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Abstract. Detection and tracking of multiple objects in real applica-
tions requires real-time performance, the management of tens of simulta-
neous objects, and handling frequent partial and total occlusions. More-
over, due to the software and hardware requirements of the different
algorithms, this kind of systems require a distributed architecture to
run in real-time. In this paper, we propose a vision based tracking sys-
tem with three components: detection, tracking and data association.
Tracking is based on a Discriminative Correlation Filter combined with
a Kalman filter for occlusions handling. Also, our data association uses
deep features to improve robustness. The complete system runs in real-
time with tens of simultaneous objects, taking into account the runtimes
of the Convolutional Neural Network detector, the tracking and the data
association.

Keywords: Multiple object tracking · Convolutional Neural Network ·
Data association.

1 Introduction

Real-life computer vision applications like traffic monitoring, autonomous vehi-
cles, or surveillance in general usually require to detect and track tens of objects
under the constraint of real-time processing in high resolution video like full HD
and 4K formats without losing accuracy. All the above leads to the challenge
of integrating seamlessly many heterogeneous solutions and hardware platforms
into a stand-alone multiple object visual tracker. This does not mean a mere
plug and play connection between trackers running on either CPU or GPU on
the one hand, and top object detectors based on Convolutional Neural Networks
(ConvNets) running on high end desktop GPUs on the other hand, but their
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adaptation into a general architecture or framework combined with the inser-
tion of decision-making processes along the data path to maximize performance
metrics. Besides, motion prediction through, for instance, Bayesian filtering —
Kalman filters, Particle filters, etc—, could also be included to deal with total
occlusions.

In the last years, top trackers from the Visual Object Tracking (VOT) chal-
lenge [15] are based on two approaches: Discriminative Correlation Filters (DCF)
based trackers, and deep-learning based trackers. On the one hand, DCF based
trackers predict the target position training a correlation filter that can differen-
tiate between the object of interest and the background [13,14,12]. On the other
hand, deep-learning based trackers use ConvNets. SiamFC [10] is one of the first
approaches of this kind. This tracker consists of two branches that apply an
identical transformation —deep features extractor— to two inputs: the search
image and the exemplar. Then, both representations are combined through cross-
correlation, generating a score map that indicates the most probable position of
the object. In [16] they propose SiamRPN, adding a Region Proposal Network
(RPN) to a siamese network in order to generate bounding box proposals that
go through a classification and a regression branch. DaSiamRPN [20] improves
SiamRPN, focusing the training on semantic distractors, and adding a search
region strategy for long-term tracking. All these trackers cannot cope with oc-
clusions, nor by themselves provide a framework to deal with multiple objects.

In contrast to VOT, the Multiple Object Tracking (MOT) contest [5] focuses
on data association, as they assume that detections are available in all time in-
stants without computational cost and, therefore, perform tracking by detection.
In [18] they solve the data associations by proposing extensions to the classical
Multiple Hypothesis Tracking approach. In [11] they combine Kalman filtering
with the Hungarian algorithm for data association, and in [19], they improve the
proposal using deep features to make data association more robust to occlusions.

In summary, we find the following limitations in the proposed approaches for
real-life situations: (i) high performance object detectors based on deep learning
are too slow to perform tracking-by-detection, and so does with deep learn-
ing trackers when dealing with several objects in the scene; (ii) the number of
simultaneous real-time tracked objects is low; and (iii) the time response con-
straint dictated by the application is severely compromised by the communica-
tion among processes on CPU and GPU platforms and/or different libraries or
frameworks like Caffe2 [1] , Pytorch [7] or OpenCV [6].

This paper aims at all the challenges outlined above. The main contributions
of the paper are:

– A distributed architecture for a vision based tracking system which permits
combining components of different technologies in a modular way for the
correct exploitation of the available hardware resources, i.e. CPU and GPU.

