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Abstract—Simultaneous Localization and Mapping (SLAM)
is still an open problem in mobile robotics. In this paper
a SLAM algorithm using omnivision is presented. Omnidi-
rectional cameras have a wide field of view, thus detecting
landmarks over long distances, but this also requires a good
data association. Our SLAM proposal is based on the well-
known FastSLAM algorithm [1]. Our main contributions are
the features detection and their position estimation for an
omnidirectional camera (bearing-only sensor), and also the data
association process based on the Hungarian algorithm. The
system has been tested on a Pioneer 3-DX robot equipped with
an omnidirectional camera (a camera with a fish-eye lens) and
a passband infrared filter. Experiments were carried out in
an exposition hall of a museum, showing a good performance,
despite the uneven floor which generates a swinging on the
camera and increases the error in the motion commands.

I. INTRODUCTION

In mobile robotics, the existence of a map of the en-

vironment increases the ability of the robot to implement

complex tasks. Mapping an environment requires a correct

localization of the robot but, also, a precise positioning

requires the existence of a map. Thus, mapping and lo-

calization are coupled. The Simultaneous Localization and

Mapping (SLAM) problem consists in building a map of an

unknown environment from an initially unknown pose of the

robot while, at the same time, the robot is localized in the

environment that is being mapped.

A great effort has been dedicated to solve this problem

in recent years. Many solutions have been presented, usually

in 2D environments and using laser scanners. Nevertheless,

several important challenges remain. One of them is operat-

ing in very crowded environments, as people moving in the

surrounding of the robot produce interferences for typical

sensors like laser scanners. These situations are habitual, for

example, for a tour-guide robot operating in a museum, and

surrounded by a group of people that are interacting with

the robot. Another open issue is mapping environments with

very irregular floors, where the pitch and roll angles are not

negligible.

We have already proposed approaches for localization [2],

[3] in such type of environments, but a map of features

(landmarks) has to be provided to the system. Nevertheless,

creating such a map is tedious and the resulting map is

imprecise on large and/or complex environments.
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In this paper we propose a SLAM method based on the

FastSLAM [4], [5], [1] algorithm but adapted to the use of an

omnidirectional camera pointing to the ceiling. The camera

mounts a fish-eye lens with a very wide field of view (FOV):

185 degrees. Also, the camera operates on the infrared (IR)

spectrum, as it is equipped with a bandpass IR filter. The

main advantage of this filter is that features are more easily

detected in indoor environments because very few objects

emit in the IR spectrum (for example, ceiling lights). On the

other hand, the data association problem is reduced compared

with the typical features used on visual SLAM.

The main contributions of the paper are: the detection

of features for omnivision and the data association process.

The paper is organized as follows: in the next section, a

short introduction to the related work is presented. Secs. III

and IV explain the FastSLAM algorithm and its adaptation

to omnivision cameras. Then, some experimental results

are shown in Sec. V and, finally, Sec. VI points out the

conclusions and future work.

II. RELATED WORK

In the last years, special attention has been paid to

visual SLAM, as cameras provide richer information of the

environment.

A. Monocular SLAM

Monocular cameras are bearing-only sensors, that is, they

do not provide information about distance or depth. Usually,

delayed initialization of detected landmarks has to be applied

in order to calculate the distance to the camera. For example,

moving the robot until enough “parallax” has been achieved.

The worst situation is produced by features close to the

optical axis of the camera and far away from it. On the other

hand, monocular cameras can detect features at very long

distances which is very useful for orientation with spatial

references on the horizon.

Several monocular SLAM systems have been presented

for small environments [6], [7]. Most are based on Extended

Kalman Filter (EKF) SLAM or FastSLAM [8], but differ

in some aspects. One of them is that the points extracted

from the images can be Harris corners, scale-invariant fea-

ture transform (SIFT) features or Shi-Tomasi corners. A

fundamental limitation of monocular camera SLAM is that

the scale of the environment can not be calculated di-

rectly.Therefore, additional information needs to be included.

Nevertheless, almost all features are locally detected and

their detection strongly depends on lighting conditions, sur-

rounding textures, and the position and orientation of the

camera. These limitations have a high impact for SLAM,
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mainly when closing loops, i.e., being able to detect that a

place of the environment has been revisited. The narrow FOV

of monocular cameras makes this identification very difficult,

because the new point of view can be very different from that

of previous visits.

