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Abstract

SLAM (Simultaneous Localization and Mapping) under severe occlusions in crowded environments poses chal-
lenges both from the standpoint of the sensor and the SLAM algorithm. In several approaches, the sensor is a camera
pointing to the ceiling to detect the lights. Nevertheless, in these conditions the density of landmarks is usually low,
and the use of omnidirectional cameras plays an important role due to its wide field of view. On the other hand, the
SLAM algorithm has to be also more involved as data association becomes harder in these environments and, also, due
to the combination of omnidirectional vision and the characteristics of the landmarks (ceiling lights): conventional
feature descriptors are not appropriate, the sensor is bearing-only, measurements are noisier, and severe occlusions
are frequent. In this paper we propose a SLAM algorithm (OV-FastSLAM) for omnivision cameras operating under
severe occlusions. The algorithm uses a new hierarchical data association method that keeps multiple associations per
particle. We have tested OV-FastSLAM in two real indoor environments and with different degrees of occlusion. Also,
we have compared the performance of the algorithm with several methods for the data association. Non-parametric
statistical tests highlight that OV-FastSLAM has a statistically significant difference, showing a better performance
under different occlusion conditions.
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1. Introduction

The operation of a robot during Simultaneous Local-
ization and Mapping (SLAM) in crowded indoor envi-
ronments introduces a number of difficulties, both from
the standpoint of the sensor and the SLAM algorithm.
In first place, the sensor pose plays an important role:
all the sensors that get data of the plane in which the
robot moves should be discarded, as they do not pro-
vide useful information when the robot is completely
surrounded by people. Many approaches to SLAM in
dynamic environments rely on different tracking tech-
niques to disregard moving objects [1, 2]. However, this
solution is not valid when the density of moving objects
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is very high, and the sensor data is totally affected by
the presence of people.

Several authors have used cameras pointing at the
ceiling [3, 4, 5, 6, 7], as in highly populated environ-
ments this is usually the unique people-free area. In
particular, most of these approaches use the lights on the
ceiling as landmarks, because the ceiling usually has a
low number of distinctive objects to map. Also for this
reason, SIFT or other types of feature descriptors are
ineffective, as the ceiling has a low number of objects
from which to extract meaningful descriptors and, very
often, these relevant objects are similar or equal.

Conventional cameras are not appropriate in environ-
ments with a low density of landmarks, as they detect
few of them in each image. Omnidirectional cameras
are the most adequate sensor in these conditions, as the
number of features in each image is greater and, there-
fore, the robot has more valuable information to cor-
rect its pose and also the pose of the landmarks. The
combination of omnidirectional vision and the ceiling
lights as features allows to localize the robot and map
the environment in crowded environments, although the
system must still be able to operate under severe occlu-
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sions when people is very close to the robot, or due to
the point of view of the camera for oriented lights, etc.

We have already mentioned that a SLAM algorithm
for crowded environments is also more involved. The
cause is that, for the combination of omnidirectional vi-
sion and ceiling lights, data association becomes harder
due to the following reasons:

• The use of feature descriptors (SIFT, SURF, etc.)
facilitates the data association step, as it depends
on both the similarity of the feature descriptors of
measurements and landmarks and, also, on the ge-
ometric distance between them. However, when
the landmarks are specific and very similar ob-
jects (e.g. the lights), feature descriptors play
no role —landmarks are indistinguishable among
each other— and the data association has less in-
formation.

• Bearing-only sensors, like omnidirectional cam-
eras, make data association more complex be-
cause:

– Distant landmarks may generate very similar
measurements for some poses of the robot,
although they could be very far apart in the
3D map.

– For bearing-only SLAM algorithms the pose
of recently initialized landmarks is noisier
and data association has to cope with a higher
uncertainty.

• Measurements coming from lights are noisier be-
cause: i) landmarks are on the ceiling and are al-
ways detected at distances over several meters —
in our tests, at distances typically over 6 m—; ii)
the features appear as blobs in the image, with dif-
ferent sizes and shapes that change depending on
the point of view and the lightning conditions; iii)
small vibrations of the camera generate large errors
in the angles of the detected landmarks.

• Severe occlusions are frequent, hindering data as-
sociation and, also, delaying the reduction of un-
certainty in the position of recently initialized land-
marks.

In this paper, we present OV-FastSLAM, a SLAM al-
gorithm for omnivision cameras operating under severe
occlusions. The proposal is based on the well-known
FastSLAM 2.0 approach [8], and has a new data asso-
ciation algorithm that is global and keeps multiple hy-
pothesis per particle. With global methods, we mean

that the data association algorithm takes into account
all the measurements and landmarks to calculate the
likelihood of each complete possible association —the
Hungarian method is global— in contrast to local meth-
ods that iterate for all the measurements, calculating the
likelihood of association for each of them individually
—maximum likelihood (ML) is a local approach. The
contributions of this paper are:

• Hierarchical data association. We propose a new
data association algorithm that is able to cope with
all the complexity of omnidirectional vision un-
der severe occlusions. The method is global and
manages multiple hypothesis per particle. Also,
it is hierarchical, as the association is divided in
two stages —landmarks with and without a 3D
position— to prioritize the landmarks with a 3D
position. The association of the landmarks with
3D position is based on Murty’s algorithm [9], that
obtains the n-best assignments in polynomial time.
On the other hand, the association of landmarks
without 3D position uses the Hungarian algorithm
[10] to obtain the best assignment.

• Measurements likelihood. We present a method
for estimating the likelihood between a measure-
ment and a landmark without 3D position. The
method uses all the measurements associated so far
to the landmark, picks the 3D position that maxi-
mizes the likelihood of all the measurements, and
finally selects the minimum probability over all the
measurements for the selected 3D position.

• A deep experimental study on the influence of
occlusions, in which we analyze the loss in per-
formance under severe occlusions of different de-
grees. We have compared the results of OV-
FastSLAM and other methods for the data associ-
ation using non-parametric statistical tests.

2. Related work

In the last years many visual SLAM algorithms have
been proposed [11], and most of them can be grouped
into two categories: those based on filtering techniques,
and the approaches that rely on keyframes. We focus
the discussion of the related work on those SLAM ap-
proaches that use omnidirectional cameras, or the land-
marks are ceiling features, or deal with occlusions.

Omnidirectional cameras are cameras with a wide
field of view, due to a fish-eye lens or through standard
cameras with mirrors (catadioptric cameras). Their use
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Table 1: Summary of the related Work.

