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Abstract

Computer vision systems for traffic monitoring represent an essential tool for

a broad range of traffic surveillance applications. Two of the most notewor-

thy challenges for these systems are the real-time operation with hundreds of

vehicles and the total occlusions which hinder the tracking of the vehicles. In

this paper, we present a traffic monitoring approach that deals with these two

challenges based on three modules: detection, tracking and data association.

First, vehicles are identified through a deep learning based detector. Second,

tracking is performed with a combination of a Discriminative Correlation Filter

and a Kalman Filter. This permits to estimate the tracking error in order to

make tracking more robust and reliable. Finally, the data association through

the Hungarian algorithm combines the information of the previous steps. To

show the applicability of the system in real-life scenarios, we present two traffic

application scenarios: anomaly detection in traffic monitoring and roundabout

input/output analysis. The evaluation of the system has been performed with

real-life video data sets with over 2,000 vehicles.
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1. Introduction

Traffic monitoring through computer vision systems allows solving tasks like

vehicle counting, accident detection, roundabout entry/exit analysis or assisted

traffic surveillance. The goal of a traffic monitoring system is to provide a

framework to detect the vehicles that appear on a video image, and estimate5

their position while they remain in the scene. A complete traffic monitoring

application requires the integration between detection and tracking. Besides, in

real-life traffic scenarios, two requirements are especially important: occlusion

handling and real-time performance, especially when there are many vehicles in

the scene.10

From the computer vision point of view, we can distinguish two different

approaches for tracking: low-level and high-level tracking. In this work, we

consider low-level trackers those algorithms that, once initiated with a detection

bounding box, estimate the position of the object in the new frame exploiting

just the visual information. They model the appearance of the object of interest15

by extracting features and then searching them in the subsequent frame [1, 2, 3].

These algorithms cannot handle total occlusions and do not provide a framework

for multiple object tracking. In addition, the best current solutions do not

operate in real-time with more than one object on a CPU [2, 4].

High-level trackers on the other hand, use, apart from visual features, more20

complex information to estimate the new object position, like probabilistic mo-

tion models, data association, maps of the environment, etc. In recent years,

the most standard solution to high-level tracking has been the tracking-by-

detection approach [5]. This framework considers the tracking task as a data

association problem between detections and trackers over time. Solutions to this25

approach offer a high-level of precision and robustness, some of them, with a re-

duced computational cost, but they assume the existence of reliable detections

in every frame of a video, which is a restriction for real-time performance in

a real-life application, as current state-of-the-art deep-learning based detectors

operate above 75 ms per frame [6]. In addition, many of them assume that the30
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detections are perfect, which in a real scenario is unrealistic as often there are

false positives, wrong framed or not identified objects.

In this paper, we present a detection and tracking system for traffic mon-

itoring that operates in real-time with multiple objects, and handles total oc-

clusions. The system is composed of a deep-learning based detector, a low-level35

Discriminative Correlation Filter (DCF) based tracker, a high-level Kalman Fil-

ter based tracker and data association based on the Hungarian algorithm. The

contributions of our proposal are:

• A traffic monitoring system that can process more than 400 vehicles

simultaneously in videos with HD resolution in real-time.40

• The system also handles occlusions by detecting the upcoming occlusion

and searching the occluded vehicle in a zone called Search ROI (Region-Of-

Interest) that is proportional to the error degree in the tracking process.

We provide a metric for on-line tracking failure detection by estimat-

ing the distance between two independent tracking methods allowing us45

to update the system’s tracking error accordingly.

• We extend our system for solving two real-life traffic applications:

roundabout I/O (Input/Output) analysis and traffic anomalies detection.

We perform experimental evaluation using state-of-the-art tracking met-

rics of the system and its extensions using more than 2,000 vehicles.50

The rest of this paper is structured as follows. Section 2 gives an overview

of closely related work. In Section 3 we explain the details of our approach.

In Section 4 we perform extensive experiments to validate our proposal and

introduce the traffic applications developed. Finally, conclusions are given in

Section 5.55

2. Related Work

Traffic monitoring systems detect and track all the vehicles in a video se-

quence. This task presents two main challenges: to manage total occlusions and
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to operate in real-time with multiple vehicles.

