec. 5.3). Thus, RAXO effectively overcomes the
misalignment between X-ray features and text semantics,
enabling OvOD detectors pre-trained with RGB data to ac-
curately identify X-ray objects based on their intrinsic visual
characteristics.
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Figure 2. Architecture of RAXO. For a given user-defined class 𝑐 ∈ Ctest, RAXO first retrieves its corresponding X-ray images G𝑋𝑅𝐴𝑌𝑐

from in-house and web sources, using its (1) Visual Samples Acquisition pipeline (Sec. 5.1). Following this, RAXO extracts the features of
the images and segments them with its (2) Class Descriptor Modeling module (Sec. 5.2), creating ensemble visual descriptors for the class
X𝑐 and the background Xbg. Finally, the text-based classifier from the baseline RGB OvOD detector is replaced with our (3) Visual-based
Classifier (Sec. 5.3) X, which yields accurate predictions on the X-ray modality.

5.1. Visual Sample Acquisition
Obtaining informative and representative images is crucial
for generating robust visual descriptors. To this end, we
propose a dual-source acquisition pipeline that retrieves
a gallery of relevant X-ray samples GXRAY

𝑐 for each user-
specified class 𝑐 ∈ Ctest. This pipeline consists of two
modules: an in-house retrieval module and a web-powered
retrieval module.
In-house retrieval. Given an in-domain X-ray dataset,
Din-house

XRAY , containing categories Cin-house, our sample acqui-
sition pipeline first attempts to retrieve the 𝐾 most relevant
images for the user-specified class 𝑐 based on class name
matching: GXRAY

𝑐 =
{
I| (I, 𝑐) ∈Din-house

XRAY
}𝐾 .

However, since the user-defined vocabulary Ctest is open-
ended, we cannot assume that every user-specified category
will be present in Cin-house. Consequently, for some cate-
gories, the retrieved set GXRAY

𝑐 may be empty. To overcome
this limitation and fully support open-vocabulary user input,
RAXO further incorporates a novel web-powered retrieval
module. This module retrieves RGB images from the web
and applies a material transfer mechanism to synthesize X-
ray-style representations, which we introduce next.
Web-powered retrieval. To obtain high-quality visual
samples for a category 𝑐 that is not present in the in-
house vocabulary Cin-house, we leverage the vast avail-
ability of web-based RGB image data Dweb

RGB as an open-
ended auxiliary source. Specifically, we perform text-
based web retrieval using the class name 𝑐 as a search

query, retrieving the top 𝐾 results from Google Images as
G̃web
𝑐 =

{
IRGB | (IRGB, 𝑐) ∈ Dweb

RGB
}𝐾 .

The raw web-retrieved results G̃web
𝑐 are often noisy and

may not always contain clear instances of the target class 𝑐.
To refine these results, we apply a filtering step using an RGB
OvOD detector FRGB. Specifically, we discard images in the
raw web-retrieved results where class 𝑐 is not confidently de-
tected, retaining only those where the detection confidence
exceeds a threshold 𝜏 as Gweb

𝑐 = Filter(G̃web
𝑐 , FRGB, 𝑐, 𝜏).

Material-transfer mechanism for web-retrieved images.
The substantial visual disparity between RGB and X-ray
modalities prevents direct use of web-retrieved RGB samples
Gweb
𝑐 for constructing X-ray class descriptors. Style transfer

methods [6] fall short in bridging this gap, as they fail to
capture the underlying material properties of objects (as
shown in Tab. 4). To address this, we introduce a novel
material-transfer mechanism for generating synthetic X-ray
samples from web-retrieved images. As shown in Fig. 3,
our approach consists of two key steps: i) constructing an
offline material databaseM that encapsulates the expected
X-ray appearance of various materials, and ii) adapting RGB
samples Gweb

𝑐 to X-ray style by applying the corresponding
material properties fromM.

To construct M, we employ a Large Language Model
(LLM) to cluster the class names of Cin-house into sub-
sets C𝑚 ⊂ Cin-house, where C𝑚 contains classes that share
the same 𝑚 material – i.e., “Cmetal = {gun, knife, fork}” or
“Cleather = {boot, belt}”. Each material 𝑚 is then associated
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anism for the class “violin”. We retrieve violin samples from the
web, filter them using FRGB, and inpaint the retrieved appearance
into the object masks to generate synthetic X-ray samples.

with the corresponding set of images K𝑚 = { I | (I, 𝑐𝑘) ∈
Din-house

XRAY , 𝑐𝑘 ∈ 𝐶𝑚}. These images are used to compute the
appearance, A𝑚 ∈ R3, of the material as:

A𝑚 =
1
|K𝑚 |

∑︁
I∈K𝑚

(∑𝐻,𝑊
𝑖, 𝑗
(I𝑖, 𝑗 ⊙ Ω(I𝑖, 𝑗 ))∑

Ω(I)

)
, (1)

where ⊙ denotes element-wise multiplication and Ω : I →
{0, 1}𝐻×𝑊 is a segmentation function that produces a binary
mask, to isolate the object of interest in I. The resulting
material-appearance pairs (𝑚,A𝑚) collectively form our
material databaseM.

OnceM is computed offline, it can be used to adapt the
web-retrieved RGB samples, Gweb

𝑐 , to the X-ray modality.
To achieve this, we first prompt the LLM to link the class 𝑐
with its corresponding material 𝑚𝑐 ∈ M (e.g., 𝑐 = “violin”
is linked with the material 𝑚𝑐 = “wood”). Subsequently,
the X-ray appearance A𝑐𝑚 of the linked material is used to
render the characteristic X-ray style on each web-retrieved
RGB samples as:

GXRAY
𝑐 =

{
Ω(IRGB) ⊙ (A𝑐𝑚 · 1) | IRGB ∈ Gweb

𝑐

}
, (2)

Finally, the X-ray visual gallery for every class freely
specified by the user is built as G =

⋃
𝑐∈Ctest GXRAY

𝑐 through
our dual-source retrieval pipeline, seamlessly integrating
high-quality in-house X-ray samples with synthetic images
derived from web data.

5.2. Class Descriptor Modeling
The effectiveness of RAXO hinges on leveraging its visual
gallery G to construct a robust visual descriptor X𝑐 that ac-
curately captures the visual X-ray properties of class 𝑐. A

naïve approach, such as averaging the feature representa-
tions of all GXRAY

𝑐 instances, fails to account for intra-class
variability (e.g., distinct shapes of utility knives versus chef
knives) and does not differentiate between foreground and
background regions. To address these limitations, we pro-
pose a novel class descriptor modeling strategy shown in
Fig. 2(2).