Reference Algorithm Association Camera Landmarks Occ.
Roda et al. [7] Information The-

ory
Mutual Infor-
mation

Fish-eye
(100◦)

Ceiling mo-
saics

—

Lemaire and Lacroix [13] EKF Tracking Catadioptric Harris corners —
Andreasson et al. [16, 17] Graph optimiza-

tion
ML Catadioptric SIFT —

Rybski et al. [14] IEKF & lin-
earized ML

Kanade-
Lucas-Tomasi

Catadioptric Featured
images

—

Kim and Oh [15] EKF ML Catadioptric +

2D laser
Lines —

Wongphati et al. [18] FastSLAM ML Catadioptric Lines —
Saedan et al. [19] Particle Filter +

image database
ML Fish-eye Wavelet

decomposition
—

Schlegel and Hochdorfer [12] EKF Mahalanobis
+ geometric

Catadioptric SIFT —

Scaramuzza et al. [20] Visual Odometry
+ Bag-of-Words

ML +

RANSAC
Catadioptric SIFT —

Valiente Garcı́a et al. [21] Visual Odometry Global search
of similarity

Catadioptric Fourier signa-
ture + SURF

—

Kawewong et al. [22] Bag-of-Words ML Catadioptric PIRF YES
Lui and Jarvis [23] Probabilistic

framework
Euclidean dis-
tance

Stereo Cata-
dioptric

Haar coeffi-
cients

—

Kang et al. [6] EKF, FastSLAM,
NeoSLAM

Nearest neigh-
bor clustering

Standard Ceiling lights —

Jeong and Lee [3] EKF ML Fish-eye
(150◦)

Harris corners —

Choi et al. [4] EKF ML Standard Lines —
Choi et al. [5] EKF Lucas-Kanade Standard Harris corners

+ Lines
—

in visual SLAM is receiving an increasing attention, as
they cover wider regions of the environment in each im-
age. Roda et al. [7] use this type of camera to build a
map of the ceiling from a set of rectified images. The
estimation stage is done maximizing the mutual infor-
mation between two consecutive views, while they con-
struct the ceiling mosaic through an energy minimiza-
tion algorithm. Moreover, the deviation of the global
trajectory is corrected minimizing the entropy of the
whole map.

One of the most popular techniques for SLAM with
omnidirectional cameras is the Extended Kalman Fil-
ter (EKF). For example, Schlegel and Hochdorfer [12]
used a panoramic (catadioptric) camera with an EKF al-
gorithm for monocular visual SLAM through SIFT fea-
tures, and they carried out experiments in largely vary-
ing lighting conditions. The approach of Lemaire and

Lacroix [13] is also based on EKF-SLAM. They pro-
posed a delayed landmark initialization method that ap-
proximates the depth of the position of the landmark
through a sum of Gaussians. Loop closure is managed
through the comparison between the current image and
a database of previous images that are close to the cur-
rent position. Rybski et al. [14] present two SLAM
approaches: online SLAM with an Iterated EKF, and
an offline SLAM based on a batch-processed linearized
maximum likelihood estimator. They build a topolog-
ical map from panoramic images, which are stored if
they differ from the images in the database according to
the Kanade-Lucas-Tomasi algorithm. Finally, Kim and
Oh [15] extract the lines of the environment and apply
EKF-SLAM, although the 3D position of the lines is ob-
tained in combination with a laser sensor.

Also, there are approaches for omnidirectional cam-
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eras based on particle filters. In [18], Wongphati et al.
use FastSLAM 1.0, and the landmarks are the vertical
lines of the environment. The proposal of Saedan et al.
[19] is based on a particle filter, and the map is both
topological and metric. Each node of the map stores its
pose and an image, and the particle filter estimates the
pose of the robot from the nearest node. The loop clo-
sure assigns particles to the different nodes according to
the similarity between images. Andreasson et al. [16]
present a graph-based approach, where the nodes are
the poses from which the images where taken, and the
arcs represent the relationship between poses through
odometry and the similarity between images. They ap-
ply the multilevel relaxation algorithm [24] to estimate
the global map and the poses through the maximization
of the likelihood of all the measurements. In [17], the
same authors extend the proposal to multi-robot SLAM.

On the other hand, Scaramuzza et al. [20] employ
an omnidirectional camera to create a database of vi-
sual words that can be used to identify and close loops.
For motion estimation, they use visual odometry based
on SIFT features. In the same line, Valiente et al. [21]
use a catadioptric camera and visual odometry. Their
main contribution was to simplify the matching between
features in two consecutive images through the restric-
tion of their poses. Finally, the proposal of Lui and
Jarvis [23] relies on a stereo omnidirectional (catadiop-
tric) camera with variable baseline, so it is possible to
calculate the 3D position of a feature with only one ac-
quisition. They obtained both a topological map and a
2D grid map, and tests were done both indoors and out-
doors.

There are several papers that use ceiling features as
landmarks for SLAM, and most of them with standard
cameras. The first proposal was an EKF [3], that can
be executed in real-time in a very small area. In [4, 5]
they used a modified Monte-Carlo algorithm for local-
ization and a standard EKF for SLAM. The landmarks
were the ceiling boundaries, the ceiling lights, and cir-
cles, but it was tested only for short paths. Finally,
in [6] three SLAM algorithms (EKF, FastSLAM and
NeoSLAM) were compared on several indoor environ-
ments and over short trajectories with just one loop.

The presence of moving objects (dynamic environ-
ments) is the main cause of occlusions in SLAM. Sev-
eral authors have tackled SLAM with detection and
tracking of moving objects (DATMO) [25, 26], although
both the density of moving objects and the degree of oc-
clusion are usually low. Nevertheless, our focus is not
on SLAM and DATMO, but on SLAM approaches un-
der severe occlusions —independently of the source of
the occlusion. We are interested in SLAM proposals

that explicitly handle occlusions and, also, on those pa-
pers that evaluate their approach under varying degrees
of occlusion but do not implement any specific occlu-
sion handling —our proposal belongs to the second cat-
egory. We have found only one approach in this cate-
gory: the PIRF-Nav 2.0 SLAM algorithm [22, 27]. It
uses the PIRF feature detector, which is extremely ro-
bust against dynamic changes. The proposal was tested
in several environments, including a very challenging
environment: a university canteen during lunch time.
Authors found that more than 50% of the descriptors
(features) came from dynamic objects, which negatively
affects the performance and robustness, achieving a re-
call rate of 88% in the crowded environment.

Table 1 summarizes the main characteristics of the
related work.