– A complete system for visual tracking that can process tens of objects in
real-time. It combines a Discriminative Correlation Filter (DCF) low-level
tracker and a Kalman filter for the visual and motion information respec-
tively. Difficult data association is performed using deep features correlation
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while simple associations are solved based on overlap. The system shows
a significant improvement in MOTP and MOTA metrics compared to the
baseline version despite performing detection only once every second.

2 Stand-Alone Multiple Object Visual Tracking
Approach
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Fig. 1: Stand-alone multiple object visual tracking architecture. The blue box is
the detection component. The orange block is the tracking. The green box is the
data association module.

Fig. 1 shows the architecture of our system. It comprises three main com-
ponents or visual tasks, namely, detection, tracking and data association. The
proposed architecture serves two purposes. On the one hand, it allows the inte-
gration of the different parts of the system regardless of their underlying tech-
nologies. On the other hand, it is designed to provide a maximum use of the
available hardware resources, that is, CPU and GPU. Each of the three modules
of the architecture consists of a Docker [3] container with the specific depen-
dencies necessary for their execution. In order to allow a modular integration
of the different parts, Robot Operating System (ROS)[8] has been used as the
framework for communication between processes for its flexibility, as well as for
its support for computer vision tasks.

Algorithm 1 presents an overview of the steps of our approach. At every
time instant t, the system processes two inputs: the current video frame (Imt)
and the set of trackers in the last time frame Φt−1. First, the system calculates
the new trackers position using two independent estimators: a discriminative
correlation filter (DCF) tracker and a Kalman filter (Algorithm 1, lines 3-4 —
Alg. 1:3-4—). With the bounding boxes proposed by both methods, we estimate
the region of interest (ROI) in which the object might be located (Alg. 1:5). The
larger the difference between the two trackers, the larger the ROI. Occlusions can
be determined in cases where both predictors propose very different bounding
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Fig. 2: Four images from the videos processed by our stand-alone multiple object
visual tracking system. Videos are provided by the Spanish Traffic Authority
(DGT) [2].
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Algorithm 1: Our Stand-Alone Multi-Object Tracking System

Require:
(a) Imt : Video frame at current time t
(b) Φt−1 = {ϕ1

t−1, ϕ
2
t−1, . . . , ϕ

n
t−1}

1 Function Track(Imt , Φt−1):
2 for i=1 to n do
3 dcf ROIit =DCF Track (ϕit−1)

4 kalman ROIit = Kalman Predict (ϕit−1)

5 ϕit ←< ROIit >=Estimate ROI (dcf ROIit , kalman ROI
i
t)

6 if time elapsed > τ then
7 Ψt ← {ψ1

t , ψ
2
t , . . . , ψ

m
t } =ConvNet Detect()

8 for i=1 to n do
9 for j=1 to m do

10 IOU i,jt =
ϕi
t

⋂
ψ

j
t

ϕi
t

⋃
ψ

j
t

11 {< ϕαt , ψ
β
t >} =Get Easy Associations (IOUt)

12 for every α, β in {< ϕαt , ψ
β
t >} do

13 update tracker (ϕαt , ψ
β
t )

14 remove (ϕαt , Φt)

15 remove (ψβt , Ψt)

16 for i=1 to size(Φt) do
17 for j=1 to size(Ψt) do

18 ρi,jt , ϕit =Deep Learning Correlation (ϕit−1, ψ
j
t )

19 newIOU i,jt =
ϕi
t

⋂
ψ

j
t

ϕi
t

⋃
ψ

j
t

20 ω(i, j) = 1− (ρi,jt · newIOU
i,j
t )

21 {< ϕαt , ψ
β
t >} =Hungarian (ω)

22 for every α, β in {< ϕαt , ψ
β
t >} do

23 update tracker (ϕαt , ψ
β
t )

24 remove (ϕαt , Φt)

25 remove (ψβt , Ψt)

26 for i=1 to size(Φt) do
27 delete tracker (ϕit)

