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A FastSLAM-based Algorithm for Omnidirectional
Cameras

Cristina Gamallo, Manuel Mucientes and Carlos V. Regueiro

Abstract—Environments with a low density of landmarks are
difficult for vision-based Simultaneous Localization and Mapping
(SLAM) algorithms. The use of omnidirectional cameras, which
have a wide field of view, is specially interesting in these
environments as several landmarks are usually detected in each
image. A typical example of this kind of situation happens in
indoor environments when the lights placed on the ceiling are
the landmarks. The use of omnivision combined with this type
of landmarks presents two challenges: the data associationand
the initialization of the landmarks with a bearing-only sensor.
In this paper we present a SLAM algorithm based on the well-
known FastSLAM approach [1]. The proposal includes a novel
hierarchical data association method based on the Hungarian
algorithm, and a delayed initialization of the landmarks. The
approach has been tested on a real environment with aPioneer
3-DX robot.

Index Terms—Simultaneous Localization and Mapping; Fast-
SLAM; Omnidirectional camera; Hungarian Association;

I. I NTRODUCTION

Simultaneous Localization and Mapping (SLAM) has at-
tracted the attention of many researchers in the last decade.
The first proposals were based on Extended Kalman Filters
(EKFs) using range sensors like laser range scanners [2], [3]
or ultrasound sensors [4], [5]. The use of cameras for SLAM,
known as visual SLAM, is a more recent line of research and
has received an increasing attention in the last years. The first
work for visual SLAM was presented by Davison in 1998 [6].
The use of cameras is interesting as they are low-cost, light
and compact sensors and, also, because they provide richer
information of the environment, as colour and texture.

One of the most widely used configurations in visual SLAM
has been stereo vision [7], [8], [9]. Stereo cameras can provide
3D information into a single measurement, so traditional
SLAM algorithms can be applied without modifications. The
main drawback of this type of sensor is the limited 3D range.
On the other hand, the use of monocular cameras allows the
detection of very far objects. However, they are bearing-only
sensors, i.e., they do not provide information about distance
or depth. Therefore, a mechanism to estimate the 3D position
of the landmarks needs to be incorporated.

An important issue in visual SLAM is data association,
which solves the correspondence between measurements and
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landmarks. The most simple technique for data association
is Maximum Likelihood (ML) [10], which assigns the mea-
surement to the nearest landmark that has not been associated
yet. This approach is the most widely used for SLAM [11],
[7], [12]. However, this technique is brittle if there are several
equally likely hypotheses (Fig. 1(a)). This ambiguity is usual
in robotics when landmarks are indistinguishable among each
other, and it comes from two sources: i) pose uncertainty (Fig.
1(b)) and ii) because landmarks can be quite close to each
other and have uncertainty.

If a wrong data association is picked, this decision can have
a catastrophic result on the accuracy of the resulting map.
Several strategies [13] have been developed in order to deal
with ambiguity in noisy environments. For example, Monte
Carlo Data Association [14] assigns the correspondences prob-
abilistically in accordance to their likelihoods. However, as
happens with ML, it is a local method and it considers each
measurement independently to establish the correspondences,
and not the set of measurements as global methods do.

Global methods make the joint data association between
all measurements and landmarks based on a global score.
This type of methods are better to cope with the ambiguity
introduced by the noise of the sensors and the pose un-
certainty. A typical representative of global methods is the
Hungarian algorithm [15], which solves linear assignment
problems in polynomial time for several measurements and
landmarks. Another approach is presented in [16], [5], where
they process multiple observations jointly, and consider the
geometric relationships between a set of landmarks to test
the correspondence vector. This method can only be applied
on approximations that use features of the environment with
geometric relationships.

In this paper, we present a SLAM algorithm for omnivision.
The omnidirectional camera has a fish-eye lens with a very
wide field of view (FOV). The landmarks of the environment
are the ceiling lights and, therefore, the camera is equipped
with a band-pass IR filter. This makes features extraction
easier, as the filter only detects those objects that emit in
the IR spectrum. The proposal is based on the FastSLAM [1]
algorithm, but modified for bearing-only sensors. The main
contributions of the paper are: i) the data association, which
is hierarchical and based on the Hungarian algorithm [15],
to deal with the bearing-only sensor and, also, because the
landmarks are indistinguishable among each other; ii) the
initialization of the landmarks, that takes into account a bunch
of measurements associated to the candidate landmark.