First, we process each sample I ∈ G𝑋𝑅𝐴𝑌𝑐 with Ω to
separate the X-ray object from its background. Simultane-
ously, a feature extractor 𝜙 extracts per-patch embeddings
𝜙(I) ∈ R𝐻′×𝑊 ′×𝐷 , where 𝐻′ ×𝑊 ′ represents the number of
spatial tokens, and 𝐷 is the embedding dimension. Follow-
ing [9], we resize (denoted by 𝜁) the segmentation mask to
match the spatial dimensions of the feature map, and subse-
quently we use it to compute both a positive and a negative
prototype. The positive prototype, designed to capture the
significant visual features of the object without background
interference, is computed as the average embedding over the
foreground region as:

xpos
I =

∑𝐻′ ,𝑊 ′

𝑖, 𝑗
𝜁 (Ω(I𝑖, 𝑗 )) ⊙ 𝜙(I𝑖, 𝑗 )∑
𝜁 (Ω(I)) , (3)

On the other hand, the negative prototype is obtained as the
average embedding over the complementary region (back-
ground) as:

xneg
I =

∑𝐻′ ,𝑊 ′

𝑖, 𝑗
(1 − 𝜁 (Ω(Ii,j))) ⊙ 𝜙(Ii,j)∑(1 − 𝜁 (Ω(I))) . (4)

Subsequently, to construct the final visual descriptor X𝑐
of class 𝑐, we compute the average positive prototype xpos

𝑐

from G𝑋𝑅𝐴𝑌𝑐 and unite it with all the individual positive
prototypes as:

X𝑐 = [xpos
𝑐 ,

{
xpos

I | I ∈ G𝑐
}
] . (5)

This formulation effectively captures both fine-grained ob-
ject details and a holistic class-level representation, han-
dling intra-class variability. Additionally, we also con-
struct a global background descriptor by using the nega-
tive prototypes across the entire visual sample gallery as
X𝑏𝑔 = [xneg

,
{
xneg

I | I ∈ G
}
]. This negative prototype is

used to further improve detection reliability by filtering out
low-quality proposals (e.g., a region proposed on the back-
ground) during inference. A key advantage of this approach
is its modularity: visual descriptors X𝑐 are computed of-
fline and can be incrementally expanded with new object
categories, seamlessly integrating with the OvOD paradigm
without training or requiring X-ray detection data.

5.3. Classification is All You Need
As shown in Fig. 2(3), once the visual descriptors are
constructed for each class in the user-specified vocabu-
lary, along with the background class, the RAXO classifier
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X = {[X𝑐,X𝑏𝑔] | 𝑐 ∈ Ctest} can be directly applied to any
OvOD detector to classify proposals zm as:

𝑐 = arg max
𝑐∈Ctest′

max
x∈X
⟨z𝑚, x⟩, (6)

where Ctest′ denotes the test-time vocabulary Ctest extended
with the additional “background” class. If a proposal
matches the background, it is removed. This simple-yet-
effective strategy enables any pre-trained OvOD detectors
to achieve strong performance on X-ray object detection with
minimal modifications and no need for re-training.
Descriptor Consistency Criterion. To further reduce in-
correct proposals from the OvOD detector, RAXO intro-
duces a novel Descriptor Consistency Criterion (DCC) to
enforce class consistency in predictions. DCC evaluates
how well a proposal aligns with its predicted class rela-
tive to others, suppressing weakly aligned proposals. For a
proposal z𝑚, we measure its similarity to the closest proto-
type as 𝑠1 = maxx∈X�̂� ⟨z𝑚, x⟩. We also compute its mean
similarity to the average prototypes of all other classes as
𝑠2 = avg𝑐∈Ctest ,𝑐≠�̂� ⟨z𝑚, x̄

pos
𝑐 ⟩. The difference Δ = 𝑠1 − 𝑠2

serves as a confidence measure, where a higher value indi-
cates greater alignment with its predicted class than with any
other. Proposals with Δ below a threshold 𝜎 are discarded.

6. Experiments
Evaluation protocol. Conventional OvOD models are
typically assessed using a Cross-Dataset Transfer Evalu-
ation (CDTE) protocol, where the model is trained on one
dataset and evaluated on a different dataset in a zero-shot
manner [44]. In contrast, our setting involves a more chal-
lenging scenario where both the datasets and their underly-
ing modalities differ. To address this, we introduce a novel
Cross-Modality Transfer Evaluation (CMTE) protocol. Un-
der CMTE, an OvOD model is trained on a source RGB
dataset and subsequently evaluated on target X-ray datasets
without any additional training or fine-tuning. For perfor-
mance assessment, we employ the standard MS COCO [16]
metrics: AP, AP50, and AP75.
Implementation details. Unless stated otherwise, RAXO’s
default configuration employs SAM 2 [26] as the object seg-
mentation module Ω, ViT-B/14 [3] pretrained with DINOv2
[24] as the visual encoder 𝜙, and GPT-4 [23] as the LLM.
We set the consistency threshold to 𝜎 = 0.15, the similarity
threshold to 𝜏 = 0.5, and use 𝐾 = 30 samples to construct
the visual descriptors. D𝑖𝑛−ℎ𝑜𝑢𝑠𝑒XRAY is composed of hold-out
samples sourced from the evaluation X-ray datasets and is
completely disjoint from the test split. D𝑤𝑒𝑏RGB is constructed
by collecting images from the web using the public Google
Custom Search API [7]. A detailed analysis of the impact
of hyperparameter choices is provided in Sec. 6.2. Further
implementation details can be found in Supp. D.

Datasets and baselines. We evaluate RAXO by integrat-
ing it with four different state-of-the-art OvOD detectors
that were exclusively trained on RGB images: Ground-
ingDINO [17], Detic [43], VLDet [14], and CoDet [20].
Our CMTE evaluation is performed across six diverse X-
ray datasets: PIXray [18], PIDray [33], CLCXray [41],
DvXray [19], HiXray [29], and our proposed DET-
COMPASS, which together comprise 343 visible unique
classes and over 140k images. A detailed description of
these datasets is provided in Tab. 1.

