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a b s t r a c t

Mobile robots operating in real and populated environments usually execute tasks that require accurate
knowledge on their position. Monte Carlo Localization (MCL) algorithms have been successfully applied
for laser range finders. However, vision-based approaches present several problemswith occlusions, real-
time operation, and environment modifications. In this article, an omnivision-based MCL algorithm that
solves these drawbacks is presented. The algorithmworkswith a variable number of particles through the
use of the Kullback–Leibler divergence (KLD). The measurement model is based on an omnidirectional
camera with a fish-eye lens. This model uses a feature-based map of the environment and the feature
extraction processmakes it robust to occlusions and changes in the environment.Moreover, the algorithm
is scalable and works in real-time. Results on tracking, global localization and kidnapped robot problem
show the excellent performance of the localization system in a real environment. In addition, experiments
under severe and continuous occlusions reflect the ability of the algorithm to localize the robot in crowded
environments.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Nearly all the tasks that an autonomous mobile robot has to
carry out require knowledge on the position of the robot. Given a
map of the environment, a localization system estimates the pose
(position and angle) of the robot in the map based on a motion
model of the robot and/or a measurement model for the sensors.
A localization algorithmmust be reliable, robust and executable in
real-time.
Very different types of sensors have been used for localization.

In particular, the three most widely used are laser [1,2], sonar [3,4]
and cameras [5,6]. In recent years, different successful localization
algorithms based on laser range finders have been proposed [7–9].
Moreover, the use of cameras for localization tasks has received

increasing attention. The main advantages of these sensors are the
quantity and quality of information that can be extracted from
one acquisition. This is particularly interesting for localization, as
different types of landmarks can be detected using information
on shape, color, etc. Popular vision approaches are feature-based
and pixel-based. Feature-based techniques [10,11] exploit typical
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properties of the environment or any distinctive and recognizable
objects (landmarks). Pixel-based approaches [5,12] compute the
correlation between images, in order to estimate the mobile robot
pose.
In real environments, the presence of people in the surrounding

of the robot is usual. Both static and moving people are detected
by the robot sensors, generating measurements that have to be
discarded. These measurements are useless for localization but,
also, introduce noise in the localization algorithms, as sometimes
measurements coming from people are confused with those from
landmarks or other objects used for localization. This problem can
be addressed by attempting to classify the measurements coming
from people, and those coming from objects that are relevant to
the localization task. For example, for laser range finders, several
authors have classified measurements in order to distinguish
between people and objects [13,14], while others have built maps
in the presence of several moving people [15].
Nevertheless, when the environment is highly populated, the

problem is not simply that of filtering measurements coming
from people, but the inability to sense any landmark over long
periods of time, thus rendering localization truly difficult,while the
knowledge about the pose has a huge uncertainty. These situations
could be typical, for example, for a tour-guide robot operating in a
museum, and surrounded by a group of people who are interacting
with the robot. The only area of the environment that can be seen
regularly in these conditions is the ceiling.
In this article, a localization algorithm for a tour-guide robot

operating in a very crowded environment is presented. Due to
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the presence of groups of people, typical localization solutions
based on range sensors, such as laser or sonar, or those based
on the detection of conventional landmarks with cameras do not
work properly. Moreover, the environment cannot be modified by
introducing artificial landmarks to facilitate localization.
Our approach is based on amap of the lights (landmarks) placed

on the ceiling of the environment. These landmarks are easy to de-
tect, repetitive andusually visible for long trajectories. On the other
hand, most buildings have these kinds of landmarks, so there is no
need for prior adaptation of the environment in order to use the
proposed localization method. The main problem is their individ-
ual identification, as they are usually identical, making the data
association more difficult. Measurements from the environment
are acquired with an omnidirectional camera fitted with a fish-eye
lens. This sensor provides an extremely wide field of vision, cov-
ering half the space of the environment and, therefore, it can get a
high amount of information in one acquisition.
In recent years, probabilistic techniques have been successfully