2.1. Detection60

The work in the field of object detection is mainly based on deep convo-

lutional neural networks (ConvNets). One of the first works in this area was

R-CNN [7] which uses a region proposal algorithm (such as selective search [8]

or edge boxes [9]) and applies a classification network to each of them. Im-

proving the previous approach, Fast-RCNN [10] introduces the regions in an65

intermediate stage of the network, thus, saving a lot of computing time. Fi-

nally, becoming the milestone in the object detection field, Faster-RCNN [11]

introduces a region proposal algorithm based entirely on a neural network called

the Region Proposal Network (RPN). The RPN uses the information from inter-

mediate layers of a standard classification network to provide different locations70

in which an object may appear.

To improve the performance of the proposal of regions in all possible scales,

Lin et al. [12] replicate the RPN from Faster-RCNN in several layers of the

network in which deeper feature maps are combined with shallower ones. The

shallower the layer the smaller the object it will locate. This approach, called75

Feature Pyramid Network (FPN) obtains outstanding results as shown in the

COCO detection challenge 2016 [13]. All these approaches present a high level

of performance but, their main limitation is their computational cost, which

makes them harder to use in applications that demand real-time performance.

2.2. Tracking80

2.2.1. Low-level tracking

In recent years two alternative on-line approaches for low-level trackers have

dominated the state-of-the-art: Discriminative Correlation Filter (DCF) based

trackers, and deep-learning based trackers. On the one hand, DCF based track-

ers predict the target position training a correlation filter that can differentiate85

between the object of interest and the background. The first DCF solutions

were focused on a sole feature (commonly intensity values), and a single filter
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per tracked object [14]. From that point on, continuous increase in perfor-

mance has been made by incorporating multi-dimensional features [15] such as

Histogram of Oriented Gradients (HOG) [16] and color, implementing scale esti-90

mation [17] and other extensions like non-linear kernels [18], long-term memory

components [19] and others [20, 21]. Improvements in robustness and accuracy

have been made at the expense of decreasing the tracker speed, going from 172

fps in [18] to 0.3 fps for the 2017 Visual Object Tracking (VOT) winner C-COT

[2]. This increase in computational cost presents limitations for using the most95

advanced state-of-the-art tracking solutions in real-life applications. In addition,

low-level trackers still cannot cope with occlusions nor by themselves provide a

framework to deal with multiple objects.

On the other hand, deep-learning based trackers use ConvNets. In this

line of research, we can identify two dominant approaches: similarity learning100

and domain-specific learning. In the first one, a Siamese Neural Network [1]

replicates two generic architectures to compare a given object patch in one

branch with a sliding-window evaluation over a search image in the second

one. At that point, it computes a cross-correlation layer to obtain a similarity

measure between both branches. Representing the best performing solution of105

the domain-specific learning, Multi-Domain Network (MDNet) [4] proposes a

unified network with different last stage layers adapted for each training video

or domain. At the test phase, all the domain-specific layers are removed and a

single one is constructed and, to adapt it to the new domain, on-line fine-tuning

is performed during tracking.110

Both commented approaches show excellent performance in tracking met-

rics in international challenges, with MDNet being the 2015 VOT winner [22].

This tracking algorithm, while achieving good performance, experiences some

limitations regarding real-time speed (1 fps) for a single object. Siamese Neu-

ral Network solves the tracking problem achieving also real-time performance,115

meeting a frame rate above 60 fps for only one object in the scene. Neverthe-

less, it is not straightforward to keep such a processing speed when extended to

multiple objects.
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2.2.2. High-level tracking

Due to the increase in performance of deep learning detectors in recent years,120

the task of tracking is increasingly being seen as a data association problem,

i.e. tracking-by-detection. In this approach, the primary concern is to assign

detections to trackers over time. Some international challenges [5] have emerged

to rank solutions to this problem, evaluating precision, robustness and speed

among other performance metrics. In the past few years, complex solutions to125

this tracking approach that obtain outstanding results have appeared. Some

of them focus on extending traditional high-level tracking approaches. Kim

et al. [23] and Chen et al. [24] propose extensions to the classical multiple

hypotheses tracking (MHT) [25]. The former introduces on-line appearance

representations and the latter enhances the detection model of classical MHT.130

Others emphasize the need to efficiently combine multiple cues over a long

period of time [26, 27, 28]. Ultimately, some work has emerged to provide

algorithms specialized in tracking and identification of non-rigid objects [29, 30].