Some recent works employ a direct approach to visual

monocular SLAM [9] and use the image intensity as observa-

tions instead of features. The visual SLAM is formulated as

a non-linear image alignment task. Their main limitations are

due to changes of lighting conditions, the high computational

cost, and that only planar surfaces are modeled.

B. Stereovision SLAM

Stereo visual systems provide scale through the base-

line between cameras, precisely known from a calibration

process. In this way, they provide all the necessary 3D

information of each detected feature.

The main drawbacks of stereovision are the limited 3D

range and the mechanical fragility. While cameras can detect

very far objects, stereo systems only provide good 3D infor-

mation to a limited range, typically from 3m to a few tens of

meters depending on the baseline. To extend range, the stereo

baseline has to be increased while keeping or improving the

overall sensor precision, which is contradictory.

Davison and Murray presented the first active stereo

visual SLAM system [10] based on standard EKF. An-

other stereovision SLAM using SIFT features in a small

laboratory has been presented in [11]. A dense system

using Rao-Blackwellized particle filters and SIFT features

was described in [12]. Saez et al. [13] present a 6-DOF

stereo SLAM using a global entropy minimization algorithm.

Recently, an important advance has been achieved on stereo-

vision SLAM to cope with medium size indoor and outdoor

environments [14].

Some authors have explored the integration of both

monocular and stereo vision [15]. They claimed that stere-

ovision can be seen not as a monolithic supersensor, but

as two independent monocular cameras. This method can

be applied to stereo systems, several different cameras, and

cameras moving independently.

C. Structure From Motion and Visual Odometry

Monocular SLAM can be compared with the structure

from motion problem (SFM). In SFM, the goal is to deter-

mine, from a collection of images and up to an unrecoverable

scale factor, the 3D structure of the environment and all

the 6-D camera poses (position and orientation) from where

the images were captured. The differences between SFM

and SLAM are not only in the methods but also in the

objectives. That is, similar aspects of similar problems are

given different priorities.

On the other hand, in Visual Odometry (VO) the robot’s

ego motion has to be obtained from a sequence of images.

This can be seen as a similar problem to stereovision SLAM

and features have to be matched across two or more stereo

pair of images. VO must work in real time because robot

position is needed on-line. Advanced solutions achieve very

low drift level after long distances.

D. Omnivision SLAM

Omnivision cameras have also been used on visual SLAM.

Usually, the approaches employ an additional stereo vision

system for motion observation between consecutive frames.

Omnivision cameras have a very wide FOV, so they can track

all the detected features (close or far to the camera) over long

distances. The estimation process is very well conditioned by

these numerous observations of the same landmarks.

Lemaire and Lacroix [16] present an efficient and optimal

delayed landmark initialization algorithm. Loop closures are

detected through a database query that retrieves memorized

images that are close to the current robot estimation.

Rybsk et al. [17] propose a method to incrementally build

topological maps based on the panoramic images (“signa-

ture”) captured by the robot on each position of the traveled

path. They applied the Iterated form of the Extended Kalman

Filter (IEKF) and a batch-processed linearized maximum

likelihood estimator.

One limitation of omnivision SLAM systems is the feature

matching algorithm, as small translations and rotations cause

important changes in the images. For this reason, local con-

ditions can change dramatically, specially on features close

to the optical axis. In such situations, matching algorithms

produce many outliers. With classic perspective cameras,

they can be discarded by checking the epipolar constraint,

but with omnivision cameras this constraint is more tricky

to establish.

III. SLAM ALGORITHM

The SLAM algorithm described in this section is based on

FastSLAM 2.0 [1]. This algorithm uses a Rao-Blackwellized

particle filter, which represents the posterior distribution with

particles for some variables and a parametric representation

(such as Gaussians) for the others [18]. The main idea of the

basic FastSLAM algorithm is that the pose of the robot is

estimated with a particle filter, while each feature in the map

is tracked with and individual and low-dimensional EKF.