applied in different fields of robotics, such asmapping, localization,
tracking, or planning [16]. The application of particle filters for
localization, named Monte Carlo Localization (MCL), has proved to
be a very popular approach for solving both position tracking and
global localization problems. The proposed localization algorithm
is based on MCL, combined with the injection of random particles
to recover from failures (kidnapped robot problem), and with
an efficient implementation due to the adaptive sample set size
through KLD-sampling.
In summary, the main points of our proposal are: first, the lo-

calization algorithm, KLD-Augmented-MCL, can recover from fail-
ures, works in real-time and is robust to severe and continuous
occlusions. In second place, data of the landmarks in the environ-
ment are obtained with an omnidirectional camera with a fish-eye
lens and an algorithm for the detection of the lights on the ceiling.
Finally, the system has been tested in real and complex conditions,
showing a good performance.
The article is organized as follows. Section 2 analyzes other

contributions for localization, in particular for vision-based ap-
proaches. Section 3 describes the localization algorithm (KLD-
Augmented-MCL), while Section 4 presents the measurement
model. Finally, Section 5 shows the results for different experi-
ments in real conditions, and Section 6 points out the conclusions.

2. Related work

There has been extensive research in the literature to solve the
localization problemusing vision.Most of the algorithms are based
on probabilistic approaches. For example, in [17], a localization
system based on the MCL algorithm is presented. This algorithm
is a Bayesian filtering method that uses a sampling-based density
representation. The robot was equipped with a monocular camera
pointing to the ceiling, and the map was built as a mosaic of 250
images captured and globally aligned. The pose of the robot was
estimated using information of the brightness of the images, and
tests of tracking and global localization were performed. A similar
approach has also been followed in [1].
In [18], a localization system using a particle filter and amonoc-

ular camera was presented. The Scale-Invariant Feature Transform
(SIFT) signature of the images in a database was used for com-
parison with the present image. The majority of vision-based ap-
proaches rely on the existence of a database of images that are
compared with the present image. This has several disadvantages.
In first place, the images are recorded for a route, and if the route
is changed, or the robot has a very different orientation in a po-
sition, the error in the localization increases. In second place, the
localization error increases greatly owing to partial occlusions, for
example in the presence of people. Finally, this kind of algorithm
is highly sensitive to modifications in the environment (e.g. a door
was closed and now is open, a new object is placed or removed
from the environment, etc.).
Stereo camera systems have also been used for localization, as

in [19]with anMCL algorithm. Imageswere recorded on a database
and compared with the present one using a histogram of local
features. The systemwas tested on tracking, global localization and
kidnapping problems.
Omnidirectional cameras are particularly interesting for local-

ization algorithms due to their high field of view (FOV). The first
work combining localization and omnivisionwas published in [20].
In [21], authors proposed a hierarchical (three-step) algorithm that
used line descriptors, a global filter (based on color descriptors) and
a pyramid matching kernel. In [22], the similarities between im-
ages were measured using the average color value of each sector
of the image, while in [23] the measurement model used the gray
level curve sectors, and a sector matching algorithm based on the
Dempster–Shafer fusion of different criteria.
Many omnivision approaches are based on the MCL algorithm

using different techniques for the estimation of the weights of the
particles. For example, in [12], the measurement model used the
correlation of the present image with a set of images that had
been recorded for a specific route. That comparison was carried
out with a modified version of the SIFT algorithm. The system can
cope with partial occlusions, but increasing the localization error
(4 m for a 50% occlusion). Another approach was presented in [24],
where a Fourier transform of omnidirectional images was used
to weight the samples. In [6], the chromatic transitions for scan
matching were employed to estimate the conditional probability
of a measurement. Finally, in [25], the system used a graph-based
representation of the operation area. The nodes of the graph were
labeled with both visual feature vectors (average color value)
extracted from omnidirectional images, and odometric data of the
robot at the moment of node insertion.
Themain differences of our approachwith these proposals are:

• We use a feature-based map for localization, as the proposed
feature extraction process is able to obtain the landmarks
(lights) of the environment. The main advantage of this ap-
proach is that the system does not need a database of images
and, therefore, the localization algorithm is not limited to cer-
tain routes, it is robust to changes in the environment, and also
to occlusions, as only a few landmarks of the map are needed
for localization at each time instant.
• The proposed algorithm is scalable with the size of the en-
vironment, in contrast with those approaches relying on a
database of images. Moreover, only a few approaches that use
image databases can work in real-time (limiting the size of the
database), while our proposal works in real-time with no type
of constraint. In addition, the adaptive number of particles con-
tributes to real-time operation.
• Our approach is robust under severe and continuous occlusions,
which makes it especially suited to crowded environments.