All these approaches have demonstrated good performance in classic multiple

object tracking metrics as commented before. Their fundamental limitation135

is the speed, as none of the work discussed in this section shows performance

metrics above 2.6 Hz even without accounting for the detection time. This is

clearly a limitation for real-time applications in which tracking is merely one

of the modules involved. Still, solutions like [? ] and [31] trade simplicity for

speed assuming reliable detections at every frame, which is clearly far from a140

real situation even with today high performance video object detectors [32].

2.2.3. Traffic monitoring

Some work in the traffic monitoring field has been done in the recent years

[33]. In [34], vehicle counting is performed employing an environment segmen-

tation strategy. In [35] a tracking approach using background subtraction and145

Kalman filter tracking to tackle the data collection in roundabouts is proposed.

These approaches usually run at real-time speed due to the use of background

subtraction for detecting mobile objects. These object identification methods
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could represent a limitation in scenarios that present camera movement (on-

board cameras), shadows, image artifacts, or objects that appear very close150

to each other since they usually are identified as only one by the background

subtraction algorithm.

3. Video Traffic Monitoring

DATA ASSOCIATION

TRACKING DETECTION 

Tracker 

Detector  Low­level 
Tracker 

Kalman Filter 
(Prediction) 

Search ROI
Estimation 

Cost Function  Hungarian
Algorithm

Kalman Filter 
(Update) 

Figure 1: Traffic monitoring system.
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We propose a complete traffic monitoring system that combines tracking and

detection and can operate as a baseline for multiple applications.155

3.1. System Overview

Our system is made up of three blocks (Figure 1): detection, tracking and

data association. To detect vehicles in an image, we use a deep learning based

detector. For tracking, we combine a DCF-based tracker with a Kalman-based

one, which enables to calculate a failure detection metric to identify occluded160

vehicles. Finally, in the data association module, we assign each detection with

its correspondent tracker through the Hungarian method [36, 37] and perform

an update of the trackers.

Algorithm 1: Traffic Monitoring System

Require:

(a) Imt : Image frame at current time t

(b) Φt−1 = {ϕ1
t−1, ϕ

2
t−1, . . . , ϕ

n
t−1}

1 Function Main(Imt , Φt−1):

2 Φt =Tracking Prediction(Φt−1,Imt)

3 if time elapsed > τ then

4 Ψt =ConvNet Detect()

5 Φt =Tracking Update(Φt,Ψt,Imt)

6 else

7 Φt = Φt

8 return Φt

Algorithm 1 presents the main steps of the system. The inputs to the system

at every time instant t are the new frame (Imt) of the video, and the set of165

trackers in the previous time instant (Φt−1). First, the trackers positions in

the new image (Imt) are calculated (Algorithm 1, line 2 —Alg. 1:2—). This

is done by combining two trackers: a DCF and a Kalman one (Section 3.2).
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Then, if the time elapsed between detections is over a certain threshold τ (Alg.

1:3), the detection of the objects of interest (Ψt) in the current image Imt is170

performed through a ConvNet (Alg. 1:4). In practice, τ is set to the minimum

time value that allows the system to achieve real-time performance. Detection

is performed with a fully convolutional network called FPN [12], which uses

feature maps information at different scales to locate from small to large objects,

through a pyramidal architecture with lateral connections between them. The175

FPN provides high precision at a high computational cost, taking about 130

ms to perform a full detection in an HD image. Thus, clearly, a deep learning

solution for detection does not suffice to comply with real-time requirements,

which makes tracking necessary. After detection, trackers are updated (Alg. 1:5,

Section 3.3). If no detection is performed at current time t, tracking prediction180

alone (Φt) determines the current trackers state (Φt, Alg. 1:7).

3.2. Tracking Prediction

Alg. 2 describes the trackers prediction. First, the system estimates the

position of the trackers in the new frame (Imt) using DCF tracking. Our tracker

is based on the Discriminative Scale Space Tracker (DSST) [17], which is a185

correlation-filter-based tracker [14]. It uses HOG [16] and color as features for

the correlation filter that models the tracked object.