The paper is structured as follows. First, we briefly review
the related work for bearing only visual SLAM. Sec. III
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(a) Measurements ambiguity.
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(b) Different data association hypotheses for different robot poses.

Fig. 1. Typical problems for data association in SLAM. Landmarks are represented by triangles, and the measurements by arrows.

describes the proposed algorithm and Sec. IV presents the ex-
perimental results. Finally, Sec. V points out the conclusions.

II. RELATED WORK IN BEARING-ONLY VISUAL SLAM

Monocular cameras are bearing-only sensors, as they only
provide information on the orientation of the objects detected
in the image. As depth information is not available, 3D
positions of objects cannot be obtained with a single image.
The approaches to solve this problem, known as landmark
initialization in bearing-only SLAM, can be grouped in two
categories: delayed an undelayed solutions [17]. A represen-
tative approach to undelayed initialization is [18]. The initial
state of the landmarks was approximated with a sum of
Gaussians that augment the state of the EKF. However, the
most usual approach is the delayed initialization mechanism,
which requires the use of several images to estimate the
3D positioning of the landmark. [19] presents a landmark
initialization algorithm based also in a sum of Gaussians but
without including this information in the state vector. Also,
in [20] a particle filter to estimate the initial position of the
landmarks was described.

The use of omnivision cameras in SLAM allows to track
the detected features over long distances, as these cameras
have a very wide FOV. Therefore, the initialization processis
well conditioned by the numerous observations of the same
landmarks. The first paper, as far as we know, that used this
type of camera was [21]. In that proposal, the landmarks
were initialized using a delayed mode for two poses: the
triangulation of the measurements was compared to existing
relationships of the tags already in the map. In [22], the true lo-
cation of the landmarks was approximated by the intersection
point of two lines. Finally, [11] presents a minimalist approach
based on a topological map for environments of medium to
large size.

Although most of the visual SLAM approaches are based
on EKFs [20], [22], [23], there are also approaches based on
FastSLAM [12], on decoupling the pose error from the map
error [21], etc.

III. SLAM A LGORITHM

The solution to the SLAM problem presented in this work
is an extension of the FastSLAM 2.0 algorithm [1]. The
novelties of the proposal are the data association process,
and the initialization of the landmarks. This modificationsare

necessary as the sensor is bearing-only, and the landmarks
are indistinguishable among each other. FastSLAM algorithms
use a Rao-Blackwellized particle filter [10], i.e., a filter that
represents the posterior with a combination of particles and
Gaussians. For FastSLAM, the particles estimate the robot
path, while the landmarks are filtered with EKFs. The main
contributions of our approach are:

• Hierarchical data association based on the Hungarian
algorithm . As the sensor is bearing-only, and the land-
marks are indistinguishable, it is necessary to implement
a data association method. Our algorithm classifies the
landmarks in two categories: regular landmarks (named
landmarks in what follows) and candidate landmarks.
The landmarks compose the map, while the candidate
landmarks are those for which initialization was not
possible yet. The data association has to take into account
that the candidate landmarks are not reliable, i.e., most
of the candidate landmarks will disappear, and only few
of them will be transformed to landmarks. Therefore,
priority is given to the association of the measurements
to the current landmarks, while only those measurements
that were not associated in the first stage will be included
for the association with the candidate landmarks. This
hierarchical data association is based on the Hungarian
algorithm for each of the levels of the hierarchy. The
Hungarian method is able to obtain the best association
between the set of measurements and the set of landmarks
in polynomial time.

• Landmarks initialization . We propose an initialization
mechanism for the landmarks in which the 3D position
of each landmark is obtained through several consecutive
detections from different positions. Moreover, the process
requires to approximate the inverse model of the camera
with a look-up table, in order to obtain the angles of each
feature from the pixels in the image.