6.1. Open-Vocabulary Detection Results
RAXO equips OvOD models with X-ray vision. We eval-
uate the X-ray adaptation capabilities of RAXO on the afore-
mentioned datasets and baselines in Tab. 2. Since RAXO is
training-free, we report the results directly on the test splits,
accounting for all available categories. Furthermore, we
analyze the influence of the gallery composition by varying
G from a 0/100 configuration (i.e., all samples in G are re-
trieved from the web, as Ctest ∩ Cin-house = ∅) to a 100/0
configuration (i.e., all samples in G are retrieved from the
in-house database, as Ctest ⊂ Cin-house). Each experiment is
repeated three times with different random distributions of
in-domain and web categories, and we report the averaged
results.

As shown in Tab. 2, off-the-shelf OvOD detectors trained
on RGB images perform poorly on X-ray data. In contrast,
even without access to any in-domain data from Ctest (0/100
setting), RAXO enhances baseline OvOD methods, yielding
an average improvement of ↑2.1 points. This gain is further
amplified when in-domain samples are incorporated into G,
which facilitates the construction of more robust materials
inM and yields higher-quality visual descriptors. Notably,
even a limited number of in-domain samples (20/80 setting)
results in an average improvement of ↑4.8 points. Moreover,
increasing the in-domain samples (50/50 setting) yields even
more significant gains, particularly in datasets with a large
number of classes, such as DET-COMPASS, where RAXO
offers an average boost of ↑14.9 points. Finally, when G
consists entirely of in-domain samples, RAXO delivers an
average improvement of ↑14.7 points across all OvOD meth-
ods and datasets, all in a training-free manner.
RAXO works with any OvOD detector. The consistent
gains of RAXO across all evaluated detectors in Tab. 2,
along with its simple integration (Sec. 5.3), confirm the
generalization of our approach to any RGB OvOD model.
Moreover, RAXO scales with the baseline method, yielding
larger gains when integrated with more robust detectors (e.g.,
RAXO enhances G-DINO ↑9.4 points on average across all
G settings, compared to ↑7.5 points for Detic). This high-
lights the advantage of our training-free method, which can
leverage the rapid advancements in RGB OvOD detectors
without needing large amounts of labeled X-ray data.

6



G Method D-COMPASS PIXray PIDray CLCXray DvXray HiXray Avg.

G-DINO [17] 13.4 12.9 10.9 6.7 10.0 7.0 10.2

D
in-

h
XRAY

D
web

RGB

100/0 47.9 ↑34.5 36.9 ↑24.0 16.5 ↑5.6 22.2 ↑15.5 22.6 ↑12.6 17.1 ↑10.1 27.2 ↑17.0
80/20 41.0 ↑27.6 33.8 ↑20.9 15.4 ↑4.5 18.0 ↑11.3 21.0 ↑11.0 14.5 ↑7.5 24.0 ↑13.8
50/50 + RAXO 31.4 ↑18.0 25.4 ↑12.5 15.5 ↑4.6 17.0 ↑10.3 16.1 ↑6.1 13.4 ↑6.4 19.8 ↑9.6
20/80 20.5 ↑7.1 21.6 ↑8.7 13.9 ↑3.0 10.0 ↑3.3 15.0 ↑5.0 9.8 ↑2.8 15.1 ↑4.9
0/100 14.0 ↑0.6 16.1 ↑3.2 13.4 ↑2.5 7.1 ↑0.4 12.4 ↑2.4 7.9 ↑0.9 11.8 ↑1.6

VLDet [14] 10.6 9.8 6.9 4.4 7.4 5.1 7.4

D
in-

h
XRAY

D
web

RGB

100/0 36.4 ↑25.8 32.3 ↑22.5 11.7 ↑4.8 15.4 ↑11.0 20.1 ↑12.7 14.8 ↑9.7 21.8 ↑14.4
80/20 31.8 ↑21.2 29.2 ↑19.4 11.0 ↑4.1 12.7 ↑8.3 16.8 ↑9.4 13.1 ↑8.0 19.1 ↑11.7
50/50 + RAXO 23.7 ↑13.1 24.0 ↑14.2 10.4 ↑3.5 11.1 ↑6.7 12.1 ↑4.7 11.2 ↑6.1 15.4 ↑8.0
20/80 16.2 ↑5.6 21.6 ↑11.8 9.4 ↑2.5 5.2 ↑0.8 10.6 ↑3.2 9.3 ↑4.2 12.1 ↑4.7
0/100 11.1 ↑0.5 14.1 ↑4.3 8.9 ↑2.0 4.4 ↑0.0 9.0 ↑1.6 8.3 ↑3.2 9.3 ↑1.9

Detic [43] 11.5 9.3 7.1 4.7 7.0 4.8 7.4

D
in-

h
XRAY

D
web

RGB

100/0 35.3 ↑23.8 27.3 ↑18.0 11.3 ↑4.2 14.0 ↑9.3 19.4 ↑12.4 14.2 ↑9.4 20.3 ↑12.9
80/20 30.7 ↑19.2 23.9 ↑14.6 10.8 ↑3.7 12.3 ↑7.6 18.0 ↑11.0 12.1 ↑7.3 18.0 ↑10.6
50/50 + RAXO 24.4 ↑12.9 19.5 ↑10.2 10.3 ↑3.2 9.2 ↑4.5 14.6 ↑7.6 11.0 ↑6.2 14.8 ↑7.4
20/80 16.4 ↑4.9 15.2 ↑5.9 9.6 ↑2.5 8.0 ↑3.3 12.7 ↑5.7 9.9 ↑5.1 12.0 ↑4.6
0/100 11.9 ↑0.4 13.4 ↑4.1 9.1 ↑2.0 5.2 ↑0.5 9.4 ↑2.4 7.9 ↑3.1 9.5 ↑2.1

CoDet [20] 8.4 7.3 5.7 3.1 5.6 3.4 5.6

D
in-

h
XRAY

D
web

RGB

100/0 35.8 ↑27.4 27.9 ↑20.6 10.3 ↑4.6 14.8 ↑11.7 17.6 ↑12.0 13.2 ↑9.8 19.9 ↑14.3
80/20 32.2 ↑23.8 25.1 ↑17.8 9.5 ↑3.8 12.0 ↑8.9 15.4 ↑9.8 11.7 ↑8.3 17.7 ↑12.1
50/50 + RAXO 24.0 ↑15.6 20.0 ↑12.7 9.5 ↑3.8 9.2 ↑6.1 11.5 ↑5.9 9.9 ↑6.5 14.0 ↑8.4
20/80 17.8 ↑9.4 14.8 ↑7.5 8.5 ↑2.8 5.1 ↑2.0 9.4 ↑3.8 8.1 ↑4.7 10.6 ↑5.0
0/100 12.2 ↑3.8 11.5 ↑4.2 8.1 ↑2.4 4.0 ↑0.9 6.9 ↑1.3 6.5 ↑3.1 8.2 ↑2.6

Table 2. X-ray OvOD performance under the Cross-Modality Transfer Evaluation (CMTE) setting on DET-COMPASS (ours),
PIXray [18], PIDray [33], CLCXray [41], DvXray [19], and HiXray [29] datasets. We integrate RAXO into different baselines using
different gallery G compositions, from using only Din-house

XRAY data (100/0) to exclusively D𝑤𝑒𝑏RGB samples (0/100). RAXO consistently
improves the performance of all baseline OvOD detectors across every dataset. AP is used.