In Alg. 2:3 the correlation scores Yt are computed considering a sample St,

extracted from Imt and the previous filter information formed by Wt−1 and

Xt−1. λ is a weight parameter and d is the feature dimension of the correlation190

filter. The maximum value of Yt —taking the inverse Discrete Fourier Transform

(DFT)— will be the center of the object in the new image (ζt) as shown in Alg.

2:4. Then, the filter is updated at Alg. 2:5-6, where F is a target sample

extracted from Imt at position ζt, G is the desired correlation output and η is

a learning rate parameter. In practice, we use two DCFs, one for estimating195

translation and another one for scale change. Tracking based just on DCF

trackers has two limitations. First, we cannot handle occlusions (Figure 2).

Second, it does not provide a robust tracking failure detection (i.e. knowing
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Algorithm 2: Tracking Prediction

Require:

(a) Imt : Image frame at current time t

(b) Φt−1 = {ϕ1
t−1, ϕ

2
t−1, . . . , ϕ

n
t−1}

1 Function Tracking Prediction(Φt−1,Imt):

2 for i = 1 to n do

3 Yt =
∑d

l=1W
l
t−1S

l
t

Xt−1+λ

4 ζt = max(F−1{Yt})

5 W l
t = (1− η)W l

t−1 + ηGF lt , l = 1, .., d

6 Xt = (1− η)Xt−1 + η
∑d
k=1 F

k
t F

k
t

7 µ̄t = At µt−1

8 Σ̄t = At Σt−1 A
T
t +Rt

9 κ = δ[1− exp{−(ζt − c(µ̄))T

10 (CtΣ̄tC
T
t +Qt)

−1 (ζt − c(µ̄)}]

11 Qt = Qt κ

12 Kt = Σ̄t C
T
t (Ct Σ̄t C

T
t +Qt)

−1

13 Σt = (I −Kt Ct)Σ̄t

14 ϕit ←< Wt, Xt, µ̄t,Σt, Qt >

15 return Φt

when the tracking fails) as the PSR (Peak to Sidelobe Ratio) value [14], which

measures the spread degree of the convolution operation of the correlation filter,200

is not a reliable measure. As shown in Figure 3, the PSR takes different threshold

values for different videos and scenarios, which makes difficult to identify when

a tracker is lost.

To provide a solution to both problems, we introduce a Kalman Filter (KF)

tracker that, by modeling the movement of the object can handle occlusions and,205

in combination with the DCF tracker, can estimate the error in the tracking

process. So, once the vehicle’s new position is calculated by the DCF tracker
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(a) DCF Tracker

(b) DCF+KF Tracker

Figure 2: (a) The low-level DCF tracker (in green) cannot recover the identity of the object

once occluded as it only relies on appearance. (b) The combination of a DCF and a KF

manages occlusions, as it also takes into account the object motion model. Images courtesy

of Aplygenia S.L.

(a) (b) (c)

Figure 3: PSR values are poor predictors of tracking failures for the DCF tracker.(a) An ideal

case in which PSR values predict correctly a tracking failure. (b) A vehicle is being tracked

correctly but the PSR distribution indicates a tracking loss. (c) Tracking loss is not detected

by PSR as the values do not change in both situations. Images courtesy of Aplygenia S.L.

(ζt), we estimate the position using the Kalman filter. We use a linear constant

velocity model in the KF, so the state of each vehicle is modeled as:

µ := [x, y, vx, vy] (1)
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Here x and y represent the position of the object, and vx and vy represent210

the linear velocity in both axes. We perform Kalman prediction in Alg. 2:7-8:

µ̄t is the predicted state mean, A is the transition matrix, Σ̄ is the predicted

covariance of the system and R is the process noise covariance matrix. At this

point we have two independent estimations of the new vehicle position: DCF

(ζt) and Kalman (µ̄t).215

In order to measure the agreement degree of both estimators, we use the

Mahalanobis distance, which measures the distance between a point and a dis-

tribution. We express this distance as the uncertainty that represents how un-

likely both positions correspond to the same tracker (Alg. 2:10), where c(µ̄) is

the expected position of the object estimated by the KF, Ct is the Jacobian ma-220

trix of c (measurement model), Qt is the measurement noise covariance matrix,

and δ is a normalization factor. With this uncertainty (κ), we update accord-

ingly the covariance of the measure Qt (Alg. 2:11): the higher the uncertainty

in both positions corresponding to the same object, the higher the covariance.