Our proposal is shown in Alg. 1. It receives the set ofNzt
measurements (zt) at the current timet, the control (ut) and
the previous set of particles (Yt−1). Each particlek contains
an estimated robot pose denoted as(xkt−1

), a map ofNk
t−1

landmarks{Bk1,t−1, . . . , B
k
Nk

t−1,t−1
}, and the set ofηkt−1

candidate landmarks{Ck
1,t−1

, . . . , Ck
ηk
t−1,t−1

}. A landmark

j is defined with a Gaussian of meanµkj,t−1
and covariance

Σkj,t−1
, and with the number of times it has been detected

(ikj,t−1
). Each candidate landmark has a set of measurements
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Algorithm 1 FasSLAM algorithm for Omnivision.

SLAM (Zt, ut, Yt−1)
1: for k = 1 to M do
2: Get particlek from Yt−1:

xkt−1
, {Bk

1,t−1
, . . . , Bk

Nk
t−1,t−1

},

{Ck
1,t−1

, . . . , Ck
ηk
t−1,t−1

}

3: x̂t = g
(
xkt−1, ut

)

4: measurementsLikelihood()
5: Ψ = dataAssociation(Φ)
6: robotPoseUpdate()
7: landmarksUpdate()
8: end for
9: Yt = sampling(Ŷt)

{zkt−n, . . . , z
k
t−1} that could be transformed into a landmark

if the initialization conditions are fulfilled. The steps ofthe
algorithm can be grouped in the following blocks:

• A main loop that iterates for each of theM particles
(Alg. 1 lines 1- 8) to obtain the particle weights (wk).

– Measurements likelihood.For each combination of
landmarks and measurements, calculate the likeli-
hood of the association (φl,j) (Alg.2).

– Data association.Solve the data association (Alg. 1
line 5).

– Robot pose update.The mean and covariance of
the proposal distribution will be calculated with the
contribution of each of the associated landmarks.
Finally, the pose of the robot will be sampled from
that distribution (Alg. 3).

– Landmarks update.Update each landmark using an
EKF and calculate the importance weight (wk) for
each particle (Alg. 4).

• Resampling. The new set of particles (Yt) is generated
by sampling the updated particle set (Ŷt) with probabil-
ities proportional to the particle weights (wk) using low
variance sampling (Alg. 1 line 9).

In the following subsections, the measurement model, the
data association, the robot pose update, the landmarks update,
and the landmarks initialization will be described in more
detail.

A. Measurement model

The sensor model is a feature-based model, where the
features are the lights placed on the ceiling of the environment.
These features are extracted from the images obtained by an
omnidirectional camera following a detection process thatwas
widely described in [24]. The output of the feature extraction
process is a list of pixel coordinates(ul, vl), that represent the
centroid of each featurel. This list must be transformed into
a measurements list (zt,l), where each measurement is given
by the azimuth and elevation angles( ϕl,t, θl,t).

The camera follows a projection model developed by Pajdla
and Bakstein [25] that indicates how a 3D point can be
transformed to a pixel in a 2D image. The model is described

as a function of two angles, the azimuth (ϕ) and the elevation
(θ):

r = a ∗ tan θ
b
+ c ∗ sin θ

d

ul = u0 + r ∗ cos ϕ
vl = β ∗ (v0 + r ∗ sin ϕ)





(1)

wherea, b, c, dare parameters of the model,(u0, v0) are the
coordinates of the pixel at the center of the image, andβ is
the ratio between the width and the height of a pixel.

The transformation of the measurements requires the inverse
camera model, i.e., given a pixel the inverse model returns
the coordinates of the 3D point in the world. However, the
camera model equations are not invertible. This has been
solved through a look-up table: given the coordinates of a
pixel, the look-up table provides the values ofϕ andθ. Fig. 2
shows a graphical representation of the look-up table. The
table only needs to be generated once, and this can be done
off-line. The process is as follows:

1) Sample the values ofϕ andθ with precisionsδϕ andδθ.
Equations 1 are used to obtain the corresponding pixel
coordinates.