PIXray
Scissors Wrench Battery Pliers AP50

OVXD† 16.9 46.2 14.6 6.4 21.0
BARON + RAXO 18.2 39.4 8.3 22.0 22.0
CoDet + RAXO 43.6 52.6 9.0 18.6 30.9
Detic + RAXO 46.3 60.5 7.9 36.6 37.8
VLDet + RAXO 48.3 62.7 10.6 38.5 40.0
G-DINO + RAXO 49.7 61.6 11.3 51.5 43.5

Table 3. Comparison under OVXD [15] setting, where the meth-
ods do not have access to in-domain data from the displayed cate-
gories. †OVXD is a supervised method explicitly trained on X-ray
images for alignment. AP50 is used.

RAXO surpasses training-based approaches. We also
compare RAXO with OVXD [15], the only concurrent work
that extends X-ray detection beyond base categories. OVXD
is a fully-supervised method trained directly on X-ray data,
and its generalization capabilities are evaluated on a hold-
out set comprising only four categories (i.e., Scissors,
Wrench, Battery, and Pliers). In Tab. 3, we follow
this setting and evaluate RAXO on PIXray [18], exclud-
ing the aforementioned classes from the in-house dataset
Din-house

XRAY . Our results demonstrate that RAXO outperforms
OVXD even when both approaches utilize the same BARON
detector [36]. Notably, unlike OVXD, our method does not
retrain BARON or any other component. Yet, our training-
free RAXO performs remarkably well, achieving an AP50

Mod. Filt. Trans. AP AP50 AP75

G-DINO [17] 12.9 14.9 13.4

+ RAXO

X-ray 7.9↓5.0 9.8↓5.1 8.3↓5.1
RGB 13.9↑1.0 17.4↑2.5 14.3↑0.9
RGB ✓ 14.3↑1.4 17.6↑2.7 14.7↑1.3
RGB ✓ S 14.6↑1.7 18.3↑3.4 15.1↑1.7
RGB ✓ M 16.1↑3.2 19.8↑4.9 16.8↑3.4

Table 4. Ablation of web-based retrieval on PIXray [18] using
only web-based samples (setting 0/100). Mod. indicates retrieval
of a specific modality from the web, Filt. refers to filtering retrieved
images with FRGB, and Trans. specifies style-transfer via: S a
diffusion-based method [6] orM our material-transfer mechanism.

of 43.5 when paired with G-DINO [17].

6.2. Ablation study
In this section we study the core components of RAXO.
We conduct our experiments on PIXray [18], using Ground-
ingDINO [12] as our baseline OvOD. Consistent findings
are reported in Supp. E and F.
Web-based samples. Tab. 4 presents an ablation study on
the components of our web-based visual sample acquisition
pipeline (Sec. 5.1). Notably, directly retrieving X-ray sam-
ples from the web (Mod. = X-ray) leads to a ↓5.0 point
decrease in AP. In contrast, retrieving RGB images from the
web (Mod. = RGB) provides a modest AP improvement of
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𝛀 xneg X DCC AP AP50 AP75

G-DINO [17] 12.9 14.9 13.4

+ RAXO

25.2↑12.3 31.4↑16.5 26.2↑12.8
✓ 27.1↑14.2 33.6↑18.7 28.4↑15.0
✓ ✓ 27.8↑14.9 34.5↑19.6 29.3↑15.9
✓ ✓ 27.5↑14.6 34.0↑19.1 28.8↑15.4
✓ ✓ ✓ 28.5↑15.6 35.3↑20.4 29.9↑16.5
✓ ✓ ✓ ✓ 36.9↑24.0 45.0↑30.1 39.0↑25.6

Table 5. Ablation of class representation construction on
PIXray [18] using in-domain samples (setting 100/0). 𝛀 indi-
cates building positive prototypes using segmentation masks. xneg

indicates use of negative prototypes. X indicates ensemble multi-
ple prototypes in class descriptors. 𝐷𝐶𝐶 indicates use of prototype
consistency criterion.

↑1.0 point. We hypothesize that directly using X-ray exam-
ples obtained from the web is ineffective due to the limited
availability of high-quality X-ray images online. Filtering
the retrieved RGB images using FRGB increases AP by an
additional ↑0.4 points. Nonetheless, they still exhibit a sig-
nificant visual gap compared to their X-ray counterparts.
A style-transfer approach using StyleShot [6] (Trans. = S)
provides a marginal AP gain of ↑0.3 points, likely due to its
limited capacity to understand the intrinsic material prop-
erties of the objects. Conversely, our proposed material-
transfer mechanism (Trans. = M) yields a substantial AP
improvement of ↑1.8 points, underscoring its effectiveness
in bridging the X-ray modality gap.
Class descriptor modeling. Tab. 5 presents an ablation
study analyzing the impact of the various components used
to construct class representations. As shown, using a simple
per-class average of all the features from each sample already
results in a significant AP improvement of ↑12.3 points over
the baseline OvOD. Refining the representation by apply-
ing an object segmentation method to isolate the foreground
features (Ω) further boosts the AP by ↑1.9 points. More-
over, leveraging background features to construct negative
prototypes (xneg) adds an additional ↑0.7 points.

Replacing the averaged class prototypes with our pro-
posed visual descriptor (X) yields another ↑0.7 point im-
provement, demonstrating its enhanced capability to cap-
ture intra-class visual variability. Finally, incorporating our
descriptor consistency criterion to suppress low-quality pro-
posals (𝐷𝐶𝐶) provides a further AP increase of ↑8.4 points,
underscoring the effectiveness of our proposed framework.
Hyperparameter study. Fig. 4 analyzes the effect of vary-
ing the number of samples 𝑲 used to construct the visual
descriptors. Even with just a single sample per class, RAXO
improves AP by ↑6.5 points over the baseline. As 𝐾 in-
creases, performance continues to improve, reaching satu-
ration at 𝐾 = 30 with a total AP gain of ↑24.0 points.