When one of the estimators fails to track an object (i.e. occlusion), the distance225

between the positions of the trackers increases and so does the uncertainty.

This is an important feature because it permits to detect tracking failures, thus,

maintaining a more reliable estimation of the object position during the time

elapsed through a larger covariance matrix. Then, we perform a partial cor-

rection (Alg. 2:12-13) of the covariance Σ not only every time we integrate a230

measure performing a full correction (Alg. 3), but with every prediction as well.

At this point we integrate in every tracker ϕit the new calculated information,

which is represented in a new set Φt (Alg. 2:14-15).

3.3. Tracking Update

The tracking update process is shown in Alg. 3. First, the algorithm esti-235

mates the area in which the vehicle might be in the current frame. We call this

area our search ROI. This search ROI is a rectangle centered at µ̄t and with a

size proportional to Σt (Alg. 3:3, Figure 4).

Next, data association assigns every detection to its corresponding tracker.
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(a) (b) (c) (d)

Figure 4: Creation of a search ROI for occlusion handling. (a) Both tracking methods agree on

the object position. (b) As the DCF fails to track the occluded object, the distance between

both estimations increases and so it does the search ROI. This process continues in (c) and

finally in (d), when the detector finds the vehicle at the other side of the road and the tracker

recovers. Images courtesy of Aplygenia S.L.

The first step is to identify the possible detections that are candidates to be240

assigned to a particular tracker. In our case, a detection (ψjt ) that has an

IoU (Intersection over Union) > 0 [38] with a tracker’s search ROI (SROIit)

is considered a candidate for the assignment (Alg. 3:5). Once a detection

has already been established as a candidate, we calculate the cost of association

ω(i, j) as the Mahalanobis distance between the position predicted by the tracker245

(c(µ̄t)) and the center of the measurement provided by the ConvNet (zt) (Alg.

3:6-8). If there is no overlap (IoU) the association between the tracker ϕ̄it and

a detection ψjt is not possible, and the cost of association is set to infinite (Alg.

3:10). With this information, a cost matrix is generated. Every element of the

matrix represents the cost of associating a detection (ψjt ) with a tracker (ϕit).250

That results in an assignation problem that is solved in polynomial time by the

Hungarian Method (Alg. 3:11). For every successful assignation (< ϕαt , ψ
β
t >)

we reset the DCF tracker of ϕαt at position ψβt , and perform an update of its KF,

obtaining the new mean (µt) and covariance (Σt) of the filter (Alg. 3:13-16).

Finally, every tracker ϕit in Φt (Alg. 3:17-18) is constructed with Wt, Xt and255

Qt from the previous prediction step, and µt and Σt from the current update

step.
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Algorithm 3: Data Association and Tracking Update

Require:

(a) Imt : Image frame at current time t

(b) Φt = {ϕ1
t , ϕ

2
t , . . . , ϕ

n
t }

(c) Ψt = {ψ1
t , ψ

2
t , . . . , ψ

m
t }

1 Function Tracking Update(Φt,Ψt,Imt):

2 for i=1 to n do

3 SROIit =Calc SearchROI(µ̄t,Σt)

4 for j=1 to m do

5 if
SROIit

⋂
ψj

t

SROIit
⋃
ψj

t

> 0 then

6 zt = ψjt .center

7 ω(i, j) = [(zt − c(µ̄t))T

8 (CtΣtC
T
t +Qt)

−1 (zt − c(µ̄t))]

9 else

10 ω(i, j) =∞

11 {< ϕαt , ψ
β
t >} =Hungarian (ω)

12 for every α, β in {< ϕαt , ψ
β
t >} do

13 DCF Reset (ψβt )

14 Kt = Σ̄t C
T
t (Ct Σ̄t C

T
t +Qt)