3. Camera model and landmarks

3.1. Inverse camera model

Features —lights on the ceiling— are extracted from
the omnidirectional images with the detection process
presented in [28]. The output of the feature extraction
process is a list of pixel coordinates (ul, vl), that repre-
sent the centroid of each feature l. This list must be
transformed into a measurements list (Zt), where each
measurement (zt,l) is given by the azimuth and elevation
angles (ϕt,l, θt,l)

The camera follows a projection model developed by
Pajdla and Bakstein [29] that indicates how a 3D point
can be transformed to a pixel in a 2D image. The model
is described as a function of the two aforementioned an-
gles ϕ and θ:

r = a tan θ
b + c sin θ

d

ul = u0 + r cosϕ
vl = β(v0 + r sinϕ)

 (1)

where a, b, c, d are parameters of the model, (u0, v0) are
the coordinates of the pixel in the center of the image,
and β is the ratio between the width and the height of a
pixel.

The transformation of the measurements requires the
inverse camera model, i.e., given a pixel the inverse
model returns the coordinates of the 3D point in the
world —a 3D line for bearing-only sensors. However,
the camera model equations are not invertible. This has
been solved through a look-up table: given the coordi-
nates of a pixel, the look-up table provides the values of
ϕ and θ. Fig. 1 shows a graphical representation of the
look-up table. The table is generated off-line as follows:
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(a) ϕ: white= π, black= −π (b) θ: white= π/2, black= 0

Figure 1: Graphical representation of the values of ϕ and θ provided
by the look-up table for each image pixel.

1. Sample the values of ϕ and θ with precisions δϕ
and δθ. Eq. (1) is used to obtain the corresponding
pixel coordinates.

2. Store, for each pixel, the maximum and minimum
values of ϕ and θ, as a range of values could corre-
spond to the same pixel.

3.2. Measurement noise model

The noise covariance matrix of the l-th measurement
is defined as:

Ql =

(
Qϕ

l 0
0 Qθ

l

)
=


(

∆np

r

)2
0

0
(
π∆np

2rmax

)2

 (2)

where ∆np represents the uncertainty —in pixels— of
the features extraction process, and r and rmax are re-
spectively the distances —in pixels— from the center

θ = 0

zt,l

2 π rzt,l

rzt,l
∆np

rmax

Figure 2: Estimation of Ql.

of the image to the feature and to the border of the im-
age (Fig. 2). Qϕ

l is obtained as the squared angle of an
arc with length ∆np and radius r. Therefore, Qϕ

l depends
on θ (Eq. 1). Fig. 3 shows this dependency: the maxi-
mum error is at the center of the image, as at that point
we do not have any information on the value of ϕ; on the
other hand, at the border of the image, errors in the po-
sition of the features have little influence on ϕ. Finally,
Qθ

l is defined as the squared angle that corresponds to a
segment of length ∆np along a radius of the image.

3.3. Map

The feature-based map is composed of two types of
landmarks: (i) those with 3D positions, called land-
marks; (ii) and those without a 3D position, called can-
didate landmarks to distinguish them from the land-
marks with 3D position (Fig. 4).
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Figure 3: Qϕ
l as a function of θ for different values of ∆np.
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t−3X t−1X tXt−2X
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5crossPoint

4crossPoint
6crossPoint

3crossPoint
2crossPoint

1crossPoint

zt−3,B1 t,B1
z

t,C1
z

zt−3,C1

Figure 4: A typical example of a landmark (B1) and a candidate land-
mark (C1).

Algorithm 1 OV-FastSLAM (Zt, ut, Yt−1)
1: for k = 1 to M do
2: for s = 1 to NΨ do
3: Get particle k with data association s

from Yt−1: xk,s
t−1, {Bk,s

t−1,1, . . . , Bk,s
t−1,Nk,s

t−1

},

{Ck,s
t−1,1, . . . , Ck,s

t−1,ηk,s
t−1

}

4: x̂t = g
(
xk,s

t−1, ut

)
5: Φ

k,s
t,1 = measurementsLikelihood 1 ()

6: end for
7: {Ψ

k,1
t,1 , . . . ,Ψ

k,NΨ

t,1 } = dataAssociation 1 ()
8: for s = 1 to NΨ do
9: Φ

k,s
t,2 = measurementsLikelihood 2 ()

10: Ψ
k,s
t,2 = dataAssociation 2 ()

11: robotPoseUpdate ()
12: mapUpdate ()
13: end for
14: end for
15: Yt = resample ()

• A landmark Bk,s
t, j — j is the landmark index, k is

the particle, s the data association hypothesis, and
t the timestamp— contains the information of the
3D position, represented by a Gaussian distribution
of mean µk,s

t, j and covariance Σ
k,s
t, j , and the number of

times that has been detected, ik,st, j .

• Candidate Landmarks Ck,s
t, j contain a set of mea-

surements Zk,s
t, j = {zt−τ,lt−τ , . . . , zt,lt } that are used to

calculate a set of possible 3D positions, each one
with an associated probability. Over time, as new
measurements are associated to the landmark, the
set of candidate 3D positions is modified and the
probabilities evolve until the correct —and most
probable— position is assigned to the candidate
landmark.

4. OV-FastSLAM algorithm

OV-FastSLAM is based on the FastSLAM 2.0 algo-
rithm [8], which uses a Rao-Blackwellized particle filter
[30] to represent the posterior probability distribution.

The robot path is estimated with a particle filter, and
each particle contains both a robot pose and a feature-
based map. The features of the map are represented by
Gaussian distributions and they are updated with EKFs.
The inputs to OV-FastSLAM (Alg. 1) are the set of mea-
surements at time t (Zt), the control (ut), and the previ-
ous set of particles (Yt−1). Each particle k contains NΨ

data associations to cope with all the complexity of om-
nidirectional vision under severe occlusions. For each
association s there is an estimated robot pose, xk,s

t−1, and
a map of Nk,s

t−1 landmarks, {Bk,s
t−1,1, . . . , Bk,s

t−1,Nk,s
t−1

}, and ηk,s
t−1

candidate landmarks {Ck,s
t−1,1, . . . , Ck,s

t−1,ηk,s
t−1

}.

OV-FastSLAM iterates over the M particles and the
NΨ associations to obtain the weights (wk,s). Data as-
sociation is hierarchical, i.e., it is divided in two stages
—landmarks and candidate landmarks association— to
prioritize landmarks association, as they are more reli-
able than candidate landmarks. Lines 2-6 calculate the
measurements likelihoods for the first level of the data
association, which is solved in line 7. The second loop
over the NΨ associations (lines 8-13) calculates the mea-
surements likelihoods and the data association of the
second level, the robot pose update and the map update.