2) Store, for each pixel, the maximum and minimum values
of ϕ andθ, as a range of values could correspond to the
same pixel.

(a) ϕ (white= π, black=−π) (b) θ (white= π/2, black= 0)

Fig. 2. Graphical representation of the values ofϕ and θ provided by the
look-up table for each image pixel.

B. Measurements likelihood

The set of data associations (Ψ) between the measurements
and the landmarks is decided based on the probability that
featurel corresponds to landmarkj (φl,j) (Alg. 2). The loop
from lines 1 to 13 iterates for all landmarks in order to estimate
all the φl,j values (Alg. 2 line 11). Each probability depends
on the measurement (zt,l), the predicted measurement (ẑl,j,
Alg. 2 line 10) and the measurement innovation covariance
matrix (Qj,l) (Alg. 2 line 6).

The measurement innovation covariance matrix (Qj,l) is
calculated taking into account the noise in the measurement
(Qt), the previous covariance of the landmark (Σkj,t−1

), and
the Jacobian ofh (measurement model) with respect to the
measurement model variables. Moreover, the predicted co-
variance of the robot pose taking into account landmarkj
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Algorithm 2 Measurements likelihood algorithm
MeasurementsLikelihood()

1: for j = 1 to Nk
t−1 do

2: zj = h
(
µkj,t−1

, x̂t
)

3: Hx,j = ∇xt
h
(
µkj,t−1

, x̂t
)

4: Hm,j = ∇mj
h
(
µkj,t−1

, x̂t
)

5: for l = 1 to Nzt do
6: Qj,l = Ql,t +Hm,jΣ

k
j,t−1

Hm,j
T

7: Σx,j,l = [Hx,j
TQ−1

j,l Hx,j +R−1

t ]−1

8:

9: µxt,j,l = Σx,j,lHx,j
TQ−1

j,l (zt,l − zj) + x̂t
10: ẑl,j = h (µj,t−1, µxt,j,l)
11:

φl,j = (2π)
−

Dim(Qj,l)
2 |Qj,l|

−
1
2

exp

{
−
1

2
(zt,l − ẑl,j)

TQ−1

j,l (zt,l − ẑl,j)

}

12: end for
13: end for

(Σx,j,l) depends on two terms: the motion noise (Rt), and the
measurement innovation covariance matrix (Qj,l).

The predicted measurement for landmarkj (ẑl,j) is esti-
mated fromµxt,j,l, which corresponds to the estimated robot
pose (using the motion model) plus a correction due to the
assignment of measurementl to landmarkj. This correction
is proportional to two terms. The first one can be interpreted
as the gain (in the same sense as the Kalman gain), and is in-
versely proportional to the measurement innovation covariance
matrixQj,l, i.e. the higher the confidence in the measurement
innovation (lower covariance), the higher the gain. Moreover,
the gain is directly proportional to the proposal distribution
covarianceΣx,j,l, which means that the lower the confidence
on the motion prediction (high covariance) the higher the gain
(the correction due to the measurement has a high influence).
On the other hand, the second term is the difference between
the measurement and the prediction in the position of the
landmarkzt (Alg. 2 line 2).

C. Data association

Data association is carried out hierarchically following
the Hungarian method. In the first level, measurements are
assigned to the landmarks. Those measurements that have
not been associated in the first level are associated to the
candidate landmarks in the second stage. In this way, priority
in the association is given to the landmarks, as the candidate
landmarks are not reliable (many of them are created, but only
a few will be initialized).

The Hungarian method is a combinatorial optimization al-
gorithm that solves the correspondence problem in polinomial
time. The method requires the construction of a cost matrix
(Φ) with sizeNzt ×

(
Nk
t−1 +Nzt

)
. Each elementφl,j with

j ≤ Nk
t−1

represents the probability that measurementl is
assigned to landmarkj (Line 11, Alg. 2). The elements with
j > Nk

t−1 represent the probability that a measurementl
comes from a new landmark (Pnew).