−1

15 µt = µ̄t +Kt(zt − Ctµ̄t)

16 Σt = (I −Kt Ct)Σ̄t

17 ϕit ←< Wt, Xt, µt,Σt, Qt >

18 return Φt

4. Results

In this section, we evaluate our system in three different scenarios. Section

4.1 presents a comparison between a single DCF tracker and a combination260
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between a DCF and a Kalman filter trackers (DCF + KF). In Section 4.2,

we explore the computational cost of the different parts of our system and

its implementation for real-time performance. In Section 4.3, we evaluate our

system in a real-life scenario for roundabout monitoring. Finally, in Section 4.4

we introduce our solution for anomaly detection in traffic roads.265

4.1. Comparison between DCF and DCF+KF

In this section we compare the core of our tracking system — the DCF

tracker plus the Kalman Filter — with a DCF baseline, in order to show the

increase in robustness metrics by adding a motion predictor even in scenarios

that do not present occlusions. In order to guarantee a fair comparison we will270

remove the following components from our complete system: (i) the ConvNet

detector — we will use the ground truth detections; (ii) the tracking detection

failure module; (iii) the data association module — association is based on IoU

[39].

The dataset has three real-life videos provided by the DGT 1 with more275

than 1,000 vehicles with a frame rate of 15 fps and without total occlusions, for

a fair comparison (Figure 5 and Table 1). We measure the performance with

standard multiple object tracking metrics [39].

(a) (b) (c)

Figure 5: Example frames of our video dataset to evaluate tracking metrics. These videos are

from traffic monitoring cameras. Images courtesy of DGT.

1Dirección General de Tráfico (DGT) is the Spanish Traffic Authority [40].
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Video Frames Vehicles Time

DGT 34001 4,900 221 0:05:26

DGT 39132 15,050 575 0:16:43

DGT 39151 2,345 244 0:02:36

Total 22,295 1,040 0:24:46

Table 1: Dataset with more than 1,000 different vehicles in more than 20 minutes of video to

evaluate tracking metrics.

In every frame we have a set of hypotheses (our trackers) and a set of objects

(labeled ground truth). We assign to every hypothesis its nearest object with280

IoU > 0. For every successfully assigned pair, we measure the IoU between

the two bounding boxes to estimate the multiple object precision (MOTP). To

estimate the multiple object accuracy (MOTA) or robustness we count every

hypothesis without an associated object as a false positive, every object that

has no associated hypothesis as a miss and, finally, every assignation of identity285

(ID) that differs from the last frame’s ID as a mismatch.

Also, in order to simulate a real-life scenario in which we cannot perform de-

tection in every frame to achieve real-time performance, we varied the frequency

of the detections (obtained from the ground truth) from once every 5 frames to

once every 30 frames. To identify tracking failure, we use the PSR value. As290

the PSR is not a reliable metric, we repeated the experiments for different PSR

thresholds. Finally, when detections are available, all trackers are reinitialized.

Results for MOTP are shown in Figure 6. As we can see, DCF+KF achieves

more precision than DCF independently of the PSR threshold, but the differ-

ences are negligible. This is an expected result as the objective of adding a KF295

is to increase robustness.

MOTA metrics are shown in Figure 7. DCF+KF shows more robustness

than DCF for every combination of PSR value and number of frames between

detector calls. The higher the number of frames between detector calls, the

higher the improvement of DCF+KF over DCF — 5% of improvement for 25300
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Figure 6: MOTP results for DCF and DCF+KF with several PSR thresholds and different

number of frames between detector calls for the videos outlined in Table 1.
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Figure 7: MOTA results for DCF and DCF+KF with several PSR thresholds and different

number of frames between detector calls.
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Version Reinit. M FP MM M(%) FP(%) MM(%)

DCF 5 168 1,091 84
17.2% 30.9% 402.9%

DCF+KF 5 143 834 17

DCF 10 639 2,102 164
34.9% 24.0% 381.3%

DCF+KF 10 474 1,695 34

DCF 15 1,285 2,540 205
40.7% 12.5% 387.2%

DCF+KF 15 913 2,258 42

DCF 20 1,949 2,806 209
45.8% 10.0% 353.4%

DCF+KF 20 1,336 2,551 46

DCF 25 2,704 2,788 201
42.9% 13.0% 277.5%

DCF+KF 25 1,892 2,468 53

DCF 30 3,309 2,951 197
43.7% 3.7% 205.6%

DCF+KF 30 2,302 2,846 65

Table 2: Reinitializations (Reinit), Misses (M), false positives (FP) and mismatches (MM)

in the videos of Table 1 for a PSR threshold of 13 (standard). The right columns show the

improvement of DCF+KF over DCF.
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and 30 frames. This is important for a real-time application because the deep

learning detector can be executed only at some time instants.