Finally, OV-FastSLAM resamples following the ef-
fective sample size criterion [31], calculated as [32]:

Meff =
1

M∑
i=1

(w̃k)2

(3)

where w̃k is the normalized particle weight. When all
the particles have very similar weights, Meff takes its
maximum value, indicating that the target proposal dis-
tribution is correctly approximated. However, when the
variance on the particles weights increases, the value
of Meff decreases, reflecting a poor approximation of
the distribution. OV-FastSLAM resamples whenever
Meff < M/2 [32]. Only the best association of each par-
ticle passes to the resampling stage (Sec. 4.2.3).

FastSLAM 2.0 tracks several hypothesis (one per par-
ticle), but each particle only keeps its best data associa-
tion. Whenever an occlusion or a complex data associ-
ation occurs, it is not unusual that most of the particles
make wrong data associations. On the other hand, OV-
FastSLAM keeps several data associations per particle,
which makes highly probable to track the correct hy-
pothesis. Moreover, as the decision on which is the most
probable data association is delayed until resampling
takes place, the data association of OV-FastSLAM is
more robust to noisy measurements, severe occlusions,
and the complexity of bearing-only sensors.
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Algorithm 2 OV-FastSLAM: measurementsLikelihood 1 ()

1: for j = 1 to Nk,s
t−1 do

2: z j = h
(
µk,s

t−1, j, x̂t

)
3: Hx, j = ∇xt h

(
µk,s

t−1, j, x̂t

)
4: Hm = ∇mh

(
µk,s

t−1, j, x̂t

)
5: for l = 1 to NZt do
6: Q j,l = Ql + HmΣ

k,s
t−1, jH

T
m

7: Σx = [HT
x, jQ

−1
j,l Hx, j + R−1

t ]−1

8:
9: µx = ΣxHT

x, jQ
−1
j,l

(
zt,l − z j

)
+ x̂t

10: ẑ = h
(
µk,s

t−1, j, µx

)
11: φ j,l = (2π)−

Dim(Q j,l)
2

∣∣∣Q j,l

∣∣∣− 1
2

exp
{
− 1

2
(
zt,l − ẑ

)T Q−1
j,l

(
zt,l − ẑ

)}
12: end for
13: end for
14: return Φ

k,s
t,1 =

[
φ j,l

]

4.1. Measurements likelihood

The likelihood of association (φ j,l) between a land-
mark j and a measurement l is obtained by Alg. 2.
It follows the FastSLAM 2.0 approach, which models
the probability of association by a Gaussian with mean
equal to the measurement prediction, and with a covari-
ance that depends on the landmark covariance (Σk,s

t−1, j)
and the measurement noise (Ql).

The probability that a measurement is associated to
candidate landmark j is calculated in Alg. 3. The pro-
cess is also based on a Gaussian probability distribution
but, as candidate landmarks do not have a position —
but a set of possible positions—, the process is more in-
volved. The calculation of φ j,l′ has the following steps:

1. For each measurement zi ∈ Zk,s
t−1, j —the set of mea-

surements belonging to Ck,s
t−1, j—, we calculate the

crosspoint between zi and zt,l′ (Alg. 3, line 6), with
l′ = 1, . . . , Nk,s

Z′t
, being Nk,s

Z′t
the number of mea-

surements at time t not associated in the first level
of the data association process.
The probability assigned to the crosspoint (φc) is
the joint probability of all the measurements in
Zk,s

t−1, j for the 3D position (xc) of the crosspoint
(lines 9-18). For each measurement zq, the proba-
bility that it was generated from xc (φq) is modeled
by a Gaussian with mean equal to the measure-
ment prediction. This prediction uses the cross-
point position and the prediction of the pose of the

Algorithm 3 OV-FastSLAM: measurementsLikelihood 2 ()

1: for j = 1 to ηk,s
t−1 do

2: for l′ = 1 to Nk,s
Z′t

do
3: φmax = 0
4: validCross = false
5: for i = 1 to |Zk,s

t−1, j| do
6: xc = crossPoint(zt,l′ , zi)
7: φc = 1
8: φmin = 1
9: for q = 1 to |Zk,s

t−1, j| do
10: z = h

(
xc, x̂t(q)

)
11: Hm = ∇mh

(
xc, x̂t(q)

)
12: Q j,l′ = Qq + HmΣ0HT

m

13: φq = (2π)−
Dim(Q j,l′ )

2
∣∣∣Q j,l′

∣∣∣− 1
2

exp
{
− 1

2

(
zq − z

)T
Q−1

j,l′

(
zq − z

)}
14: φc := φcφq

15: if φq < φmin then
16: φmin = φq

17: end if
18: end for . For q = 1 to |Zk,s

t−1, j|

19: if
(
ẑt,l′ , zi > γmin ∨ !validCross

)
∧ φc >

φmax then
20: φmax = φc

21: φ j,l′ = φmin

22: if ẑt,l′ , zi > γmin ∧ !validCross then
23: validCross = true
24: end if
25: end if
26: end for . For i = 1 to |Zk,s

t−1, j|

27: end for . For l′ = 1 to Nk,s
Z′t

28: end for . For j = 1 to Nk,s
t−1

29: return Φ
k,s
t,2 =

[
φ j,l′

]T

robot at t (q), which is the timestamp of measure-
ment q. Moreover, the covariance depends on the
crosspoint covariance (Σ0, the initial covariance of
a landmark) and the measurement noise (Qq).

2. Select the crosspoint that maximizes the probabil-
ity over all the measurements (φc) in Zk,s

t−1, j. The
angle between the measurements that define the
crosspoint must be over a threshold γmin (line 19)
to have a high confidence in its 3D position.

3. φ j,l′ will be the minimum over all the measure-
ments for the selected crosspoint (line 21). This
condition is very restrictive, and helps to elimi-
nate candidate landmarks with associated measure-
ments that do not have a good matching with the
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most probable crosspoint.

4.2. Hierarchical data association

Landmarks association is based on Murty’s algorithm
[9], that obtains the n-best assignments in polynomial
time. This algorithm has been modified by Cox and
Miller [33] in order to solve multiple assignment prob-
lems at the same time, and also to change the termi-
nation condition, as hypothesis with a likelihood below
a certain percentage of the best hypothesis can be dis-
carded. All those measurements that are not associated
in the first stage, pass to the second stage —candidate
landmarks association— which uses the Hungarian al-
gorithm [10] to obtain the best assignment. The Hungar-
ian method is a combinatorial optimization algorithm
that solves assignment problems in polynomial time.