Furthermore, Fig. 5 explores the influence of the thresh-
old 𝝈 in the Descriptor Consistency Module. Higher
values of 𝜎 impose stricter consistency requirements, de-
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Figure 4. Impact of 𝑲 in class representations evaluated on
PIXray [18] using a G-DINO [17] baseline in the 100/0 setting.
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Figure 5. Impact of 𝝈 in Descriptor Consistency Module on
PIXray [18] using a G-DINO [17] baseline in the 100/0 setting.

manding greater separation between the predicted class and
other classes before accepting a proposal. We observe that
𝜎 = 0.15 provides an optimal balance between false posi-
tives and false negatives, yielding an AP of 36.9 points.

7. Conclusions
In this work, we pioneered the task of open-vocabulary ob-
ject detection (OvOD) for X-ray imagery, a challenge shaped
by the unique characteristics of X-ray data and the scarcity of
annotated examples. To address this, we introduced RAXO,
a training-free method that repurposes off-the-shelf RGB-
based OvOD detectors for the X-ray domain. By leverag-
ing intra-modal feature distances, a novel material-transfer
mechanism, and robust class descriptor modeling, RAXO ef-
fectively bridges the modality gap between RGB and X-ray
imagery. Our extensive experiments, conducted across mul-
tiple benchmarks and the newly proposed DET-COMPASS
dataset, demonstrate that RAXO consistently enhances de-
tection performance, achieving average mAP improvements
of up to 17.0 points over baseline methods.

Looking ahead, the modularity of RAXO opens promis-
ing avenues for future research, including further refinement
of visual descriptors and adaptation to additional modalities.
Overall, our work not only sets a new state-of-the-art for X-
ray open-vocabulary detection but also lays the groundwork
for a thriving research direction in this emerging domain.
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Superpowering Open-Vocabulary Object Detectors for X-ray Vision
Supplementary Material

This supplementary material is organized into the follow-
ing sections: Supp. A outlines ethical considerations related
to our work; Supp. B provides the reproducibility statement;
Supp. C describes the process of constructing and the main
characteristics of our proposed dataset, DET-COMPASS;
Supp. D presents additional technical implementation de-
tails of RAXO; Supp. E offers further analyses of RAXO’s
effectiveness; and Supp. F presents insights into its perfor-
mance through qualitative examples.

A. Ethics Statement
We do not anticipate any immediate negative societal impact
from our work. However, we encourage future researchers
building upon this study to exercise the same level of caution
we have maintained, recognizing that RAXO has the poten-
tial to be applied for both beneficial and harmful purposes.

The primary motivation behind our research is to en-
hance open-world perception in X-ray prohibited object de-
tection, addressing the growing diversity of objects in se-
curity screening. By improving detection capabilities, our
work aims to strengthen public safety in critical security
scenarios. Notably, the proposed pipeline and model can
be executed entirely on local systems, ensuring that user or
institutional privacy remains well protected.

For evaluation, we rely on publicly available, well-
established benchmarks, strictly adhering to their licensing
terms. Regarding the new DET-COMPASS benchmark in-
troduced in this work, we source images from the publicly
available COMPASS-XP [8] X-ray classification dataset,
complying fully with its license. Our contribution lies in pro-
viding additional bounding box annotations to COMPASS-
XP through our human annotation efforts. Importantly, we
do not introduce or collect any new images. The human
annotation process for DET-COMPASS was conducted fol-
lowing the approval of our institution’s ethics board after a
thorough committee review.

Lastly, for web-retrieved images, we only retain those
explicitly permitted for non-commercial use in this project.
Each retrieved image was manually reviewed, ensuring that
none contain private information such as human faces or
vehicle license plates. We will release our proposed bench-
mark and prototypes under an appropriate license.

B. Reproducibility Statement
Upon publication, we will make all necessary resources
available to facilitate the full reproduction of our exper-
imental results. This includes the source code, precise
prompts, and benchmark datasets with their splits. Our pro-
posed framework, RAXO, is developed using open-source,

Figure 6. Occluded RGB object. In this pair of images, the object
lens is completely occluded in the RGB image, preventing the
annotation of a bounding box

Figure 7. Visibility attribute. In (1), the cardigan
does not have a discernible signature in the X-ray spec-
trum, thus visible=False. In (2), the hacksaw does, so
visible=True.

publicly accessible models and data, reinforcing its repro-
ducibility. A comprehensive breakdown of our pipeline’s
construction is provided in Sec. 5. Additionally, our supple-
mentary material offers further implementation specifics, in-
cluding the exact prompts, to assist practitioners in replicat-
ing our approach effortlessly. By offering detailed method-
ological explanations, extensive experimental results, and
a fully open-source framework and data, we aim to ensure
that our work is easily reproducible, empowering researchers
and practitioners to adapt our method across diverse appli-
cations.

C. DET-COMPASS Details
To construct our new DET-COMPASS dataset, we sourced
images from the publicly available COMPASS-XP [8]
dataset. Both the images and their metadata are licensed
under the Creative Commons Attribution 4.0 International
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Figure 8. Examples from our DET-COMPASS dataset, showing RGB-X-ray pairs with annotated bounding boxes.

License, permitting unrestricted use for research and com-
mercial applications. COMPASS-XP comprises 1,928 im-
age pairs, each consisting of an X-ray image captured with a
Gilardoni FEP ME 536 scanner and a corresponding natural
image taken with a Sony DSC-W800 digital camera. A key
limitation of COMPASS-XP is that it provides only classi-
fication labels and the (RGB X-ray) pairs are not spatially
aligned.

Our DET-COMPASS dataset builds upon COMPASS-XP
by extending the annotations with manually labeled bound-
ing boxes (Fig. 8). The annotation process was conducted by
hiring three experts, each responsible for labeling 50% of the
RGB-X-ray pairs. To ensure accurate alignment between the
RGB and X-ray images, each expert annotated both modal-
ities simultaneously. After completing their respective sets,
all three experts reviewed the annotations collectively. One
of them acted as a middle ground, overseeing the review
process and resolving any remaining discrepancies to en-
sure annotation consistency.

In total, DET-COMPASS comprises 3,856 annotated im-

ages, including 1,928 X-ray and 1,928 RGB images. The
average annotation time per image, regardless of modality,
was 20 seconds. Given that each expert annotated half of the
dataset, the total annotation time amounted to 32.13 hours.
The review process required an additional 3 seconds per im-
age, and since all experts participated in reviewing the entire
dataset, the total review time was 9.64 hours.