This increase in robustness is detailed in Table 2, analyzing the misses, false

positives and mismatches. The largest reduction of failures is in the number of

mismatches. This is because the KF allows keeping the identities of the objects305

for longer periods, which results in an improvement between 200% and 400%

compared with DCF. This improvement is of key importance for roundabout

monitoring as each mismatch represents a failure and has a negative impact on

the success rate in the final system. Also, for detecting anomalies on traffic

roads, we need to maintain the identity of the vehicles as long as possible to310

ensure that the correct alarm is triggered. In conclusion, the results obtained

support the addition of a Kalman filter to a DCF tracker as the core of our

tracking system due to the increase in robustness while keeping precision.

4.2. Implementation details

The proposed system (Figure 1) runs on a server with an Intel Xeon E52623v4315

2.60 GHz CPU, 128 GB RAM and an Nvidia GP102GL 24GB [Tesla P40] as

GPU. Figure 8 shows how the system works for a 30 fps HD video. The sys-

tem performs tracking in one of every 3 frames and detection in one of every

6 frames. Also, these two tasks are completely parallelized by threads. With

these frequencies, the robustness of our system is not affected.320

Table 3 shows the times of the two most computational expensive operations

of our system: detection and tracking — computing times of other tasks are

negligible. As explained before, for a 30 fps HD video, the tracking module

processes 1 of 3 frames, which gives 0,1 seconds per frame. Using 15 threads

for parallelization, the system is able to process more than 400 objects in the325

image while maintaining real-time performance, i.e. 30 fps — the maximum

number of objects at any given time in our videos was 60. As mentioned before,

detection is the slowest part of our system, taking an average 0.135 seconds in

an HD image and 0.075 seconds in VGA resolution. These values are below the

0.2 threshold required by the system for the detection module.330
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Detection  Tracking 

tracking: 3 frames 

detection: 6 frames 

Figure 8: Frame processing of our system with an input video. We show the first 15 frames

as an example. The system performs tracking one of every 3 frames (orange), and detection

one of every 6 frames (blue).

Tracking

Frames processed

by second
10 frames of 30

Total max. time with

parallel computing

0.0121 sec

(60 objects, 15 threads)

Max. number

of objects in

0.1 sec

492 objects

Detection

Frames processed

by second
5 frames of 30

Average time per

HD image
0.135 sec

Table 3: Computational times for the tracking and detection modules of the traffic monitoring

system.
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4.3. Roundabout Monitoring

In this section, we analyze our complete system (Figure 1) for roundabout

monitoring. The objective of the system is to identify the entry and the exit

a vehicle takes, maintaining its identity while it remains in the roundabout.

The final goal is to provide the I/O matrix R, in which every element (R(i, j))335

represents the number of vehicles that joined the roundabout taking entry i and

exit j. If a vehicle enters the roundabout and exits it with the same ID we count

that as a tracking success. On the contrary, if the identity changes along the

video, then we count that vehicle as a tracking failure.

(a) (b)

(c) (d)

Figure 9: Example frames of some videos of the roundabout monitoring dataset. These videos

are recorded from an UAV flying over a roundabout. Images courtesy of Aplygenia S.L.

For performing the metrics, we use a video dataset which consists of eight340

videos of roundabouts recorded from an Unmanned Aerial Vehicle (UAV) at 30

fps with HD resolution. The videos have different conditions that are challeng-
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ing for traffic monitoring: shadows, total occlusions (two level roads), camera

movement, etc. Figure 9 shows a snapshot of some of these videos 2.