Given the cost matrix, the Hungarian method returns a
hypothesis or ambiguity matrix where each element (ĉl,j) takes
a value of 1 or 0, indicating whether or not measurementl is
associated to landmarkj. The ambiguity matrix fulfills the
following conditions:

∑

j

ĉl,j = 1, ∀l and
∑

l

ĉl,j ǫ {0, 1} , ∀j (2)

The first condition indicates that each measurement must
be assigned either to a landmark or to a new landmark. The
second condition reflects that a landmark can have an assigned
measurement or not.

D. Robot pose update

The robot pose (Alg. 3 line 14) is sampled from a proposal
distribution that considers both the motion and the observa-
tions. This proposal distribution is modelled as a Gaussianwith
meanµxt

and covarianceΣxt
. The parameters of the Gaussian

are estimated starting from the sampled posex̂t andRt, and
iteratively adding the corrections due to the assignment of
measurementzt,ψj

to landmarkj (Alg. 3 lines 6 to 11).

Algorithm 3 Robot pose update algorithm
RobotPoseUpdate()

1: if
Nk

t−1∑
j=1

ψj == 0 then

2: xkt ∼ p
(
xt|x

k
t−1

, ut
)

3: else
4: Σx,0 = Rt
5: µx,0 = x̂t
6: for j = 1 to Nk

t−1
do

7: if ψj > 0 & type (j) == 1 then
8: Σx,j = [Hx,j

TQ−1

j,ψj
Hx,j +Σ−1

x,j−1
]−1

9: µxt,j = µxt,j−1 +
Σx,jHx,j

TQ−1

j,ψj

(
zt,ψj

− zj
)

10: end if
11: end for
12: Σxt

= Σx,j
13: µxt

= µx,j
14: xkt ∼ N (µxt

, Σxt
)

15: end if

It is important to be careful with the order in which the
landmarks are processed to generate the proposal distribution
as, in each iteration, the covariance of the proposal becomes
smaller and the influence of the landmark in the mean of the
proposal is lower. Therefore, landmarks with lower covariance
(higher confidence) are processed in first place and, in case
of having the same covariance, that with a lowerϕ will be
selected.

Finally, if none of the measurements have been assigned
to previous landmarks, then the pose is generated sam-
pling from the probability distribution of the motion model
p
(
xt|x

k
t−1

, ut
)

(Alg. 3 line 2).
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E. Landmarks update

The update of the landmarks and the estimation ofŵ (the
contribution of each landmark to the weight of the particle)are
defined in different ways depending on the type of landmark
and measurement association (Alg. 4). Two different situations
are possible:

• Landmarks with assigned measurements (Alg. 4 lines 3-
18).

• Landmarks not seen in the current iteration (Alg. 4 lines
18- 25). There are two possibilities:

– The landmark is outside the perceptual range of the
sensor.

– The landmark is inside the perceptual range of the
sensor.

For the first situation,ikj,t is incremented as the landmark
has been detected. The update of the landmarks follows
the standard EKF update process: first the Kalman gainK
is obtained (Alg. 4 lines 8) using the previous landmark
covarianceΣkj,t−1

and the measurement innovation covariance
matrix Q̃j . Although the measurement innovation covariance
matrix Q̃j was estimated previously, it must be estimated again
because the Jacobian of the measurement model with respect
to the measurement model variablesH̃m,j depends of the robot
pose and, now, the estimated pose (xkt ) is more reliable than
the predicted posêxt. The same applies to the prediction of
the measurement̃zj (Alg. 4 line 5).

Then, the meanµkj,t is updated proportionally to the gain
and the difference between the measurement and its prediction.
A high Kalman gain means that the confidence in the update
is high. This can occur if the previous landmark covariance
was high and also, if the measurement innovation covariance
is low (high confidence).

The contribution of the landmark to the weight of the par-
ticle (ŵ) represents the probability of association between the
measurementzt,ψj

and the landmarkj. It is calculated from a
Gaussian distribution with meañzj (predicted measurement)
and covarianceL. This covariance is proportional to the noise
motion (Rt) and Q̃j .