28 for j=1 to size(Ψt) do

29 new tracker (ψjt )

30 Φt = Φt
31 return Φt

boxes, since the bounding boxes provided by DCF will remain static, while those
from the Kalman filter will follow the previous movement pattern of the object.
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Our system is robust enough as not to need detections in every frame. If the
time elapsed since the previous detection is greater than or equal to τ , detection
is performed using a convolutional neural network (Alg. 1:6-7), which returns
a set of detections Ψt. The aim of the detection component is twofold. First, it
initializes every tracker or object of interest in the scene. Second, it refines the
location and size of the bounding boxes of the trackers along their trajectories
inside the data association component (see Fig. 1), improving tracking perfor-
mance metrics. Thus, the frequency of detection calls sets a trade-off between
tracking performance metrics and the number of objects that can be tracked at
a given frame rate.

The data association block aims to assign each detection to its corresponding
tracker and to identify objects that enter or leave the scene. In so doing, we build
up the cost matrix IOUt (see Alg. 1:8-10), where every entry is the Intersection
Over Union (IOU) between a tracker ϕit and a detection ψjt . Our approach
makes assignments or data association in two steps. First, the system solves
easy associations between trackers and detections (see Fig. 1). In so doing, the
maximum IOU value is found (maxIOUt). Then we iterate along the row and
column of the cell with maxIOUt in order to find if there is any other IOU i,jt
complying with IOU i,jt ≥ γ ·maxIOUt. If not, we perform the assignment (Alg.
1:11). If so, this means that the IOU metric is not sufficiently discriminative,
yielding a difficult association (see Fig. 1). Finally, easy associations between
trackers and detections are updated through Alg. 1:12-15.

Second, difficult associations between trackers and detections are solved with
a deep learning based tracker. This solution features high robustness, but with
a much higher computational cost than that based on IOU . The deep learn-
ing tracker calculates the bounding boxes in the current frame and their score
(correlation) from the last frame’s trackers position (Alg. 1:16-18). With this
information the cost of association for the tracker ϕit with the detection ψjt is
established as ω(i, j), using the IOU between ϕit and ψjt , namely, newIOU i,jt ,
along with their correlation score ρi,jt (Alg. 1:19-20). Once the cost matrix is
generated it is solved by the Hungarian method (Alg. 1:21). For every successful

assignation (< ϕαt , ψ
β
t >), tracker ϕαt is updated with detection ψβt (Alg. 1:23).

Finally, trackers not updated in the data association phase are candidates for
being deleted, and detections not assigned are initialized as new trackers (Alg.
1:26-29).

3 Implementation details

Our experimental configuration consists of a server with an Intel Xeon E52623v4
2.60 GHz CPU, 128 GB RAM and an NVidia GP102GL 24GB (Tesla P40) as
GPU. Nevertheless, our architecture allows for a complete distributed set up in
which every module resides in a different machine.

In this current version of the architecture, we have included the ConvNet
FPN with ResNeXt101 as backbone for object detection, as FPN is the basis
for the three top entries in the last edition of the COCO detection challenge
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[17]. A Caffe2 implementation of FPN with ResNeXt101 takes 0.39 s in full HD
video, so that tracking by detection through the overlap of successive detections
throughout the video is discarded.

CNN 
Detector

0 1 ... Ƭ+1 Ƭ+2Ƭ 2Ƭ+1 2Ƭ+22Ƭ... ...

Tracking

... ... ...

3Ƭ

... ...

Fig. 3: Frame processing for our stand-alone multiple object visual tracker.