However, the main limitation of FastSLAM is that the pose

of the robot is sampled taking into account only the control

action. This is specially important when the accuracy of the

sensors is high relative to the accuracy in control. The result

is that the posterior distribution, which has been generated by

resampling from the proposal distribution, is poorly matched

with the proposal distribution. This drawback is solved by

FastSlam 2.0, as poses are sampled based on motion and the

observations. Therefore, the matching between the proposal

and posterior distributions is improved.

Our SLAM proposal is shown in Algs. 1 and 2. The main

contributions of our approach are:

• The detection of the features and the estimation of

their position (zl,t) for an omnidirectional camera (a

camera with a fish-eye lens). The process will require

to approximate the model of the camera to relate a pixel

with the 3D coordinates. Moreover, as this camera is a

bearing-only sensor, the 3D position of each feature will

be obtained through several consecutive detections from

different positions.
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• The data association process, based on the Hungarian

algorithm, which looks for the best association among

landmarks and measurements. This differs from the

maximum likelihood approach that tries to maximize the

individual associations (selects the best measurement

for each landmark) instead of the global association.

• Also, due to the extension of the algorithm to multiple

measurements, several small changes have been done

to the basic algorithm. The most important ones are in

the calculation of the pose of the robot as a weighted

average of the poses obtained for each measurement,

and the estimation of the weight of each particle.

The algorithm (Alg. 1) receives the set of measurements

(zt) at the current time t, the control (ut) and the previous set

of particles (Yt−1). The main loop of the algorithm iterates

for each of the M particles in the previous set. A particle

k is defined (line 3) as the pose of the robot (xk
t−1), the

number of landmarks in the map (Nk
t−1), and the set of

landmarks defined by the mean (µk
j,t−1), covariance (Σ

k
j,t−1),

and number of times detected (ikj,t−1) of each of them.

The loop from lines 5 to 20 iterates for all the landmarks

in order to estimate φl,j (line 15), i.e., the probability that

measurement l corresponds to landmark j. Before this loop,

the pose of the robot needs to be estimated using the motion

model (line 4). With this estimation, a prediction of the

measurement for landmark j is calculated (zj). Taking into

account the noise in the measurement (Qt), the previous

covariance of the landmark (Σk
j,t−1), and the Jacobian of h

(measurement model) with respect to the measurement model

variables, the landmark innovation covariance matrix (Qj) is

calculated.

As has already been mentioned, the improvement of

FastSLAM 2.0 over the basic FastSLAM algorithm is that

the pose of the robot is sampled from a proposal distribution

that considers both the motion and the observations. This

proposal distribution is modeled as a Gaussian with mean

µxt,l,j and covariance Σx,j . The covariance of the proposal

distribution depends on two terms: the motion noise (Rt), and

a covariance that is inversely proportional to the landmark

innovation covariance matrix.

The estimation of the mean of the proposal distribution

and, therefore, the probabilities (φl,j) depends on the mea-

surements (lines 11 to 19). The mean (µxt,l,j) corresponds

to the estimated pose of the robot (using the motion model)

plus a correction due to the assignment of measurement l

to landmark j. This correction is proportional to two terms.

The second one is the difference between the measurement

and the prediction in the position of the landmark. On the

other hand, the first one can be interpreted as the gain (in the

same sense as the Kalman gain), and is inversely proportional

to the landmark innovation covariance matrix (Qj), i.e. the

higher the confidence in the landmark innovation (lower

covariance), the higher the gain. Moreover, the gain is

directly proportional to the proposal distribution covariance

(Σx,j), which means that the lower the confidence on the

motion (high covariance) the higher the gain (the correction

due to the measurement has a high influence).

It is worthy to mention that the proposal distribution has

been obtained with the motion model and the measurement

model, but only using the association of a landmark with a

measurement, as the best data association is already unknown

(it requires the calculation of all the probabilities, φl,j). In an

ideal situation with known correspondences between land-

marks and measurements, the proposal distribution should

include all the landmarks and measurements, and not just

one. As a result of the unknown correspondences, j × l

sampled poses of the robot (xk
l,j,t) are generated.

The calculation of the probability that measurement l

corresponds to landmark j (φl,j) depends on the predicted

measurement. This was already estimated (line 6), but us-

ing the pose of the robot predicted by the motion model.