When the landmark has not been associated to any measure-
ment, its mean and covariance remains unchanged. Moreover,
if the landmark is in the perceptual range, the counterikj,t is
decremented (Alg. 4 line 22). The weightŵ is estimated based
of the probability of visibility of the landmark (pin). Finally,
the weight of each particlewk is calculated as the product
over all the weights for each landmark in the map (Alg. 4 line
26), as we assume independence among the landmarks.

F. Landmarks types and initialization

The generation of new landmarks from candidate land-
marks, and the modification of the type of each land-
mark takes place at the end of the algorithm, in functions
updateCandidateLandmarks() andupdateLandmarksType():

1) updateCandidateLandmarks():The candidate landmarks
are updated with the measurements that were not associated
to the landmarks of the map. The correspondences of each
candidate landmark with the features is decided on the second

Algorithm 4 Landmarks update algorithm
LandmarksUpdate()

1: wk = 1
2: for j = 1 to Nk

t−1 do
3: if ψj > 0 then
4: ikj,t = ikj,t−1

+ 1
5: z̃j = h

(
µkj, t−1

, xkt
)

6: H̃m,j = ∇mj
h
(
µkj,t−1

, xkt
)

7: Q̃j = Qψj ,t + H̃m,jΣ
k
j,t−1

H̃T
m,j

8: K = Σkj,t−1
H̃T
m,jQ̃

−1

j

9: µkj,t = µkj,t−1
+K

(
zt,ψj

− z̃j
)

10: Σkj,t =
(
I −KH̃m,j

)
Σkj,t−1

11: if type (j) == 1 then
12: H̃x,j = ∇xt

h
(
µkj,t−1

, xkt
)

13: L = H̃x,jRtH̃
T
x,j + Q̃j

14:

ŵ = (2π)
−

Dim(L)
2 |L|

−
1
2

exp

{
−
1

2

(
zt,ψj

− z̃j
)T
L−1

(
zt,ψj

− z̃j
)}

15: else
16: ŵ = 1
17: end if
18: else
19: µkj,t = µkj,t−1

20: Σkj,t = Σkj,t−1

21: ŵ = 1− pin
22: if µkj,t−1

is inside perceptual range ofxkt then
23: ikj,t = ikj,t−1

− 1
24: end if
25: end if
26: wk = wk · ŵ
27: end for
28:

{Ck
1,t, . . . , C

k

ηk
t ,t

} =

updateCandidateLandmarks
(

zt,Ψ
k
t , {C

k
1,t−1, . . . , C

k

ηk
t−1,t−1

},
)

29:
(

{Bk
1,t, . . . , B

k

Nk
t ,t

}, {Ck
1,t, . . . , C

k

ηk
t ,t

}
)

=

updateLandmarksType
(

{Bk
1,t−1, . . . , B

k

Nk
t−1,t−1

}, {Ck
1,t, . . . , C

k

ηk
t ,t

}
)

level of the data association process (see Sec. III-C), based on
the probabilityp(zt,l|xt, Cj,t−1). This probability is obtained
from a Gaussian distribution with mean̂zl,t and covariance
Qj,l.

Given the correspondences obtained in the data association,
the following situations may occur:

• Candidate landmark (Ckj ) has an assigned measurement.
The measurement is added to the candidate landmark,ikj
is increased, and the algorithm checks if initialization of
Ckj as a landmark is possible.

• The measurement belongs to a new candidate landmark.
The measurement is added toCkj and ikj is set to1.

• Candidate landmark (Ckj ) has no assigned measurements.
Update the value ofikj = ikj,t−1

− Inot, whereInot is the
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Fig. 3. Landmarks initialization.

number of consecutive iterations in which the candidate
landmark was not observed. Ifikj is not over 0, then delete
the candidate landmark.

Our sensor is bearing-only and, thus, from a single measure-
ment only anglesϕ and θ can be obtained for each feature.
However, in order to estimate the 3D position of a landmark
the distance to it (ρ) is also necessary. Therefore, at leastNZMin

measurements of the landmark must be taken from poses of
the robot that are far enough from each other (Fig. 3). A
candidate landmark (Ckj ) will become a landmark if it fulfills
the following requirements:

1) NZkj ≥ NZMin, whereNZkj is the number of measure-
ments associated along time to candidate landmarkCkj ,
andNZMin is a threshold.