3. KLD-Augmented-Monte Carlo Localization algorithm

The localization algorithm is based on MCL, i.e. the Probability
Density Function (PDF) of the pose of the robot is represented by
a set of particles. Each particle is a sample of the PDF, and codifies
a possible pose of the robot. Particles are distributed according to
the PDF, i.e. the regions of the PDF with a higher probability will
have a higher concentration of particles. The basic MCL algorithm
(also known as particle filter localization) was proposed in [26,27],
and solves both the local and global localization problems. How-
ever, the most complex localization problem, the kidnapped robot
problem, cannot be solved with the basic MCL.
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Fig. 1. KLD-Augmented-MCL (χt−1, ut , F ,M).

In a kidnapping situation, the robot is placed in another location
while the localization system still believes that the position of
the robot is known. Kidnapped robot experiments reflect the
ability of the localization algorithm to recover from failures. One
approach for solving this problem with the MCL algorithm is the
addition of random particles to the particles set. The Augmented-
MCL algorithm [8] adds random particles to the set based on
the probabilities of sensor measurements. Thus, the lower the
average sensormeasurements probabilities, the higher the number
of random particles added to the set.
In all theseMCL algorithms, the number of particles is fixed and

must usually be large, in order to represent the PDF in the initial
stages of a global localization. However,when the algorithm is sim-
ply tracking the position of the robot, the number of particles could
be much lower. Therefore, adapting the particles set size improves
the efficiency of MCL algorithms. One approach to adapt the num-
ber of particles is Kullback–Leibler divergence (KLD) sampling [9].
This is based on the KLD, which measures the difference between
two PDFs. KLD-sampling determines the number of samples such
that, with probability 1 − δ, the error between the true posterior
and the sample-based approximation is less than ε.
The localization algorithm presented in this article (Fig. 1) is

based on the Augmented-MCL algorithm, combined with KLD-
sampling. The input parameters of the algorithm are the previous
PDF, represented by the particles set (χt−1), the motion command
(ut ), the set of detected features in the present time instant (F ), and
themap (M). The steps of the algorithm can be classified into three
groups:
• MCL part: is the core of the algorithm (lines 12–17). It samples
the previous particle set, updates the particles using the mo-
tion model and, finally, estimates the weight of each particle
through the measurement model.
• Augmented part: corresponds to the insertion of random par-
ticles when the present measurements do not match with the
expected ones (lines 3–8, 18, 24 and 25). This allows the algo-
rithm to recover from localization failures, for example in the
kidnapping problem.
• KLD part: calculates the number of particles that are necessary
to appropriately represent the PDF of the pose of the robot (lines
9–11, 19–22, 26–29).

Going into the details, at the beginning of the algorithm (lines
3–8), random particles are added to the particle set: a random
number in [0, 1] (rand ()) is generated Nt−1 times (size of χt−1).
Therefore, a random particle is added with probability max{0, 1−
wfast/wslow} to χ t−1, which represents the particle set χt−1 after
sampling. wfast and wslow are the short- and long-term averages of
themeasurement likelihoods (weights of the particles). Ifwfast and
wslow are very similar, or wfast > wslow , then no random particles
will be added. This means that themeasurements are the expected
ones for the poses represented by the particles. On the other hand,
if wfast < wslow the PDF does not correspond with the measure-
ments, and random particles must be added. The lower the quo-
tient between the short and long-term, the higher the number of
random particles. For instance, in the kidnapped robot problem
wfast decreases drastically, while wslow decreases smoothly and,
therefore, the number of randomly generated particles is high in
the first iterations after the kidnapping.
In order to derive a statistical bound for the number of particles