However, a better estimation of the predicted measurement

is given if the sampled pose of the robot is used (line 14).

Finally, using �zl,j , φl,j is calculated using as covariance

matrix the measurement innovation.

A. Data Association

The data association process requires the construction of

a cost matrix (Φ). This is an Nzt
×

�
Nk

t−1 + Nzt

�
matrix

in which each element (φl,j) with j ≤ Nk
t−1 represents the

probability that measurement l was originated from landmark

j, and the elements with j > Nk
t−1 represent the probability

that measurement l came from a new landmark. Once the

cost matrix has been calculated, the best data association,

i.e., that with the higher probability is determined with the

Hungarian algorithm.

The Hungarian method [19] is a combinatorial optimiza-

tion algorithm which solves the assignment problem in

polynomial time. The method generates a hypothesis or

ambiguity matrix (�c) for which each element (�cl,j) can take a

value of 1 or 0, representing the possibility that measurement

l is associated to landmark j or not. The ambiguity matrix

fulfills the following two conditions:
�

j

�cl,j = 1, ∀l and
�

l

�cl,j = 1, ∀j (1)

The first condition means that a measurement should only

be assigned to a landmark, i.e., each row of the ambiguity

matrix has only a one. The condition also applies to the

columns, as a landmark can generate only one measurement.

For these reasons, Nzt
columns were added to the cost

matrix to represent the possibility that the Nzt
measurements

correspond all to new landmarks. This is done in the loop at

line 16, where p0 represents the probability that the measure

came from a new landmark.

Once the data association has been obtained, the pose of

the robot can be calculated. If none of the measurements

have been assigned to the previous landmarks, then the pose

is generated sampling from the probability distribution given

by the motion model (line 26). On the other hand, if any of

the measurements corresponds to a previous landmark, the

sampled poses of the robot (xk
l,j,t) will be used to obtain the

final pose (line 28). The pose is calculated as the weighted

average of the sampled poses for those landmarks that existed
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Algorithm 1 SLAM algorithm based on FastSLAM 2.0 [1].

1: SLAM(zt, ut, Yt−1)
2: for k = 1 to M do

3: Get particle k from Yt−1:

xk
t−1, Nk

t−1, {
�
µk

1,t−1, Σk
1,t−1, ik1,t−1

�
, . . . ,�

µk
Nk

t−1,t−1
, Σk

Nk
t−1,t−1

, ik
Nk

t−1,t−1

�
}

4: �xt = g
�
xk

t−1, ut

�

5: for j = 1 to Nk
t−1 do

6: zj = h
�
µk

j,t−1, �xt

�

7: Hx,j = ∇xt
h

�
µk

j,t−1, �xt

�

8: Hm,j = ∇mj
h

�
µk

j,t−1, �xt

�

9: Qj = Qt + Hm,jΣ
k
j,t−1Hm,j

T

10: Σx,j = [Hx,j
T Q−1

j Hx,j + R−1
t ]−1

11: for l = 1 to Nzt
do

12: µxt,l,j = Σx,jHx,j
T Q−1

j (zl,t − zj) + �xt

13: xk
l,j,t ∼ N (µxt,l,j , Σx,j)

14: �zl,j = h
	
µj,t−1, xk

l,j,t




15:

φl,j =|2πQj |
−

1
2 exp{−

1

2
(zl,t − �zl,j)

T

Q−1
j (zl,t − �zl,j)}

16: for e = 1 to Nzt
do

17: φl,e+Nk
t−1

= p0

18: end for

19: end for

20: end for

21: �c = dataAssociation (Φ)
22: �Nk

t = Nk
t−1 + Nk

t,new

23: Nk
t = �Nk

t

24: wk = 1

25: if

Nk
t−1�

j=1

�c (j) == 0 then

26: xk
t ∼ p

�
xt|x

k
t−1, ut

�

27: else

28: xk
t =

Nk
t−1�

j=1
�c(j)>0

φ�c(j),j ·x
k
�c(j),j,t

Nk
t−1�

j=1
�c(j)>0

φ�c(j),j

29: end if � Continues on Alg. 2

at t−1 and that have been detected at t. Function �c (j) returns
the measurement assigned to landmark j, with �c (j) = 0
representing no assignment to a measurement.