The total number of annotated objects (bounding boxes)
in the X-ray images is 1,907, while in the RGB images, it
is 1,870. This discrepancy arises because some objects are
occluded in the RGB modality, making their localization
impossible (Fig. 6). Each annotated object in the X-ray
modality includes a visibility attribute, indicating whether
it produces a discernible signature in the X-ray spectrum.
An example of an object marked as visible is shown in
Fig. 7(2), while an example of an object marked as non-
visible is presented in Fig. 7(1). DET-COMPASS comprises
a total of 370 object classes (detailed in Tab. 7), of which
307 contain at least one annotated visible object.
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D. Further Implementation Details of RAXO
D.1. Pseudo-code of RAXO
In Algorithm 1, we present the pseudocode for the core im-
plementation of RAXO, detailing both the construction of
visual descriptors and their use to classify detector propos-
als.

D.2. Material-Transfer Mechanism
To construct the material databaseM, we cluster Cin-house

into groups of materials identified by a large language model
(LLM). The average appearance of objects within each group
is used as an estimator of the corresponding material. To
perform this clustering, we utilize GPT-4 with the prompt
specified in Tab. 8(1).

Once the material database is computed, it can be used to
adapt RGB objects to the X-ray modality by inpainting them
with their expected material. These expected materials are
retrieved fromM using an LLM with the prompt provided
in Tab. 8(2).

Material database construction when Din-house
XRAY = ∅.

When no samples are available fromDin-house
XRAY , we construct

our material database using the standardized color scheme
of security X-ray scans. These scans operate by irradiating
objects with X-rays and rendering them in pseudo-colors
based on their spectral absorption rates. Typically, three
primary pseudo-colors are used [1, 32]: orange for organic
substances (e.g., food, explosives), green for inorganic ma-
terials (e.g., laptops, smartphones), and blue for metals (e.g.,
knives, guns). We leverage this modality knowledge to build
our material database around these three broad materials.

D.3. Web-retrieval details
To retrieve images from the web, we utilize the Google
Custom Search API [7], configuring specific query pa-
rameters to refine the results. We set the search type to
images (searchType: image) and restrict the results
to photos (imgType: photo) in common JPEG and
PNG formats (fileType: jpg|png). To ensure rele-
vance, we limit searches to English-language sources (lr:
lang_en) and prioritize images from the past seven years
(dateRestrict: y7).

D.4. In-domain descriptor details
In-domain descriptors from Din-house

XRAY are built offline by
combining the training sets from the six evaluation datasets
(PIXray [18], PIDray [33], CLCXray [41], DvXray [19],
HiXray [29], and DET-COMPASS) and removing overlap-
ping categories. Combining the datasets ensures a fair
evaluation through dataset-agnostic prototypes that capture
generic concepts, rather than dataset-specific representa-
tions.

Algorithm 1: Pseudo-code of RAXO.
Input: vocabulary Ctest; OvOD detector F; test image I;

in-house database Din-house
XRAY ; web-database Dweb

RGB
Output: Detections T of image I

1 Initialization: T ← ∅
2 Initialization: X ← ∅
3 Initialization: X𝑏𝑔 ← ∅

4 M = 𝐶𝑟𝑒𝑎𝑡𝑒𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒 (Din-house
XRAY )

/* Visual class descriptors construction */

5 for class 𝑐 ∈ Ctest do
/* VSA refers to the Visual samples

acquisition pipeline */

6 GXRAY
𝑐 ← 𝑉𝑆𝐴(𝑐, Din-house

XRAY )
7 if GXRAY

𝑐 is ∅ then
8 G̃web

𝑐 ← 𝑉𝑆𝐴(𝑐, Dweb
RGB )

9 Gweb
𝑐 = Filter( G̃web

𝑐 , F, 𝑐, 𝜏 )
10 A𝑐

𝑚 = 𝐺𝑒𝑡𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝐴𝑝𝑝𝑎𝑟𝑒𝑎𝑛𝑐𝑒 (M, 𝑐)
11 for sample u ∈ Gweb

𝑐 do
/* Ω denotes segmentation */

12 ũ = Ω(u) ⊙ (A𝑐
𝑚 · 1)

13 GXRAY
𝑐 ← GXRAY

𝑐 ∪ {ũ}
14 end
15 end

/* Visual class modeling */

16 X𝑐 ← ∅
17 for sample I ∈ GXRAY

𝑐 do
18 xpos

I = 𝐸𝑞. (3)
19 xneg

I = 𝐸𝑞. (4)
20 X𝑐 ← X𝑐 ∪ {xpos

𝐼
}

21 X𝑏𝑔 ← X𝑏𝑔 ∪ {xneg
𝐼

}
22 end
23 X𝑐 ← X𝑐 ∪ {𝐴𝑣𝑔 (X𝑐 ) }
24 X ← X ∪ X𝑐
25 end

/* Detection on image I */

26 𝑧 = F | Φ𝑅𝑃𝑁 (I)
27 Ctest′ ← Ctest ∪ {background}
28 for proposal zm ∈ 𝑧 do
29 ˆ𝑐𝑚 ← arg max

𝑐∈Ctest′ maxX𝑖𝑐 ∈X𝑐 ⟨z𝑚, X
𝑖
𝑐 ⟩

30 b̂m ← F | Φ𝑅𝐸𝐺 (zm )
/* DCC refers to the Descriptor

Consistency Criterion */

31 if ˆ𝑐𝑚 is not background and 𝐷𝐶𝐶 (zm, X) then
32 T ← { ˆ𝑐𝑚 ∪ b̂m}
33 end
34 end
35 Return: T

E. Extended Experimental Results

Maintaining the same experimental setup as in Sec. 6.1, we
extend our main results to report AP, AP50, and AP75. Ad-
ditionally, since the experiments are repeated three times
with different random distributions of in-domain and web
categories for the intermediate gallery settings, we also re-
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G Method PIXRAY PIDRAY CLCXray COMPASS-XP HiXray DVXray
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