2) Of all the calculated cross-points at leastNCROSSVALID

of them are valid. A cross-point is valid if it fulfills the
following properties:

a) The measurements used to obtain the cross-point
were taken from robot poses that are separated by
an angleANG > ANGMin.

b) The height of the cross-point is over the height of
the camera.

c) The probability of all the measurements (associated
to the candidate landmark) and the cross-point is
overPNew.

3) One of the valid cross-points has been generated from
the current measurementzt.

If the candidate landmark is initialized, its mean is set to
the pose of the valid cross-point with the highest probability
over all measurements, and its covariance is set to the default
initial covarianceΣ0.

2) updateLandmarksType():To add more reliability to the
system, landmarks in the map are classified into types I and
II. A landmark will be type I if has been initialized with
measurements taken from robot poses whose distances in the
XY plane from the valid cross-point are lower thanDMin.
Those landmarks that do not meet this condition will be type

II, although they have the same priority as type I landmarks
for data association.

The reliability of type II landmarks is lower that type I
landmarks, as they were initialized from measurements in
which the pose of the robot and the pose of the landmark
were far away, and this can cause erroneous initial positions.
Thus, they are not taken into account to estimate the pose of
the robot (Alg. 3, lines 6 to 11) or the weights of the particles
(Alg. 4, lines 11 to 17).

At each iteration,updateLandmarksType() checks if the
landmarks of type II fulfill the requirements of type I land-
marks. Moreover, all landmarks whose value ofikj is negative
will be deleted from the map.

IV. EXPERIMENTAL RESULTS

Fig. 4. Test environment.

The proposed SLAM algorithm has been validated in a
sports hall (Fig. IV) with aPioneer 3-DX robot, and the
landmarks (lights on the ceiling) were placed at a height of
6.5m. The test environment has big windows that modify
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(a) Original image. (b) Detected features.

Fig. 5. Features detection.

the lightning conditions, occluding the landmarks that were
situated near them. The onboard omnidirectional camera was
placed at1.8m over the floor, in order to minimize the oc-
clusions due to people and a passband infrared filter was used
to make features extraction easier (Fig. IV). The configuration
parameters of the algorithm took the following values in all
the experiments:NZMin = 3, NCROSSVALID = 5, ANGMin =
1.22 rad (7◦), DMin = 8.0m, Σ0 = [0.0025 0.0; 0.0 0.0025]

andPNew = 1

2π
|Ql,t|

−
1
2 exp{− 64

2
}. The number of particles

was set to 10, as this size is sufficient to warrant the stability
of the system and to achieve accurate results.

Fig. 6 shows the result of one of the tests1. The distance
travelled by the robot was over85m and the area of the
environment was24×24m2. The camera captured320 images
at 1Hz, and the linear and angular velocities of the robot
were limited to 0.30m/s and 0.52 rad/s respectively. Fig.
6(a) shows the estimated trajectory and the obtained map and,
also, the real trajectory (GT robot) and the real map (GT
map). At the beginning of the trajectory (steps 0-80) the error
(Fig. 6(b)) increases as the landmarks have a high covariance
due to a recent initialization. Once the landmark positionsare
stabilized (step 100), the error in the position of the robotis
reduced. From steps 100 to 180 the error remains stable, as
the system detects landmarks in all the directions. Then, the
error starts to grow because the robot looses the referencesto
its right side, as landmarks 13 and 14 are not initialized yet.
The consequence of the increase in the position error is that
landmarks 13 and 14 are poorly initialized. The robot is able
to correct its pose when it sees again previous and well placed
landmarks (steps 230-270), and the error goes down near zero.
Next, as the covariances of landmarks 13 and 14 reduce, they
get influence in the correction of the pose of the robot, and
the error increases again as their positions at that moment are
still incorrect (steps 270-300). On the other hand, the error in
the angle of the robot is under0.087 rad (5◦) in most of the
time steps of the experiment.