B. Landmarks update

The update of the mean, covariance, and number of times

detected for each of the landmarks of the particle (lines 30

to 62) depends on the data association given by �c. Also,
the contribution of the landmark ( �w) to the weight of the

particle (wk) must take into account the data association.

The weight of a landmark ( �w) represents the probability of

the assignment of the data association �c for the landmark.

Algorithm 2 Continued from Alg. 1: SLAM algorithm based

on FastSLAM 2.0 [1].

30: for j = 1 to �Nk
t do

31: if j ≤ Nk
t−1 then

32: if �c (j) > 0 then

33: K = Σk
j,t−1H

T
m,jQ

−1
j

34: µk
j,t = µk

j,t−1 + K
�
z�c(j),t − �zj

�

35: Σk
j,t = (I − KHm,j) Σk

j,t−1

36: ikj,t = ikj,t−1 + 1
37: L = Hx,jRtH

T
x,j+Hm,jΣ

k
j,t−1H

T
m,j+Qt

38:

�w =|2πL|−
1
2 exp{−

1

2

�
z�c(j),t − �z�c(j),j

�T

L−1
�
z�c(j),t − �z�c(j),j

�
}

39: else

40: µk
j,t = µk

j,t−1

41: Σk
j,t = Σk

j,t−1

42: if µk
j,t−1 is outside perceptual range of xk

t

then

43: ikj,t = ikj,t−1

44: �w = 1
45: else

46: ikj,t = ikj,t−1 − 1
47: if ikj,t < 0 then

48: discard feature j

49: Nk
t = Nk

t − 1
50: �w = pn

51: end if

52: end if

53: end if

54: else

55: µk
j,t = h−1

�
z�c(j),t, xk

t

�

56: Hm,j = ∇mj
h

�
µk

j,t, xk
t

�

57: Σk
j,t =

�
HT

m,jQ
−1
t Hm,j

�
−1

58: ikj,t = 1
59: �w = p0

60: end if

61: wk = wk · �w
62: end for

63: Add xk
t , Nk

t , {
�
µk

1,t, Σk
1,t, ik1,t

�
, . . . ,�

µk
Nk

t ,t
, Σk

Nk
t ,t

, ik
Nk

t ,t

�
} to �Yt

64: end for

65: Yt = ∅
66: while |Yt| < M do

67: draw particle k from �Yt with probability ∝ wk

68: Add xk
t , Nk

t , {
�
µk

1,t, Σk
1,t, ik1,t

�
, . . . ,�

µk
Nk

t ,t
, Σk

Nk
t ,t

, ik
Nk

t ,t

�
} to Yt

69: end while

Therefore, the weight of each particle is calculated as the

product over all these probabilities –weights– (line 61). Both

the update of the landmarks and the estimation of �w are

defined in different ways depending on the type of landmark
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and measurement associations:

1) Measurements assigned to previous landmarks (from

line 32).

2) Landmarks without assigned measurements (from line

39). There are two possibilities:

a) The landmark is outside the perceptual range of

the sensor (from line 42).

b) The landmark is inside the perceptual range of

the sensor (from line 45).

3) Measurements assigned to new landmarks (from line

54).

For the first situation, the update of the landmarks follows

the standard update process of an EKF: first the Kalman gain

is obtained using the previous landmark covariance and the

measurement innovation covariance matrix (Qj). Then, the

mean is updated proportionally to the gain and the difference

between the measurement and its prediction. A high Kalman

gain means that the confidence in the update is high. This

can occur if the previous covariance of the landmark was

high, so we have to rely on the current measurement.

Also, if the measurement innovation covariance is low (high

confidence in the innovation), the gain is high. Moreover, ikj,t
is incremented as the landmark has been detected.

The contribution of the landmark to the weight of the

particle is calculated from a Gaussian distribution with mean

�z�c(j),j (predicted measurement) and covariance L for the

value z�c(j),t (measurement assigned to the landmark). This

covariance is proportional to the motion (Rt) and measure-

ment noises (Qt), and the previous landmark covariance.