Both Murty’s and Hungarian algorithms use a cost
matrix (Φ), where each element φa,b represents the prob-
ability of association1 between a and b. The Hungarian
method returns an ambiguity matrix (Ψ) —Murty’s al-
gorithm returns a set of n ambiguity matrices—, where
each element ψa,b takes a value of 1 or 0, indicating the
association or not of a with b. Moreover, Ψ has to fulfill
two conditions:

∑
b

ψa,b = 1, ∀a and
∑

a

ψa,b ∈ {0, 1}, ∀b (4)

The first condition indicates that each row must have
exactly one assignment, while the second equation re-
flects that each column must have one or zero associa-
tions.

4.2.1. First level of the data association
It is solved with Murty’s algorithm using the cost ma-

trix shown in Fig. 5. Φ
k,s
t,1 was generated by Alg. 2, but

at this stage it is extended to form an Nk,s
t−1×

(
NZt + Nk,s

t−1

)
matrix with a row for each landmark.

The left side of the matrix is obtained from Alg. 2.
There is a column for each measurement, and each el-
ement φ j,l represents the probability of association of
landmark j with measurement l.

The right side is a diagonal submatrix, with a column
per landmark. This gives the chance to make no assign-
ment to a landmark. The probability of no association
is defined as:

φna, j = φnew, jφout, j (5)

1As it is a cost matrix, each element is actually − log φa,b, but to
keep notation simple we will use φa,b.

The first one is the probability that none of the measure-
ments comes from landmark j. We define the proba-
bility that a measurement comes from a new landmark
as:

φnew,l = (2π)−
Dim(Ql)

2 |Ql|
− 1

2 exp{−
1
2
ξ2

new} (6)

where Ql is the measurement noise (Eq. 2) and ξnew

is a parameter that represents the difference (error) —
in number of standard deviations— between the mea-
surement and the expected measurement. Values over
ξnew indicate that the most probable association is that
measurement l does not come from a mapped landmark.
However, we want to model that none of the measure-
ments comes from landmark j (φnew, j), and we esti-
mate this probability replacing in Eq. 6 measurement
l (zt,l) with z j, which is the predicted measurement for
the landmark. This only modifies the value of Ql (Eq.
2) and, in this way, we take into account the expected
measurement noise instead of the noise of an specific
measurement.

The second probability in Eq. 5 models the likeli-
hood that the landmark is outside the field of view of
the camera:

φout, j =



if θ <= θmax 0

if θ > θmax

1 − exp{− 1
2

(
θz j−θmax

)2

Qθ
j
}

(7)

where θz j is the elevation angle for the estimated mea-
surement of landmark j, θmax is a parameter, and Qθ

j is
Qθ

l (Eq. 2) for z j. This probability modulates φnew, j: if
the landmark is outside the field of view (φout, j = 1), the
probability that the landmark is not associated is φnew, j,
while if the landmark is inside the field of view its prob-
ability of no association is very low.

With this definition for Φ
k,s
t,1 , an association has to be

selected for each landmark (this includes the possibility
that the landmark is not detected). On the other hand,
some measurements could be not assigned and, there-
fore, they will pass to the second association level.

4.2.2. Second level of the data association
It is based on the Hungarian method and uses the cost

matrix described in Fig. 6. Φ
k,s
t,2 was calculated with

Alg. 3 and, at this stage, it is extended to create a Nk,s
Z′t
×(

ηk,s
t−1 + Nk,s

Z′t

)
matrix with a row for each measurement

(zt,l′ ) that was not associated in the first level. Therefore,
each measurement that passed to the second level has to
be associated.
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zt, 1 zt, NZt

Bk,s
t−1, 1

Bk,s
t−1, Nk,s

t−1

φ1, 1 . . . φ1, NZt

φ2, 1 . . . φ2, NZt

...
. . .

...

φNk,s
t−1, 1 . . . φNk,s

t−1, NZt

Bk,s
t−1, 1

Bk,s
t−1, Nk,s

t−1

φna, 1 0 . . . 0

0 . . .
. . .

...

...
. . .

. . . 0

0 . . . 0 φna, Nk,s
t−1

Figure 5: Cost matrix for the first level of the data association, Φ
k,s
t,1 .

Ck,s
t−1, 1

Ck,s
t−1, ηk,s

t−1

zt, 1′

zt, Nk,s
Z′t

φ1, 1 . . . φ1, ηk,s
t−1

φ2, 1 . . . φ2, ηk,s
t−1

...
. . .

...

φNk,s
Z′t
, 1 . . . φNk,s

Z′t
, ηk,s

t−1

Cnew, 1
Cnew, Nk,s

Z′t

φnew, 1 0 . . . 0

0 . . .
. . .

...

...
. . .

. . . 0

0 . . . 0 φnew, Nk,s
Z′t

Figure 6: Cost matrix for the second level of the data association, Φ
k,s
t,2 .

The left side is the matrix generated by Alg. 3. There
is a column per candidate landmark, and each element
φ j,l′ represents the probability of association of candi-
date landmark j with measurement l′ —the matrix with
elements φ j,l′ is transposed (Alg. 3, line 29) to generate
Φ

k,s
t,2 .
The right side is a diagonal matrix with a column

per measurement that passed to the second level. φnew,l′

represents the probability that the measurement comes
from a new candidate landmark (Eq. 6). In this as-
sociation level, we do not include the probability that
the candidate landmark is outside the field of view, as
the positions of the candidate landmarks undergo rapid
changes.