As DCF tracker we opt for KCF (Kernelized Correlation Filters) [14] as low-
level tracker for its speed and for its implementation on a CPU, which can be
parallelized to use all the available threads, thus increasing the number of tracked
objects. As deep learning tracker for difficult associations between trackers and
detections we build on DaSiamRPN, which offers very good results in long term
tracking [15] with a speed of 200 fps [4]. However, its computation time does
not scale well for several objects. Indeed, as far as we know, there is not any
multiple object tracker in real-time with a deep learning solution. In order to
cut processing time and cope with tens of objects at video frame rate, we have
modified DaSiamRPN to initialize the network only the first time an object is
identified. This is possible storing the feature vector and the states of all previ-
ously tracked objects. Still, we set an upper limit for the number of difficult data
associations between trackers and detections solved with DaSiamRPN. If neces-
sary, unsolved associations are handled during the next detection call. Finally,
computation time is negligible for easy data associations.

Figure 3 illustrates how the different components of our architecture shown
in Fig. 1 operate and interact with one another. Real-time processing of 30 fps
in full HD video is met by cutting down the detector calls to only once per
second, as our implementation of the FPN detector lasts 0.39 s in full HD video.
Also, detections are being run or in parallel with the tracking. Detections during
the first frame initialize the tracking module (see Fig. 1). The detection step
produces a latency τ with respect to the original video as tracking in the first
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frame needs to wait for the detection to finish, unlike in the rest of frames with
detection, in which no waiting will be required. Finally, it should be noted here
that the tracking is run on CPU, while the detection and difficult associations
between trackers and detections do it on GPU. Our stand-alone multiple object
tracker succeeds in dealing with this situation.

Table 1 shows a time breakdown of our stand-alone approach for 30 fps
full HD video. Detection times are not included since they are run in parallel
while tracking the objects in the scene. Our system is able to track 60 objects
simultaneously at 30 fps HD video. In so doing, 90% of the time frame of one
second in a video has been reserved for tracking, while difficult data associations
have been assigned the remaining 10%. The data association is only performed
once the next detection arrives, in our case, once per second. The times of the
rest of the parts of the system are disregarded as they are not sufficiently relevant
for the calculations. The time it takes our system to track an object during a
second of video (DCF + Kalman) is 0.21 seconds. If we leave 90% of the time for
tracking we would have 0.9 seconds for the operation and with a single thread
we could process 4 trackers at 30 fps full HD video. When having 15 threads
for this task (as one is reserved for the detection module) on a single CPU,
the number rises to 60. Once the next detection is reached, it is necessary to
perform data association. As mentioned above, we set an upper limit of 10%
for difficult associations, which is a realistic average. In this case, it would take
0.005 seconds per object, which amounts to 0.03 seconds for 6 objects, since,
as previously mentioned, DaSiamRPN is not a scalable solution. This would be
within the 0.1 seconds of available time.

We have also developed a fast version of our stand-alone tracking system that
for each three consecutive frames, makes an execution of the tracking system in
one frame and keeps the trackers unchanged in the next two. This fast tracking
system has a good performance for real-life applications, and is able to track up
to 180 simultaneous objects.

Table 1: Time breakdown of our stand-alone multiple object tracker at 30 fps
full HD video.

Tracking Times

Max. number of objects tracked in real-time 60 objects
Time unit 30 frames in 1 second
Available time for tracking assuming 90% 90% = 0.9 seconds
Available time for difficult data association assuming 10% 10%= 0.1 seconds
Time to track 1 object during 1 second 0.21 seconds
Max. number of trackers in 0.9 seconds 0.9/0.21 = 4 trackers
Using 15 threads 4 × 15 = 60 objects
Assuming 10% of complex data association 10% of 60 = 6 objects
Time of DaSiamRPN 0.005 s per tracker
Average time in 6 objects 0.005 × 6 = 0.03 s < 0.1 s
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4 Results

Table 2: Approach, video, number of objects in the video (n o) Multiple Object
Tracking Precision (MOTP) and Multiple Object Tracking Accuracy (MOTA)
for the three compared approaches.