G-DINO [17] 12.9 14.9 13.4 10.9 13.6 11.7 6.7 8.4 7.1 13.4 14.2 13.9 7.0 10.8 8.2 10.0 11.2 10.4

D
in-

h
XRAY

D
web

RGB

100/0 36.9 45.0 39.0 16.5 21.4 17.9 22.2 29.6 24.4 47.9 54.2 48.8 17.1 27.2 19.4 22.6 26.6 24.1
80/20 33.8±0.6 40.9±0.9 35.5±0.6 15.4±0.4 19.8±0.6 16.6±0.4 18.0±2.1 23.7±2.3 19.5±2.2 41.0±2.2 46.2±2.4 41.7±2.2 14.5±0.6 23.5±1.0 16.3±0.6 21.0±0.6 24.8±0.9 22.3±0.6
50/50 + RAXO 25.4±2.0 31.2±1.9 26.7±2.0 15.5±0.9 19.8±1.0 16.8±1.0 17.0±1.8 22.9±3.2 18.7±2.3 31.4±0.7 35.3±0.9 32.1±0.6 13.4±0.1 21.3±0.1 15.3±0.2 16.1±1.8 18.8±2.3 17.0±2.0
20/80 21.6±0.6 26.1±1.1 22.6±0.6 13.9±0.5 17.9±0.7 14.9±0.6 10.0±0.4 13.1±1.5 10.7±0.7 20.5±0.6 22.9±0.7 21.1±0.7 9.8±1.0 15.8±1.4 11.1±1.2 15.0±1.0 17.2±1.1 15.8±1.2
0/100 16.1 19.8 16.8 13.4 17.1 14.3 7.1 9.7 7.5 14.0 15.4 14.5 7.9 13.0 8.7 12.4 14.1 12.9

Detic [43] 9.3 11.6 9.5 7.1 9.7 7.6 4.7 7.3 4.6 11.5 13.4 13.3 4.8 8.6 5.2 7.0 8.5 7.5

D
in-

h
XRAY

D
web

RGB

100/0 27.3 34.5 28.2 11.3 15.8 12.2 14.0 20.6 14.7 35.3 39.9 35.4 14.2 23.9 15.5 19.4 23.9 21.2
80/20 23.9±1.3 30.2±1.5 24.6±1.3 10.8±0.1 15.0±0.2 11.7±0.1 12.3±1.6 18.1±1.8 12.8±1.9 30.7±1.4 34.4±1.3 30.8±1.5 12.1±1.1 20.8±1.8 13.1±1.2 18.0±2.2 22.1±2.6 19.7±2.4
50/50 + RAXO 19.5±1.6 24.8±1.9 20.1±1.7 10.3±0.3 14.3±0.3 11.0±0.3 9.2±1.2 13.5±2.3 9.5±1.2 24.4±2.7 27.1±2.7 24.8±2.6 11.0±0.9 18.9±1.3 11.9±1.2 14.6±1.1 17.9±1.2 15.9±1.2
20/80 15.2±0.9 19.4±0.9 15.5±1.0 9.6±0.1 13.3±0.2 10.3±0.2 8.0±0.1 12.5±0.1 8.0 16.4±1.0 18.3±1.0 16.4±1.0 9.9±0.8 16.8±1.4 10.7±0.9 12.7±0.6 15.5±0.8 13.9±0.7
0/100 13.4 16.8 13.6 9.1 12.6 9.8 5.2 8.1 5.1 11.9 13.1 12.1 7.9 13.8 8.4 9.4 11.4 10.1

CoDet [20] 7.3 8.7 7.6 5.7 7.6 6.2 3.1 5.7 2.7 8.4 8.9 8.7 3.4 5.9 3.7 5.6 6.8 6.0

D
in-

h
XRAY

D
web

RGB

100/0 27.9 33.6 29.2 10.3 14.6 10.9 14.8 22.4 15.9 35.8 41.0 36.7 13.2 22.0 14.8 17.6 21.7 19.0
80/20 25.1±1.5 30.2±1.7 26.2±1.7 9.5±0.3 13.4±0.5 10.1±0.3 12.0±1.9 18.3±2.8 12.7±2.1 32.2±0.9 36.5±1.5 33.1±0.6 11.7±1.3 19.4±2.2 13.2±1.5 15.4±1.4 18.8±1.7 16.7±1.6
50/50 + RAXO 20.0±0.7 24.1±0.9 20.8±0.7 9.5±0.5 13.4±0.7 10.1±0.5 9.2±1.4 14.2±2.1 9.6±1.7 24.0±0.2 26.7±0.3 24.7±0.2 9.9±0.4 16.7±0.8 11.1±0.4 11.5±0.8 14.2±1.1 12.4±0.8
20/80 14.8±2.4 17.8±2.8 15.3±2.5 8.5±0.3 11.9±0.4 9.0±0.4 5.1±1.4 9.0±2.5 5.0±1.6 17.8±0.7 19.4±0.9 18.2±0.6 8.1±0.6 13.8±1.0 8.8±0.6 9.4±1.5 11.3±1.8 10.1±1.6
0/100 11.5 14.0 11.9 8.1 11.3 8.7 4.0 7.1 3.8 12.2 13.0 12.6 6.5 11.2 7.1 6.9 8.3 7.5

VLDet [14] 9.8 12.1 10.3 6.9 9.4 7.4 4.4 7.8 4.0 10.6 11.4 10.8 5.1 9.0 5.5 7.4 9.2 8.1

D
in-

h
XRAY

D
web

RGB

100/0 32.3 40.1 34.0 11.7 16.8 12.6 15.4 23.3 15.9 36.4 41.4 37.2 14.8 24.5 16.3 20.1 25.1 22.0
80/20 29.2±1.2 36.3±1.2 30.7±1.3 11.0±0.3 15.7±0.3 11.7±0.3 12.7±0.5 19.6±1.2 13.0±0.5 31.8±0.8 36.0±1.0 32.5±0.9 13.1±1.2 21.8±1.9 14.3±1.3 16.8±0.2 21.0±0.1 18.4±0.1
50/50 + RAXO 24.0±1.5 29.9±1.7 25.2±1.5 10.4±0.7 14.6±1.0 11.1±0.8 11.1±1.1 16.9±0.4 11.5±1.7 23.7±0.9 26.5±0.8 24.3±1.1 11.2±1.5 19.0±2.1 12.1±1.9 12.1±0.5 15.0±0.4 13.2±0.4
20/80 21.6±1.0 26.8±0.9 22.6±1.0 9.4±0.3 13.3±0.4 10.1±0.3 5.2±0.1 9.1±0.2 4.8±0.0 16.2±0.9 18.2±1.2 16.6±1.0 9.3±0.2 15.9±0.2 9.9±0.3 10.6±0.5 13.1±0.6 11.5±0.5
0/100 14.1 17.8 14.5 8.9 12.5 9.5 4.4 8.1 3.9 11.1 12.2 11.4 8.3 14.5 8.7 9.0 11.0 9.8

Table 6. X-ray OvOD performance under the Cross-Modality Transfer Evaluation (CMTE) setting on DET-COMPASS (ours),
PIXray [18], PIDray [33], CLCXray [41], DvXray [19], and HiXray [29] datasets. We integrate RAXO into different baselines using
different gallery G compositions, from using only Din-house

XRAY data (100/0) to exclusively D𝑤𝑒𝑏RGB samples (0/100). RAXO consistently
improves the performance of all baseline OvOD detectors across every dataset. We report the AP, AP50 and AP75. We also include the
deviations because each experiment is repeated three times with different random distributions of in-domain and web categories for the
intermediate gallery settings.

port the standard deviation. Tab. 6 show the results. The
low standard deviations, combined with RAXO’s consistent
improvement over all baselines, further validate the effec-
tiveness of RAXO in adapting off-the-shelf open-vocabulary
detectors to the X-ray modality.