from the KLD, the state space has to be divided in bins. Lines 9–11
reset the information contained in each bin b, storing a value of
0 which indicates that no particles belong to that bin. Next (line
12), the algorithm resamples the initial particle distribution (χt−1),
obtaining Nkld − Nr new particles, where Nr is the number of
particles randomly generated in the present iteration, and Nkld is
the statistical bound estimated from the KLD for the particles in
the previous iteration. sampler () function can be implemented
with any sampling algorithm, for example the low variance
sampler [16].
The core of the algorithm (lines 14–23) repeats, for each particle

in χ t−1, the following steps: first, taking into account the previous
pose (xit−1) and the motion command (ut ), a random new pose
(xit ) is drawn according to the motion model. Then, given the new
pose, the detected features (F ) and the map (M), the measurement
model gives the likelihood of the detected features for that pose
and map. This likelihood is the weight of the particle (wit ). The
particle is added to the new set (χt ), and the average weight is
updated (wavg ). Finally (lines 19–22), if the bin of the particle is
empty, it is set to non-empty and the number of non-empty bins is
increased.
Once all the particles have been added to the set, the short- and

long-termaverageweights are updated, using their differencewith
the present average weight and a parameter (αfast , αslow). These
parameters can be considered as decay rates, and they must fulfill
that 0 ≤ αslow � αfast .
Finally, the statistical bound for the number of particles is

calculated (lines 26–29) using the number of non-empty bins (Nb)
and the statistical error bounds ε and δ. z1−δ represent the upper
1− δ quantile of the standard normal distribution. The estimation
of the number of particles that are necessary to represent the PDF
of the pose of the robot is based onKLD (Nkld), and is proportional to
the number of non-empty bins (Nb). A high value forNbmeans that
the particles are distributed over the state space, i.e., there is a high
uncertainty in the pose of the robot. Thus, in order to represent
that situation and to keep track of all the plausible poses, a higher
number of particles is needed. On the other hand, when Nb is low,
the particles are concentrated around a few regions of the state
space and, therefore, the PDF can also be represented with a lower
number of particles.
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(a) Original. (b) Binary thresholded. (c) Dilated.

(d) Edges. (e) Blobs detection. (f) Detected features.

Fig. 2. Feature extraction from an omnidirectional image.
One of the factors that can increase uncertainty during local-
ization is the existence of symmetries in the environment. With
a fixed number of particles, the set is divided among the differ-
ent localization hypothesis. The concentration of particles in each
cloud could be low and, therefore, the localization can fail due to
the elimination of those particles that represent the right pose. On
the contrary, through the use of KLD-sampling, the number of par-
ticles dynamically increases as the uncertainty in the pose of the
robot is high, i.e., there are several good candidate poses due to the
symmetries in the environment. Once the robotmoves and the am-
biguities are solved, uncertainty is reduced and, consequently, the
number of particles that are necessary is also lower.

4. Measurement model

The sensormodel that has been used is based on feature extrac-
tion from the images obtained by an omnidirectional camerawith a
fish-eye lens. Thus, the localization algorithm relies on a map (M)
composed of a set of landmarks. These landmarks are the lights
placed on the ceiling of the environment.

4.1. Features extraction

Due to the special characteristics of the landmarks, the feature
extraction process can be improved by incorporating a bandpass
infrared filter to the camera. The process for features detection
consists of five steps: acquisition, preprocessing, segmentation,
recognition and features extraction. The output of the system is an
array of features for each candidate landmark. In the preprocessing
phase, the image (Fig. 2(a)) is transformed to facilitate the
processing in the next stages. The techniques that have been used
are binary thresholding (Fig. 2(b)) and morphological filtering
(dilation) (Fig. 2(c)).
As segmentation techniques, the system uses a Canny filter

and contour extraction (Fig. 2(d)). The next step is to extract the
characteristics of each region:
• Perimeter: number of pixels in the perimeter.
• Centroid: coordinates of the center of gravity.
• Radius: centroid distance to the center of the image.
• Azimuth: orientation of an object in the image with respect to
the x-axis.