Table 4 shows the results obtained from processing the I/O matrix of eight345

videos with more than 1,000 vehicles in total. An average success rate of 93%

is obtained. Results also show our system’s ability to handle occlusions as two

of the videos are scenarios with a high rate of total occlusions: in one of them

the 50% of the vehicles are totally occluded nearly twice on average.

Video #occ #vocc Time (min:sec) #vehicles Success

usc vr 1 308 160 05:11 320 86,50%

usc yt 1 01:43 13 100%

usc yt 2 00:30 15 93%

usc yt 3 00:45 14 100%

usc pl 1 11:12 138 88%

usc rb 1 11:48 230 95%

usc sx 1 09:26 255 91%

usc ou 1 22 11 02:49 52 96%

Total 330 171 43:40 1,037 93,36%

Table 4: Results in the video dataset for roundabout monitoring. The columns are: video,

number of occlusions (#occ), number of vehicles occluded (#vocc), duration of video, total

number of vehicles (#vehicles) and success rate obtained by our tracking system.

4.4. Anomaly Detection in Traffic Monitoring350

Another application of the traffic monitoring system is anomaly detection.

The objective is to identify possible anomalies on a road, like: sudden stops

(sometimes produced by crashes), vehicles that circulate at an inappropriate

velocity or vehicles that move in a direction different to the usual on that road.

2A demonstration video can be downloaded from: http://bit.ly/roundabout_sample_

video
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(a) (b) (c)

Figure 10: Examples of the movement map generated in traffic videos for accident detection.

For each cell we show just the mean angle. Images courtesy of DGT.

(a) (b) (c)

Figure 11: Example of an alarm for a vehicle moving in a wrong direction. In (a) the system

detects an object moving with a direction contrary to the usual one in that lane, so an alarm

is launched. In (b) the system keeps tracking the object despite being totally occluded. In

(c) the system continues the tracking after the occlusion, keeping the same id and the alarm.

Images courtesy of DGT.

First, the system has to generate the movement map of the road. We do355

that by dividing the image into grid cells. Each one of the cells has two moving

averages: one for the angle and the other for the velocity. We update the

movement map with the tracking information that our traffic monitoring system

provides. Figure 10 shows the movement map calculated for three traffic videos.

The alarms are fired based on a probabilistic Gaussian model of the velocity and360

direction in the cells of the map occupied by the vehicle. Thus, when the velocity

or direction of the vehicle differs from the standard ones, an alarm is triggered.

The model also takes into account that the velocity and/or direction in the area
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(a) (b) (c)

Figure 12: Example of an alarm for an accident. In (a) a motorcycle crashes with a car. In

(b) the system detects both vehicles as static in a lane that has movement, so it triggers an

alarm. Finally in (c) the system keeps triggering alarms for every car that stops in that area.

Images courtesy of DGT.

(a) (b) (c)

Figure 13: Frames of a video that has both alarms. In (a) a truck starts to derail. In (b)

the system detects an anomaly in the second lane when the truck invades it so it triggers

the wrong direction alarm. In (c) when the crashed truck remains static the system triggers

the velocity alarm and it does the same for every truck that moves with abnormal velocity

(reduced speed). Images courtesy of DGT.
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can change, and an alarm might be switched off due to this. Figures 11, 12 and

13 show detected alarms in three different traffic scenarios.365

5. Conclusions

We have presented a traffic monitoring system that combines a ConvNet

detection, DCF and Kalman trackers, and a Hungarian data association. The

system is able to track hundreds of objects in real-time while being robust to oc-

clusions. The combination of the DCF and Kalman filters allows to: (i) improve370

both the precision and, especially, the robustness, obtaining an improvement of

up to 402,9% in the number of tracking mismatches; (ii) estimate the error of

each tracker, thus increasing the robustness and reliability of the system. We

have applied the traffic monitoring system to two different real-life applications.

First, in roundabout monitoring, our system achieves a 93% success rate for the375

I/O matrix, even in cases with high occlusion rates, shadows and movement of

the UAV onboard camera. Second, for anomaly detection in traffic monitoring,

the system identifies accidents on roads, sudden stops, abnormal speeds and

vehicles that move in the wrong direction, triggering an alarm in any of these

scenarios.380
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