4.2.3. Full data association process
Fig. 7 shows the full data association process for a

particle. An association cycle comprises several iter-
ations of OV-FastSLAM, starting after the last resam-
pling at time t−1 and ending before the next resampling
at time t + n. At the beginning of iteration t, there is a
unique cost matrix per particle Φ

k,best
t,1 that enters the first

level of the data association process (DAt
1), generating

the best NΨ associations with Murty’s algorithm. From
each of these associations (Ψk,s

t,1 ), the algorithm gener-
ates a cost matrix for the second level (Φk,s

t,2 ) and the
Hungarian method returns the best association (Ψk,s

t,2 ).
Therefore, at the end of the first iteration, each parti-
cle has NΨ different associations and, consequently, NΨ

different robot poses and maps.
In the second iteration (t+1), the first association level

receives NΨ cost matrices —each one represents a dif-
ferent association problem— and generates the best NΨ

assignments altogether. This means that with Murty’s
algorithm all the cost matrices compete to generate as-
sociations that are in the top NΨ, i.e., it could happen
that part of the cost matrices do not contribute to the top
NΨ associations. The best associations are again used to
generate the cost matrices for the second level (Φk,s

t+1,2),
and for each of them the Hungarian method returns the
best assignment. The process is repeated until resam-
pling takes place. In the last iteration, the best per parti-
cle association Ψ

k,best
t+n —it represents the two association

levels— is selected based on the best Ψ
k,s
t+n,1 and its cor-

responding Ψ
k,s
t+n,2. Therefore, at the end of the full asso-

ciation cycle and before the resampling step, each par-
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Ψ
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t+n, 2

. . . Ψ
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select

Ψ
k, best
t+n

Figure 7: A cycle of the full data association process for a particle.

ticle has a single data association —and a single robot
pose and map.

4.3. Robot pose update

Algorithm 4 OV-FastSLAM: robotPoseUpdate ()

1: if
Nk,s

t−1∑
j=1

ψ j = 0 then

2: xk,s
t ∼ p

(
xt |x

k,s
t−1, ut

)
3: else
4: Σx = Rt

5: µx = x̂t

6: for j = 1 to Nk,s
t−1 do

7: if ψ j > 0 ∧ Υ j = 1 then
8: Σx := [HT

x, jQ
−1
j,ψ j

Hx, j + Σ−1
x ]−1

9: µx := µx + ΣxHT
x, jQ

−1
j,ψ j

(
zt,ψ j − z j

)
10: end if
11: end for
12: xk,s

t ∼ N (µx, Σx)
13: end if

Algorithm 4 describes the robot pose update for mul-
tiple simultaneous measurements. OV-FastSLAM only
takes into account the landmarks with a low uncertainty
(Υ j = 1) in this stage. The goal of the loop of Alg. 4 is
to build the Gaussian proposal distribution from which
the robot pose will be sampled. As the proposal distri-
bution shrinks with each observation, the order in which
the landmarks are processed is important: at the begin-
ning, the proposal covariance is higher and, therefore,
the corrections proposed by these observations will have
a higher influence. OV-FastSLAM processes landmarks
in increasing order of Tr

(
Q j,ψ j

)
—the covariance ma-

trix trace for the measurement associated to landmark
j (ψ j)—, i.e., lower covariances are processed in first
place. In this way, both the landmark and the observa-
tion covariances are taken into account, and those with
a higher confidence will be processed first.

4.4. Map update

As OV-FastSLAM manages different types of land-
marks, the map update process is divided in two stages:
landmarks and candidate landmarks update.

4.4.1. Landmarks update
Algorithm 5 describes the landmarks update process

and the particle weight calculation. The landmarks posi-
tion update recalculates the predicted measurement (and
the matrices that depend on it) as the robot pose has
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Algorithm 5 OV-FastSLAM: mapUpdate ()
1: ωk,s = 1
2: for j = 1 to Nk,s

t−1 do
3: if ψ j > 0 then
4: ik,st, j = ik,st−1, j + 1

5: z̃ = h
(
µk,s

t−1, j, xk,s
t

)
6: H̃m = ∇mh

(
µk,s

t−1, j, xk,s
t

)
7: Q̃ j,ψ j = Qψ j + H̃mΣ

k,s
t−1, jH̃

T
m

8: K = Σ
k,s
t−1, jH̃

T
mQ̃−1

j,ψ j

9: µk,s
t, j = µk,s

t−1, j + K
(
zt,ψ j − z̃

)
10: Σ

k,s
t, j =

(
I − KH̃m

)
Σ

k,s
t−1, j

11: if Υ j = 1 then
12: H̃x = ∇xt h

(
µk,s

t−1, j, xk,s
t

)
13: L = H̃xRtH̃T

x + Q̃ j,ψ j

14: ŵ = (2π)−
Dim(L)

2 |L|−
1
2

exp
{
− 1

2

(
zt,ψ j − z̃

)T
L−1

(
zt,ψ j − z̃

)}
15: else . If Υ j = 1
16: ŵ = 1
17: end if . If Υ j = 1
18: else . If ψ j > 0
19: µk,s

t, j = µk,s
t−1, j

20: Σ
k,s
t, j = Σ

k,s
t−1, j

21: if Υ j = 1 then
22: ŵ = φout, j

23: else . If Υ j = 1
24: ŵ = 1
25: end if . If Υ j = 1
26: if µk,s

t−1, j is inside perceptual range of xk,s
t

then
27: ik,st, j = ik,st−1, j − 1

28: end if . If µk,s
t−1, j is inside

29: end if . If ψ j > 0
30: ωk,s = ωk,s · ŵ
31: end for

been modified in the robot pose update stage. There-
after, the position update follows the same steps as Fast-
SLAM 2.0, i.e., the standard EKF update. Moreover,
ik,st, j counts the number of observations for landmark j,
and decreases its value whenever the landmark is not
detected but is inside the field of vision of the camera
(Alg. 5, lines 26-27).

The particle-association weight (ωk,s) is the product
of the partial weights corresponding to each landmark
(ŵ). OV-FastSLAM only takes into account the land-
marks with a low uncertainty (Υ j = 1) for weight cal-
culation. If the landmark has been observed at time t,

the partial weight follows a Gaussian distribution with
mean equal to the measurement prediction, and the co-
variance is a combination of the measurement noise, the
landmark covariance, and the motion noise. However, if
the landmark is not observed, OV-FastSLAM also incor-
porates this negative evidence (Alg. 5, line 22), setting
the partial weight to the probability that the landmark is
outside the field of view of the camera.

4.4.2. Candidate landmarks update
Candidate landmarks update is performed taking into

account the outcome of the data association:

• Candidate landmark Ck,s
t, j has an assigned measure-

ment. The observation is added to Zk,s
t, j , the obser-

vation counter is increased, and the set of possible
3D positions and probabilities is updated.

• Candidate landmark Ck,s
t, j has no assigned measure-

ment. If the landmark is inside the field of view of
the camera, the observation counter is decreased:
ik,st, j = ik,st−1, j − Inot, where Inot is the number of con-
secutive iterations in which the candidate landmark
was not observed. If ik,st, j is under 0, the candidate
landmark is deleted.

• The measurement belongs to a new candidate land-
mark, Ck,s

t, j . Both the measurements set and the ob-
servation counter are initialized.