If a light is pointing directly to the camera, then the acquired
image will be saturated (Fig. 3(a)). In such cases, a big blob can be
detected and the image has to be processed again using a higher
threshold (Fig. 3(b)). This situation can be very frequent when
lights are quite close to the camera.

4.2. Camera model

The camera model describes how a 3-dimensional scene is
transformed into a 2-dimensional image. The standard model is
the Pin-Hole, which projects the scene on a flat retina, but it is
limited to cameras with FOV � 180◦. The other cameras require
a model based on a spherical retina. In our system, we have used
a projection model developed by Pajdla and Bakstein [28] that
indicates how a point (B) in a 3-dimensional Cartesian reference
system can be transformed to the coordinates of a pixel in a 2-
dimensional image. The model requires the calculation of two
angles. On one hand, θ (Fig. 4) is the angle formed between the
optical axis of the camera and the beam. This beam is the line from
the origin of coordinates of the camera to point B. On the other
hand, ϕ is the angle between the x-axis and the projection of the
beam on the x–y plane. Next, the distance r (Fig. 4) from the image
center (u0, v0) to the coordinates of point B in the image (uB, vB) is
estimated as:

r = a ∗ tan
θ

b
+ c ∗ sin

θ

d
, (1)

where a, b, c, and d are parameters of the model. This function
makes it possible to calculate the coordinates of the point in the
image (uB, vB) depending on the azimuth (ϕ) and the elevation (θ )
(Fig. 4):
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(a) Saturated image. (b) Postprocessed image.

Fig. 3. Postprocessing phase.
Fig. 4. Projection of a 3-dimensional point B on the image reference system using
the omnidirectional camera model.

uB = u0 + r ∗ cosϕ
vB = β ∗ (v0 + r ∗ sinϕ)

}
(2)

where β is the ratio between the width and the height of a pixel.
These equations (Eqs. (1) and (2)) define the omnidirectional cam-
era model.

4.3. Landmark measurements

The map that has been used for localization consists of a list
of landmarks, and each landmark is defined by its 3-dimensional
coordinates in a Cartesian reference system. As described in Fig. 1
(line 16), given a pose of the robot (xt ), the set of features (F )
that have been extracted from an image, and the set of landmarks
(M , the map of the environment), the measurement model has to
calculate the conditional probability that given the pose and the
map, F is the set of detected features at time t . To calculate this
probability, we need to have the elements of sets M and F both
in the same coordinate system. Therefore, and using the camera
model, all the landmarks Bi ∈ M have to be transformed.
Fig. 5. Maximum likelihood data association.

A landmark projection is the calculation of the pixel coordinates
in the image (uBi , vBi ) for landmark Bi, given its coordinates in
the world (BWi ) and the coordinates of the camera (C

W ) in the
same reference system. First, the landmark coordinates must be
transformed fromworld coordinates (BWi ) to the camera reference
system (BCi ) with the rotation matrix R

C :

BCi = R
C
· BWm − CW . (3)

From BCi , we obtain the elevation (θ ) and the azimuth (ϕ) angles
by applying the traditional Euclidean transformations (Fig. 4).
Finally, to obtain the landmark projection (uBCi , vBCi ), Eqs. (1)
and (2) are applied. The image composed of all the landmark
projections is called the map projected image. The measurement
model returns the value of the conditional probability P (F | x,M).
Assuming conditional independence between features, it can be
calculated as:

P (F | x,M) =
∏
j

P
(
Fj | x,M

)
(4)

and, therefore, the probability for each feature Fj can be estimated
independently.
In order to calculate the conditional probability, it is necessary

to decide the correspondence between each feature Fj and each
landmark Bi. This has been solved with the maximum likelihood
data association algorithm (Fig. 5). The calculation of P (F | x,M)
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Ground floor
of the Domus
Museum

Ground floor lights
Emergency lights
Last floor lights

(a) Pioneer 2-AT robot. (b) Map of the exposition hall.