The second and third situations (landmark without mea-

surement) keep unchanged the mean and covariance of the

landmark. If the landmark is in the perceptual range, then the

counter ikj,t is decremented, and if it reaches a value under 0,

the landmark is deleted. This contributes to the elimination

of false landmarks and keeps their number in a reasonable

range. The probability assigned to the third situation is the

constant pn. Finally, if the measurement corresponds to a

new landmark, the mean is initialized from the measurement

and the pose of the robot, and the covariance is proportional

to the measurement noise covariance, while the contribution

to the weight of the particle is also a constant (p0).

Finally, the new particle set (Yt) is generated by sampling

the updated particle set (�Yt) with probabilities proportional

to the particle weights (wk).

IV. MEASUREMENT MODEL

The sensor model that has been used is based on feature

extraction from the images obtained by an omnidirectional

camera (a camera with a fish-eye lens). The landmarks are

the lights placed on the ceiling of the environment.

A. Features extraction

Due to the special characteristics of the landmarks, the

features extraction process can be improved incorporating

a passband infrared filter to the camera. The process for

features detection consists of five steps: acquisition, pre-

processing, segmentation, recognition and features extraction

[20], [21]. The output of the process is an array of features. In

the preprocessing phase, the image (Fig. 1(a)) is transformed

to facilitate the processing in the next stages. The techniques

that have been used are binary thresholding (Fig. 1(b)) and

morphological filtering (dilation) (Fig. 1(c)).

As segmentation techniques, the system uses a Canny filter

and contour extraction (Fig. 1(d)). The next step is to extract

the characteristics of each region:

• Ratio: number of pixels in the perimeter.

• Centroid: coordinates of the center of gravity.

• Radio: centroid distance to the center of the image.

• Azimuth: orientation of an object in the image with

respect to the x axis.

If a light is pointing directly to the camera, then the

acquired image will be saturated (Fig. 2(a)). In such cases, a

big blob can be detected and the image has to be processed

again using a higher threshold (Fig. 2(b)). This situation can

be very frequent when lights are quite close to the camera.

(a) Saturated image. (b) Postprocessed image.

Fig. 2. Postprocessing phase.

B. Inverse Camera Model

The camera model describes how a 3D scene is trans-

formed into a 2D image. The camera that has been used

follows a projection model developed by Pajdla and Bakstein

[22] that indicates how a point (B) in a 3D reference system

can be transformed to a pixel in a 2D image. The model

requires the calculation of two angles. On the one hand, θ

(Fig. 3) is the angle formed between the optical axis of the

camera and the beam. This beam is the line from the origin

of coordinates of the camera to point B. On the other hand,

ϕ is the angle between the x-axis and the projection of the

beam on the x-y plane. Then, the distance r (Fig. 3) from

the image center (u0, v0) to the coordinates of point B in

the image (uB , vB) is estimated as:

r = a · tan
θ

b
+ c · sin

θ

d
, (2)

where a, b, c, and d are parameters of the model. This

function makes it possible to calculate the coordinates of

the point in the image (uB , vB) depending on the azimuth

(ϕ) and the elevation (θ) (Fig. 3):

uB = u0 + r · cosϕ
vB = β · (v0 + r · sinϕ)

�
(3)

where β is the ratio between the width and the height of a

pixel. These equations (Eqs. 2 and 3) define the omnidirec-

tional camera model.
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(a) Original. (b) Binary thresholded. (c) Dilated.

(d) Edges. (e) Characteristics extraction. (f) Detected features.

Fig. 1. Feature extraction from an omnidirectional image.

Fig. 3. Projection of a 3D point B on the image reference system using
the omnidirectional camera model.

However, the output of the feature extraction process is

a list of pixel coordinates ((ul, vl) for the l-th feature)

representing the centroid of each of the possible landmarks.

This feature list must be transformed into the measurements

list (zt), where each measurement is given by:

zl,t = (rl,t, ϕl,t, θl,t)
T

(4)

This transformation requires the inverse camera model,

i.e., given a pixel returns the coordinates of the 3D point in

the world. This cannot be done due to two limitations:

• The camera model is not invertible.

• The camera is a bearing-only sensor, thus from one

image only ϕ and θ could be calculated for a pixel,

but not r.