4.4.3. Transformation from candidate landmarks to
landmarks

Alg. 6 transforms candidate landmarks into land-
marks, i.e., it calculates the initial position of each land-
mark as the crosspoint that maximizes the probability
of the set of measurements that belong to the candidate
landmark. First, for each pair of measurements in Zk,s

t, j ,
the algorithm calculates the crosspoint (xc). Then, it cal-
culates the probability (φc) of all the measurements for
each crosspoint (lines 8-14). For each candidate land-
mark, the algorithm selects the crosspoint with the max-
imum probability (lines 15-18). The selected crosspoint
also has to fulfill that the baseline between the positions
of the camera which generated the crosspoint is over a
threshold (γmin). Finally, Alg. 6 returns the initial po-
sitions of the landmarks, or null if the candidate land-
marks were not transformed.

5. Results

OV-FastSLAM has been validated with a Pioneer 3-
DX equipped with an omnidirectional color digital cam-
era (MDCS2) with a fish-eye lens (FE185CO46HA-1,
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Algorithm 6 OV-FastSLAM: candidateToLandmark ()

1: for j = 1 to ηk,s
t ∧ Ψ j > 0 do

2: φmax = 0
3: x j

landmark = null
4: for l′ = 1 to |Zk,s

t, j | do
5: for i = l′ + 1 to |Zk,s

t, j | do
6: xc = crossPoint(zl′ , zi)
7: φc = 1
8: for q = 1 to |Zk,s

t, j | do
9: z = h

(
xc, x̂t(q)

)
10: Hm = ∇mh

(
xc, x̂t(q)

)
11: Q j,l′ = Qq + HmΣ0HT

m

12: φq = (2π)−
Dim(Q j,l′ )

2
∣∣∣Q j,l′

∣∣∣− 1
2

exp
{
− 1

2

(
zq − z

)T
Q−1

j,l′

(
zq − z

)}
13: φc := φcφq

14: end for . For q = 1 to |Zk,s
t, j |

15: if φc > φmax ∧ ẑt,l′ , zi > γmin then
16: φmax = φc

17: x j
landmark = xc

18: end if
19: end for . For i = 1 to |Zk,s

t, j |

20: end for . For l′ = 1 to |Zk,s
t, j |

21: end for . For j = 1 to ηk,s
t ∧ Ψ j > 0

22: return {x1
landmark, . . . , xη

k,s
t

landmark}

FOV 130◦) and a band-pass infrared filter HOYA RT-
830, in two different indoor environments: a sports hall
(Pı́o XII) and a museum (Domus). Table 2 summarizes
the main characteristics of the environments and tests.
Due to the height of the ceilings, the landmarks are typ-
ically detected at distances over 6 m; for instance, in
Pı́o XII, landmarks were detected at distances up to 20
meters.

We have tested OV-FastSLAM under very different
lighting conditions with great results; the influence of
the lighting conditions is low due to the use of the in-
frared filter. In fact, in environment Pı́o XII, the sports
hall has large windows through which natural light en-
ters. This creates glare and reflections in the ceiling,
which can be managed by OV-FastSLAM. Reflections
influence OV-FastSLAM in two ways: hiding lights or
creating false lights. When a reflection hides a light,
this is equivalent to an occlusion, and OV-FastSLAM
can cope with these situations (Sec. 5.1). On the other
hand, when reflections create false lights, they could
be considered as candidate landmarks. However, they
are never transformed into landmarks, as this process

is very restrictive and requires that all the associated
measurements verify the initial position of the landmark
with a high probability. Finally, and when no new mea-
surements are associated to the candidate landmark, it is
deleted from the map.

In all the experiments the parameters of OV-
FastSLAM took the following values: a = 406.1510,
b = 2.9951, c = 2.0066, d = 0.2079, β = 1.0 (camera
model parameters, Eq. 1), ∆np = 2 (Pı́o XII), 4 (Domus)
(measurement noise model, Eq. 2), γmin = 1.22 rad (7◦)
(Alg. 3), ξnew = 8 (Eq. 6), θmax = 1.26 rad (72◦) (Eq. 7),
Σ0 = [0.0025 0.0; 0.0 0.0025]. In order to validate our
proposal we have used the following SLAM algorithms:

• OV-FastSLAM(M, NΨ). OV-FastSLAM with M
particles and the described hierarchical data asso-
ciation: the first level uses Murty’s algorithm with
NΨ associations, and the second level is based on
the Hungarian method.

• H-H(M). OV-FastSLAM with M particles but with
a hierarchical data association in which both levels
use the Hungarian algorithm.

• Also, we have tried FastSLAM 1.0, FastSLAM
2.0, and OV-FastSLAM with two non hierarchi-
cal data associations based on Murty’s algorithm
and on the Hungarian method. In all the cases, the
SLAM algorithms were unable to close the loops
and the errors in the path and the map were unaf-
fordable.

Fig. 8 shows the estimated trajectory, the obtained
map and, also, the real trajectory (GT robot) and the
real map (GT map) of the two test environments for OV-
FastSLAM(5, 2)2,3. The algorithm was able to close
the loops in all the situations. Fig. 9 illustrates the av-
erage error in the position of the robot along the path
for different values of M · NΨ, as the product of these
parameters is the number of hypothesis tracked by OV-
FastSLAM(M, NΨ). H-H(M) has also been included for
comparison purposes. OV-FastSLAM was run for dif-
ferent values in the number of associations (NΨ). As the
SLAM algorithm is stochastic, each value is the aver-
age over the two environments of the mean over 10 runs
with different seeds (for each environment), to highlight
the reliability of the algorithm independently of the ran-
domness due to the sampling steps.

2The associated videos can be downloaded from:
http://persoal.citius.usc.es/manuel.mucientes/

videos/OV-FastSLAM_pio.mp4 and OV-FastSLAM_domus.mp4.
3The algorithm was run on an Intel(R) Core(TM) i5-2500

3.30GHz CPU at an average frequency of 2.63 Hz.
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Table 2: Characteristics of the environments.
Env. Size Distance Loops #Img. Img. Freq. vmax ωmax #Land. Land. height

DOMUS 27x7 m2 72 m 4 548 2 Hz 0.36 m/s 0.58 rad/s 36 11.30 m, 3.25 m
Pı́o XII 24x24 m2 174 m 6 1180 2 Hz 0.36 m/s 0.58 rad/s 20 6.5 m
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Figure 8: Most probable trajectories and maps in the two test environments for OV-FastSLAM(5, 2).
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Table 3: Non-parametric test for the performance with different values of M · NΨ (Fig. 9) with α = 0.05.
i Alg. Ranking z p α/i Hypothesis

— OV-FastSLAM(M, 5) 1.6 — — — —
2 H-H(M) 2.7 2.46 0.014 0.025 Rejected
1 OV-FastSLAM(M, 2) 1.7 0.22 0.823 0.050 Accepted

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

M
ea
n
er
ro
r

MNΨ

H-H(10)
OV-FastSLAM(M,2)
OV-FastSLAM(M,5)

Figure 9: Average performance of the algorithms in the two test envi-
ronments with different values of M · NΨ.