Fig. 6. Experiments setup.
requires, firstly, the initialization of λi for all the landmarks (lines
2–4). This variable indicates whether a landmark Bi has been as-
sociated to a feature, and is necessary to avoid the assignment of
several features to a landmark. Then, for each feature (line 5), the
maximum conditional probability is initialized to PfalsePos, which is
the probability that a feature is not a landmark, but a false positive.
Then, for each landmark (Bi) in the map that has yet to be

associated (line 7), the conditional probability of feature Fj given
Bi and the pose x is estimated (line 8). In this equation, (uFj , vFj ) are
the coordinates of feature Fj in the image obtained by the camera at
the present time instant, (uBi , vBi ) are the coordinates of landmark
Bi in the map projected image, and maxdist is a constant. If the
probability is higher than for previous landmarks, then P

(
Fj | x,M

)
is updated with this value (lines 9–11). Finally, P (F | x,M) is
updated based on Eq. (4) (line 13), and the variable λη , where
η is the landmark that maximizes the conditional probability
P
(
Fj | x, Bi

)
, is set to 1 (lines 14 and 15). This means that no other

features can be associated with that landmark.

5. Results

The localization algorithm has been tested with a Pioneer 2-AT
robot (Fig. 6) equipped with an omnidirectional color digital cam-
era (MDCS2) with a fish-eye lens (FE185CO46HA-1, FOV 185◦) and
a bandpass infrared filter (IRP) type HOYA RT-830. The camerawas
placed 1.8 m above floor level, in order to minimize the occlusions
due to people. Experiments were carried out in an exposition hall
(ground floor in Fig. 6(b)) of the DomusMuseum (A Coruña, Spain).
The environment had a size of 27× 7 m2 and a very uneven floor.
The imageswere obtained at one frame per second during localiza-
tion, i.e., the robotwasmovingduring the acquisition of the images.
The ground truth was obtained from measurements coming

from a laser range finder. Therefore, this ground truth is merely
an estimation of the real ground truth. Moreover, it was calculated
without the presence of people in the environment, as the infor-
mation provided by laser range finders is very poor under severe
occlusions in very crowded environments. This situation is very
typical in the Domus Museum, where the robot is usually com-
pletely surrounded by people, even when it is moving.
The map of landmarks used for these experiments consisted of
a set of lights placed on the ceiling of the environment. Fig. 6(b)
shows the ground floor (where experiments were conducted), and
the three different sets of lights that were used for localization:
ground floor lights (A1), emergency lights (A2), and last floor lights
(A3). The average height of each set of lights is shown is Fig. 6(b) (h
value). Fig. 7 shows different snapshots of the environment. The
sets of lights have been labeled in these figures. It can be seen
that there are several ceilings at different heights and, also, that
some lights become occluded from some areas of the environment.
Moreover, there aremany lights that are not landmarks and, there-
fore, should be eliminated during the data association process.
Experiments have been designed to prove that the localiza-

tion algorithm can reliably estimate the pose of a tour-guide mo-
bile robot in different situations (e.g. position tracking, global
localization and kidnapped robot problem). Moreover, an analy-
sis on the performance on the algorithm under severe continu-
ous occlusions has been performed. All the experiments have been
executed with the following values for the parameters of the al-
gorithm: ε = 0.20, z1−δ = 0.99, αslow = 0.1, αfast = 0.5 and
maxdist = 30.

5.1. Position tracking

The first set of experiments was carried out to analyze the
ability to keep track of the robot’s pose, while it was moving in the
environment with an average speed of 40 cm/s. Fig. 8 shows the
estimated poses and the ground truth for one of these experiments.
The black circles are placed every 10 steps.1 The distance traveled
was over 45 m and 110 images were acquired and processed. The
poses of two consecutive images had an average distance of 0.4 m,
but the change in the pose angle was sometimes quite large. For
example, in the middle of the trajectory, the robot turned 180◦ in
three steps.