approach video no MOTP MOTA

1. Ideal case
video 1 589

100,00% 100,00%
2. Real case 54,73% 56,22%
3. Ours 80,23% 97,87%

1. Ideal case
video 2 218

100,00% 100,00%
2. Real case 58,27% 84,74%
3. Ours 76,47% 92,48%

1. Ideal case
video 3 244

100,00% 100,00%
2. Real case 66,56% 67,38%
3. Ours 78,48% 92,31%

Table 3: Approach, video, misses (n m), false positives (n fp), mismatches
(n mm), percentage of increase in MOTP (% p), percentage of increase in MOTA
(% a), percentage of decrease in misses (% m), percentage of decrease in false
positives (% fp) and percentage of decrease in mismatches (% mm) obtained
with our system with respect to the real case in the videos of Table 2.
approach video n m n fp n mm % p % a % m % fp % mm

1. Ideal case
video 1

0 0 0
2. Real case 506 624 106
3. Ours 38 21 1 46,59% 74,10% 92,49% 96,63% 99,06%

1. Ideal case
video 2

0 0 0
2. Real case 994 1,579 139
3. Ours 391 903 42 31,23% 9,14% 60,66% 42,81% 69,78%

1. Ideal case
video 3

0 0 0
2. Real case 2,440 2,979 730
3. Ours 390 1,018 42 17,91% 36,99% 84,02% 65,83% 94,25%

We have tested our system for a traffic monitoring application. Fig. 2 dis-
plays some images of the videos processed in this section. In order to assess the
performance of our stand-alone multiple object visual tracker we construct our
own dataset using three videos with more than 1,000 objects. As performance
metrics we have used Multiple Object Tracking Precision (MOTP) and Multiple
Object Tracking Accuracy (MOTA)[9]. Our system has been compared with two
other approaches. The first one represents the ideal scenario in which the detec-
tor could be called in every frame of a video maintaining real-time performance,
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thus the low level tracking would not be necessary, simply a data association
based on IOU would be enough to match the ground truth in consecutive frames
(tracking-by-detection approach), named Ideal case. It is worth mentioning here
that in certain scenarios an assignment of ground truth bounding boxes by IOU
in successive frames does not necessarily have to provide the perfect result (100%
MOTP and 100% MOTA). However, it is always a good point to take as a ref-
erence to measure a tracking system. The second approach is the real case in
which we could only run detection two times per second on average to guarantee
real-time processing in the application, as an average call takes 0.39 seconds in
a FPN with ImageNet and ResNeXt101. The assignment is made by IOU as in
the previous case. This approach is named Real case, and represents the baseline
approach and it is the proposal that our system aims to significantly improve.
To guarantee a fair comparison, in those cases in which a new object appears
in the scene, this is added to the trackers list even though there is no detection
in that particular frame. This affects our proposal and the Real case approach
since they do not use detection at all the frames, unlike the Ideal case.

The results obtained in our dataset processing more than 1,000 objects are
shown in Table 2. In view of the results we can see a clear improvement of our
system with respect to the baseline, both in precision and accuracy, being in
some cases close to the ideal case.

Table 3 shows a breakdown of the accuracy of the system in misses, false
positives and mismatches. Misses are those ground truth objects that do not
have an associated tracker, false positives are trackers that do not follow any
real object and mismatches are identity switches. In view of the measures, we
can observe an increase up to 46% in precision and 74% in accuracy, highlighting
in the latter the maximum 99% of decrease in the number of mismatches thanks
to data association.

5 Conclusions

We have presented a stand-alone multiple object visual tracking system that
combines a DCF with a Kalman filter to handle occlusions, and solves the data
association with deep features. The system runs in real-time —including the
detector runtime— on a distributed architecture and, on a single CPU and GPU,
is able to track tens of simultaneous objects in HD 1080 video. The proposal has
been validated with several videos with more than 1,000 vehicles showing very
good MOTP and MOTA metrics for up to 60 concurrent objects. Moreover, a
fast version of the tracking system allows to track up to 180 simultaneous objects
with a performance that is suitable for real-life applications.
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