1The associated video can be downloaded from
http://www.gsi.dec.usc.es/mucientes/videos/JOPHA13-SLAM.mp4

SLAM map (m) GT map (m) Error (m)
ID x y z x y z |x| |y| |z| ||xyz||

5 13.53 -5.61 6.80 13.5 -5.5 6.5 0.03 -0.113 0.299 0.32
6 13.61 -0.73 6.80 13.5 -1 6.5 0.11 0.2723 0.3 0.42
7 13.59 4.01 6.83 13.5 3.5 6.5 0.09 0.508 0.325 0.61
8 13.60 8.92 6.98 13.5 8.0 6.5 0.1 0.924 0.481 1.05

9 22.56 -5.43 6.54 22.5 -5.5 6.5 0.06 0.07 0.039 0.10
10 22.51 -0.98 6.48 22.5 -1 6.5 0.01 0.0232 -0.016 0.03
11 22.63 3.79 6.69 22.5 3.5 6.5 0.13 0.291 0.192 0.37
12 22.73 8.58 6.85 22.5 8.0 6.5 0.23 0.579 0.353 0.72

13 30.87 -5.92 6.39 31.5 -5.5 6.5 -0.63 -0.424 -0.114 0.77
14 31.18 -1.28 6.48 31.5 -1 6.5 -0.32 -0.278 -0.025 0.42

TABLE I
MAP ERROR

In this test, the robot returned 3 times to the same position
(steps 205, 298, 318) and, in all the cases, the robot recognized
the landmarks and closed the loop. The final map and its
comparison with the real map is detailed in Table I. The
mean and maximum errors in the position of the landmarks
are0.48m and1.05m. These values reflect the performance
of the SLAM algorithm as, although the sensor is bearing-
only, and the landmarks are detected far away from the camera
(always with at a distance over4.5m), their positions are quite
accurate.

This experiment was run 10 times, each one with a different
seed. Fig. 7 shows the average and maximum errors for each
seed, together with the mean and standard deviation of all
the executions. These values reflect that the proposed SLAM
algorithm is able to reliably estimate the pose of the robot and
the map, independently of the randomness due to the sampling
steps (Alg. 3 line 14, and Alg. 1 line 9).

A. Comparison between Hungarian and Maximum Likelihood
data associations

The same experiment was executed replacing the Hungarian
algorithm with ML data association [26]. The results are
shown in Figure 8. The errors in angle are slightly worse in
ML, but the errors in position are much higher for ML in
comparison with the Hungarian association: the average error

http://www.gsi.dec.usc.es/mucientes/videos/JOPHA13-SLAM.mp4
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Fig. 6. Trajectory, map and errors of one of the experiments.
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Fig. 8. Mean and maximum errors for 10 runs with ML data association.

in position is a 13% higher, and the maximum error in position
is a 61% worse. Also, the standard deviation for position error
is much higher for ML association. Moreover, the maximum
errors with ML association are at the end of the trajectory, as
the algorithm is unable to close the last loop. As a result, new
landmarks are created in the bottom left part of the map Fig.
9, and the robot cannot recover its true location. Hungarian
association consistently closes all the loops for all the seeds,
while ML association fails to close the loops the 60% of the
executions.

V. CONCLUSIONS

A SLAM algorithm, based on FastSLAM, using omnivision
has been presented. Our system uses a bearing-only sensor,
and the landmarks are indistinguishable. The main novelties of
our proposal are the hierarchical data association based onthe
Hungarian algorithm and the way the landmarks are initialized.

Experiments have shown a great accuracy, both in the pose
of the robot and in the map, although the limitations of the
bearing-only sensor and the distance between the robot and
the landmarks. Also, we have evaluated the robustness of the
algorithm through several runs with different seeds, obtaining
in all the experiments good results. Moreover, we have studied
the influence of the use of a global data association (Hungarian

algorithm) in comparison with a local data association (Max-
imum Likelihood), showing that bearing-only visual SLAM
with this type of landmarks requires a global data association
to solve the SLAM problem reliably and accurately.
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