1 Each step represents the acquisition of a new image. As has been mentioned,
the elapsed time between two steps is one second.
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(a) Point of view v1 . (b) Point of view v2 . (c) Point of view v3 .

Fig. 7. Snapshots of the environment from different places and points of view (Fig. 6(b)).
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Fig. 8. Trajectories of the robot for the position tracking experiment.
The position error (Fig. 9(a)) was calculated as the Euclidean
distance between the ground truth and the pose obtained by the
proposed localization algorithm. The maximum position error in
the experiment was 0.75 m and the average error was of 0.29 m.
Although the maximum orientation error was of 23◦, on an aver-
age the error was of only 3◦. This angular precision is one of the
main advantages of using an omnidirectional camera for localiza-
tion. The uneven floor of the museum affects the position error
very negatively. Nevertheless, the localization system calculates
the pose of the robot in a complex environment and over long tra-
jectories with a high degree of precision for navigation tasks.
Fig. 9(d) shows the adaptation of the sample set size through

KLD-sampling. We initialized the sample set with 3000 samples
generated from a Gaussian distribution centered at the starting
pose of the robot. In the first steps, the sample set size quickly
decreases to less than 100 samples due to a low localization error.
However, when quality of the sample distribution decreases, the
number of samples increases up to 1000 samples. This happened,
for example, when the robot executed fast turns. This results in a
very efficient implementation of the MCL algorithm, as the sample
set size (and, therefore, the running time) depends on the quality
of the PDF. The running time of the algorithm can be seen in
Fig. 9(c). We have used a Intel Pentium 4 CPU 3.06 GHz. The
time for processing each image (vision time) was almost constant,
except when an image was saturated. In such cases, a second
landmark detection process was launched with a higher threshold
(see Section 4.1).

5.2. Global localization

The next experiment was performed to show the system’s
global localization ability. The sample set was initializedwith 3000
uniformly distributed samples. Fig. 10 shows the trajectory esti-
mated by the localization algorithm. As can be seen, after a few
steps the system determines the position of the robot, and reliably
keeps track of it afterward. As we are using the sample-weighted
average to estimate the robot’s pose, at the beginning the esti-
mated position is always close to the center of the map.
a

b

c

d

Fig. 9. Results of the position tracking experiment.
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Fig. 10. Trajectory for global localization.

Fig. 11 shows how the sample set converges during the global
localization process. The true pose is representedwith a square, the
estimated pose with a circle, and the samples with points. Samples
with the best weights are represented by darker points. At the be-
ginning, samples are randomly distributed over the environment.
At each step, the samples progressively converge to the true pose of
the robot. It must be noted that, as can be seen in Fig. 11(b) and (c),
our environment has symmetries which result in multimodal be-
liefs. For this reason, our algorithm requires approximately 12–15
steps to converge (Fig. 11(d)) to the correct position of the robot.
Nevertheless, the system typically needs only two to three steps to
converge to the correct robot’s orientation.
Fig. 12 shows the errors in position and angle, the processing

time and the number of particles at each step. It can be seen that,
at the beginning, the error in position is high and, therefore, the
number of particles is also high, thus increasing the processing
times. When the robot is localized, all the values are reduced and
the problem becomes a position tracking situation.

5.3. Kidnapped robot problem

The third group of experiments was carried out to demonstrate
that our system is able to recover from failures. The sample set was
initialized as in the previously described position tracking exper-
iment. After integrating 30 images, we provided the localization
systemwith data corresponding to a completely different location.
This is equivalent to kidnapping the robot and taking it to a differ-
ent place in the environment.
The estimated trajectory and pose error of the experiment are

shown in Figs. 13 and 14(a) and (b). In these figures the kidnapping
situation can be clearly appreciated: there is a sharp increase both
in the position and orientation errors at step 30, as the robot
was placed in a completely different position. As in the global
localization experiment, the systemonly requires 12–14 steps after
kidnapping to recover the position, and two to three steps to obtain
the correct orientation.
Similarly, to the position tracking experiment, the sample set

size, calculated through KLD-sampling, quickly decreased in the
first iteration and then slowly increased due to the symmetries of
the environment. When kidnapping was performed, the sample’s
weights were reduced and the number of random samples (Nr )
increased (Fig. 14(d)). At that point, the behavior of the sample set
size was similar to the global localization experiment. Initially, the
size was increased until the correct position and orientation of the
robot were reached and, then, the size was reduced. We repeated
this type of experiment with different trajectories and in all the
cases the localization system was able to recover from the failure.