We started the comparison in M · NΨ = 10 to let OV-
FastSLAM(M, 5) have at least two particles. As can be
seen, both OV-FastSLAM(M, NΨ) consistently outper-
form H-H(M) except when the number of particles is
very low (OV-FastSLAM(2, 5) vs. H-H(10)), or when
the number of particles increases over a threshold (ap-
proximately 100 particles for these test environments).
In this last case, the performance of all the algorithms
becomes very similar.

We have compared the data association methods us-
ing non-parametric statistical tests [34, 35]. We first ap-
plied the Friedman test that computes the ranking of the
results of the algorithms, and rejects the null hypothe-
sis —which states that the results of all the algorithms
are equivalent— with a given confidence —significance
level (α). In second place, we applied Holm’s post-hoc
test for detecting significant differences among the re-
sults. The tests were performed for the error in position
for the different values of M · NΨ, i.e., we have always
compared algorithms with the same number of tracked
hypothesis. Table 3 summarizes the tests results us-
ing OV-FastSLAM(M, 5) as the control algorithm. The
ranking column was generated by the Friedman test, and
taking into account these values, the i was assigned. z
is the value calculated by Holm’s test, and p is its cor-
responding p-value. All the hypothesis with p < α/i
are rejected, which means that the algorithms are dif-

ferent with a confidence level of α. The test shows
that the difference in performance between both OV-
FastSLAM(M, NΨ) and H-H(M) association is statis-
tically significant. On the other hand, although OV-
FastSLAM(M, 5) is better than OV-FastSLAM(M, 2),
the test cannot reject the null hypothesis.

%occ = 75

φocc = 180◦

(a) φocc = 180◦, %occ = 75.

%occ = 100

φocc = 120◦

(b) φocc = 120◦, %occ = 100.

Figure 10: Typical occlusion masks.

Table 4: Non-parametric test for the performance under occlusions.
Alg. Ranking

OV-FastSLAM(5, 2) 1.4
H-H(10) 1.6

Friedman p-value = 0.054

5.1. Occlusions
OV-FastSLAM was designed to operate under severe

occlusions. In order to test the influence of the occlu-
sions in the performance of the algorithm, we have eval-
uated OV-FastSLAM under continuous occlusions of
different degrees. The occlusions were artificially gen-
erated by superimposing a mask on the images. In this
way, it is possible to measure the loss in performance
for different degrees of occlusion. The masks are built
as the intersection of a circular sector with an annulus
(Fig. 10). Thus, they are defined with two parameters:
φocc ∈ [0◦, 360◦] and %occ ∈ [0, 100]. φocc represents
the angle of the circular sector, and %occ the percentage
of the area of the image corresponding to the annulus.
The placement of the mask on the image —the angle of
rotation of the mask with respect to the image— is ran-
domly modified at each time instant. In this way we are
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Figure 11: Performance of the algorithms for different degrees of occlusion in the Pı́o XII environment.

able to simulate occlusions due to people moving, non
mapped objects, etc. in a realistic way.
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Figure 12: Maximum values of φocc for which the performance does
not degrade significantly.

The experiments took place in the two test environ-
ments, for values of φocc each 30◦ and for 8 values of
%occ: {10 − 60, 75, 100}. OV-FastSLAM was run with
M = 5 and NΨ = 2, and it was compared with H-H(10).
Table 4 summarizes the non-parametric Friedman test
—Holm test was not necessary as we only compared
two algorithms. The test points out that both algo-
rithms are different with a confidence level of α = 0.06
and, as the ranking of OV-FastSLAM(5, 2) is better, we
can conclude that OV-FastSLAM(5, 2) outperforms H-
H(10) in the occlusions test.

Fig. 11 depicts the performance of both algorithms
for two values of %occ and the whole range of φocc.
Those experiments in which the error in both algo-
rithms is over a threshold (two times the minimum er-
ror without occlusion) have been discarded, as we con-
sider that both algorithms failed. For %occ = 20 both

algorithms are able to operate under occlusions (up to
φocc = 360◦) with an acceptable performance, although
OV-FastSLAM(5, 2) is in most of the cases better. Al-
though at a first glance, one should hope that the er-
ror increases with the degree of occlusion, the analy-
sis must be quite more subtle. For example, when two
landmarks are close, the occlusion of one of them can
generate a failure in the data association —the occluded
landmark is associated with the feature corresponding
to the visible landmark. This happens for example at
φocc = 90◦, but when the degree of occlusion increases
(and both landmarks become occluded) the error dimin-
ishes again. These errors in the data association are re-
flected in the performance of the algorithms due to their
influence in the initialization of the landmarks, the elim-
ination of landmarks, or the correction of the position
of the robot with the information of the detected land-
marks.

For %occ = 75 (severe occlusion), the pattern is sim-
ilar, but for φocc ≥ 180◦ both algorithms usually fail
as most of the landmarks are occluded. Fig. 12 shows
the values of φocc for which the performance does not
degrade significantly. As expected φocc decreases with
the increase in %occ, but even for %occ = 100, OV-
FastSLAM is able to get a reasonable error when a third
of the image is occluded.

6. Conclusions

We have presented OV-FastSLAM, a SLAM algo-
rithm for omnivision cameras to operate in indoor en-
vironments under severe occlusions. The main contri-
butions of the proposal are: i) the hierarchical data as-
sociation method, which uses Murty’s algorithm in the
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first level and the Hungarian method in the second one;
ii) the measurements likelihood for the landmarks with-
out 3D position; and iii) a deep experimental study on
the influence of severe occlusions on the performance
of OV-FastSLAM.

OV-FastSLAM has been validated in two real and
complex environments with different degrees of oc-
clusion showing a good performance. Moreover, we
have also compared OV-FastSLAM with different data
association methods. Results of the non-parametric
tests reflect a statistically significant difference between
the algorithms, and highlight the lower error of OV-
FastSLAM and its ability to operate under severe oc-
clusions.
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