F. Qualitative Analysis of RAXO
Fig. 9 presents qualitative visualizations of detected X-
ray objects before and after applying RAXO with Ground-
ingDINO [17] on the PIXray [18] dataset. For proper vi-
sualization, we display detections with a confidence score
higher than 0.15 in both cases. These images lead to two key
conclusions: (1) RAXO significantly improves the classifi-
cation of detected proposals. In the baseline images, many
objects are correctly localized but misclassified. RAXO suc-
cessfully corrects these misclassifications by constructing
robust visual descriptors. (2) The use of both background
descriptors and the Descriptor Consistency Criterion (DCC)
effectively eliminates false positives that do not correspond
to actual X-ray objects. These observations strongly support
the reliability of RAXO.
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DET-COMPASS Categories
abacus abaya amplifier analog watch apron baby monitor backpack
bag of sweets baking dish ballpoint banana Band Aid baseball bat baseball cap
bath towel bathing cap beanie beer bottle beer glass bell pepper belt
bib bicycle helmet bikini binder binoculars bird feeder biscuits
blowtorch boardgame book book jacket boot bow tie bowl
bowler hat box cutter bracelet brassiere bread knife brush bumbag
butternut squash cable caliper camcorder camera can opener candle
canned food capo cardigan cards carving knife cassette cassette player
cd drive cellular telephone cereal chain charger chewing gum chisel
chocolate chocolate sauce Christmas stocking cigarettes clarinet coat hanger cocktail shaker
coffee mug coffeepot colander comb combination lock comic book compact disc
condoms corkscrew cotton buds cotton wool cowboy hat craft knife crayon
crisps crossword puzzle crowbar cucumber dagger denture deodorant
diaper digital watch dinner jacket dishrag dressing gown dvd player e cigarette
e liquid electric fan electric toothbrush empty envelope espresso maker extension cord
face powder fascinator feather boa first aid kit floss flute fork
French loaf frisbee frying pan fur coat gaffer tape game console gameboy
gas canister glove glue gun goggles hacksaw hair clippers hair gel
hair spray hairbrush hammer hand blower handkerchief hard disc harmonica
hatchet headphones hearing aid high heel hook hourglass ipad
iPod iron jean jersey jewellery box jigsaw puzzle joystick
jumper kettle keys kimono kindle kiwi knee pad
knife lab coat ladle lampshade laptop laser pointer leather jacket
lemon lens lens cap letter opener lighter lime lipstick
lotion loudspeaker loupe magazine magnetic compass maillot mallet
marker mask matchstick measuring cup microphone milk can milk carton
mitten mixing bowl modem mortar mosquito net mouse mousetrap
mouthwash multimeter music stand nail nail clippers nail file nail scissors
necklace notebook orange oxygen mask padlock paint can paintbrush
pajama paper towel passport pasta pencil pencil box pencil sharpener
penknife pepper grinder perfume pick pickaxe piggy bank pill bottle
pillow plane plastic bag plate plate rack pliers plunger
Polaroid camera polo shirt pomegranate poncho pop bottle pot power drill
power socket power supply prayer rug quill quilt quilted jacket radio
rasp razor razor blades recorder red wine reflex camera remote control
rice roll of sweets roller skate rubber eraser rubber gloves rubik cube rugby ball
rugby shirt rule running shoe safety pin salad bowl saltshaker sandal
sandwich sarong saucepan saw sax scale scarf
scissors screw screwdriver secateurs sellotape sewing machine shampoo
shaver shawl shirt shorts shovel shower cap sieve
ski mask skipping rope sleeping bag slide slotted spoon smartphone snorkel
soap soap dispenser sock solder soldering iron sombrero soup bowl
spatula spectacles spirit level splitter block spoon spotlight staple gun
stapler stethoscope stockings stole stopwatch strainer strings
stylophone suit sunglasses sunscreen swab sweatshirt swimming trunks
switch syringe table lamp tampon tape measure tea towel teapot
teaspoon teddy telephone telescope tennis ball thermals thermometer
thermos tin of sweets toaster toilet tissue toner cartridge toothbrush toothpaste
top hat torch tracksuit tray tripod tuner ukulele
umbrella underpants vacuum vase velvet vinyl record violin
waffle iron walking boot wall clock wallet washbag water bottle water jug
wellington boot wet wipes whetstone whistle wig wineglass wire wool
wirecutter wok wooden spoon wool wrench wrist guard

Table 7. Category names of DET-COMPASS.
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(1): Material-database clustering prompt

“You are a computer expert specializing in material classification. Your task is to analyze a given list of objects,
determine their primary material composition, and group them accordingly.

Instructions:
Identify the main materials present among the objects (e.g., metal, organic, inorganic, plastic, ceramic, etc.). Assign
each object to the most appropriate material category. Each object should belong to only one category based on its
primary composition. Return the results in JSON format, where the keys are material categories, and the values are
lists of objects belonging to those categories.

Example:
Input: Objects: gun, bat, pressure vessel, beer glass, fur coat, lemon
Expected Output (JSON):
metal: [gun, bat],
inorganic: [pressure vessel, beer glass],
organic: [fur coat, lemon]

Now, classify the following list of objects: {𝐷in-house}. Return only the json format.”

(2): Object material identification prompt

“You are a computer vision assistant. Given a {object}, classify it into one of the following materials:
{M .materials_names}. Return only the material. You must always select one.”

Table 8. Prompts used for material clustering and retrieval. (1) The clustering prompt provided to GPT-4 to group Cin-house into
material categories. (2) The retrieval prompt used to queryM and infer the expected material of unknown RGB objects.
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Figure 9. Qualitative comparison of G-DINO [17] and G-DINO+RAXO.
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