5.4. Occlusions

The localization algorithm has been designed to operate un-
der severe and continuous occlusions. A typical situation for this
kind of occlusions is when the robot is moving but completely sur-
rounded by people for a long period. Under these conditions, lo-
calization methods based on laser range finders fail. Our approach
tries to remedy this problem by using an omnidirectional camera
and a map of landmarks placed on the ceiling of the environment.
However, under these conditions there are still occlusions when
the people surrounding the robot being taller than the camera.
We have designed a set of experiments to analyze the per-

formance of KLD-Augmented-MCL under different occlusion con-
ditions. The experiments have been run for the path shown in
Fig. 8(b). Occlusions have been artificially generated superposing
a mask on the captured images.
The first set of experiments was designed to analyze the perfor-

mance of the algorithmunder continuous occlusionswith different
degrees. Two types of masks were used: sector (Fig. 15(a)) and ring
(Fig. 15(b)). The average error in position and angle along the tra-
jectory are shown in Fig. 16. With the ring mask, both the errors in
position and angle for a degree of continuous occlusion of up to a
50% are similar to those of a non-occlusion situation. For the sector
mask the same occurs, but up to a degree of continuous occlusion
of 40%. Both types of occlusions (but especially the sector occlu-
sion) are highly challenging for the data association, particularly
as these occlusions are continuous.
(a) Initial step. (b) Step 5.

(c) Step 10. (d) Step 15.

Fig. 11. Sample sets during the global localization experiment.
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Fig. 12. Results of the global localization experiment.
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Fig. 13. Trajectory for the kidnapped robot experiment.

The second set of experimentswas conducted to analyze the ro-
bustness under scattered total occlusions. These occlusions were
generated periodically along the trajectory. Fig. 17 shows the av-
erage errors in position and angle for different values of the period.
It should be noticed that a total occlusion means that all the par-
ticles get a very low weight in that iteration (none landmarks are
detected). Thus, if total occlusions are very frequent, the sampling
process becomes totally random and, therefore, the best particles
could disappear. The algorithm shows a great performance for to-
tal occlusions of each seven steps (or higher). Under this threshold,
the performance decreases, as the particle set is not able to recover
from the occlusions.

6. Conclusions

A KLD-Augmented-MCL algorithm based on omnivision has
been presented. The system uses a feature-based map of the en-
vironment and is able to localize the robot by extracting a list of
features from the present omnidirectional image using a camera
a

b

c

d

Fig. 14. Results of the kidnapped robot experiment.

a b

A sector mask. A ring mask.

Fig. 15. Types of masks used in the continuous occlusion experiments.

model. The algorithm works in real-time, as the number of parti-
cles is adaptable and the measurement model is scalable with the
size of the environment. Moreover, the algorithm is robust to oc-
clusions and changes in the environment.
The system has been tested on a Pioneer 2-AT in a museum en-

vironment for position tracking, global localization and the kid-
napped robot problem. A deep analysis of the experiments was
performed, including the comparison of the estimated trajectory
and the estimated ground truth, the position and orientation er-
rors, the processing times, and the number of particles. All the
experiments and the analyzed values reflected the proposed lo-
calization algorithm’s first-rate performance. Moreover, a set of
experiments were conducted to show the performance of the algo-
rithm under severe and continuous occlusions. The results demon-
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Fig. 16. Errors under continuous occlusions.

a

b

Fig. 17. Errors under periodic total occlusions.

strate that the algorithm is able to correctly localize the robot
under real conditions in highly populated environments.
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