The first limitation has been solved through a look-up

table. Given the coordinates of a pixel, the look-up table

provides the values of ϕ and θ. The table only needs to be

generated once, and this can be done off-line. The process

is as follows:

1) Sample the values of ϕ and θ with precisions δϕ and

δθ. Use equations 2 and 3 to obtain the corresponding

pixel coordinates.

2) Store, for each pixel, the maximum and minimum

values of ϕ and θ, as different values could correspond

to the same pixel.

xt-2 xt-1 xt

λ1 λ2

ρt-2
1

ρt-2
1

ρt
2

ρt
1

ρt-1
2

ρt-1
1

Ct,t-1
1,2

Ct,t-2
1,2

Ct,t-2
1,1

Ct,t-1
1,1

Fig. 4. Determination of the 3D positions of the landmarks.
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The second limitation requires the detection of a landmark

from two different poses of the robot to get its 3D position.

The process to obtain the 3D positions of the landmarks is

as follows (Fig. 4):

1) Use the Hungarian algorithm to associate the features

detected at time t with the features detected at time

t− 1.
2) From each pose of the robot (xt), obtain the 3D line

between the robot and the landmark λm: ρm
t .

3) Let Pt be the set of lines from xt to the landmarks

detected at t, an let Pt−1 be the set of lines from xt−1

to the landmarks detected at t − 1. Calculate the set

of intersection points between each line ρm
t and ρ

�c(m)
t−1 ,

where �c (m) is the feature in t−1 associated to feature

m detected in t.

4) Lines in 3D generally don’t intersect at a point, but

most often only their projection onto a plane intersect.

One way to solve the intersection between lines it to

calculate the shortest line segment and take its middle

point.

V. RESULTS

The SLAM algorithm has been tested with a Pioneer 3-

DX robot equipped with an omnidirectional color digital

camera (MDCS2) with a fish-eye lens (FE185CO46HA-1,

FOV 185◦) and a passband infrared filter (IRP) type HOYA

RT-830. The camera was placed 1.8m over the floor, in order

to minimize the occlusions due to people. Experiments were

carried out in an exposition hall of the Domus Museum (A

Coruña, Spain). The environment has a size of 27×7m2 and

a very uneven floor. The images acquired during localization

had a frequency of one second, and the ground truth that

has been used to estimate the localization error was obtained

using three laser scanners placed in the environment. Three

reflective marks were placed on the robot to calculate its

position and orientation using the external lasers.

All the experiments have been executed with the following

values for the parameters of the algorithm: M = 1000,
p0 = 0.15, and pn = 1. The landmarks used for these

experiments consisted of a set of lights placed on the ceiling

of the environment. Fig. 5 shows the trajectory of the robot

using the odometry, the ground truth, and the path estimated

by the SLAM algorithm. In order to evaluate this results,

the difficulties of the environment have to be taken into

account. First, the floor is really uneven, generating a con-

tinuous swinging of the camera1. This makes measurements

very noisy and, therefore, the data association becomes

really complex, affecting the positioning of the landmarks.

Moreover, as the camera is a bearing-only sensor, the 3D

coordinates of each landmark need to be calculated from

two consecutive images. This, also introduces noise in the

measurements, particularly for landmarks placed far away

from the robot.

Although these difficulties, results show a good estimation

of the real path of the robot. The errors in the estimated

1The associated video can be downloaded from http://www.gsi.dec.usc.es/
mucientes/videos/slam taros09.wmv

pose of the robot, both in position and angle, are shown in

Fig. 6. The highest error in position is reached during the

180◦ turning, as the data association becomes really complex

due to the imprecision in the measurements. However, after

the turning the robot recovers from that failure, approaching

again to the real path.

VI. CONCLUSIONS

A SLAM algorithm, based on FastSLAM, using om-

nivision has been presented. The main novelties of the

approach are the data association process and the detection

of the features using omnivision. The algorithm has shown

a great robustness, although the difficult conditions of the

environment due to noisy measurements, and the limitations

of a bearing-only sensor. Experimental results are promising,

as the trajectory approaches the real one, and the detected

landmarks are placed around their real position. As future

work, we plan to improve the data association, use a variable

number of particles, and take into account loop closing.
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