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Abstract

This paper proposes a regression Genetic Fuzzy System (GFS, FRULER) for a
problem of sea wave parameters estimation from neighbor buoys, with application
on wave energy systems. FRULER is a recently proposed, three-staged algorithm
that combines an instance selection method for regression, a multigranularity fuzzy
discretization of the input variables and an evolutionary algorithm to generate accu-
rate and simple Takagi-Sugeno-Kant (TSK) fuzzy rules. We have applied FRULER
to a real problem of significant wave height and energy flux prediction in one buoy
of the West Coast of the USA (California), from values of other two neighbor buoys.
In the case of the significant wave height, FRULER is able to obtain a robust pre-
diction with only three rules, which in addition are fully interpretable, since they
clearly separate swell situations from wind-sea in the prediction. In both cases, the
variables used in the significant wave prediction are completely different and can
be identified as relevant for the specific case (swell or wind-sea). In the case of the
energy flux prediction, the interpretation of the rules provided by FRULER is more
difficult, since eight rules are necessary to obtain the prediction. Even in this case,
several rules can be clearly classified as swell predictors, and the rest of the rules
describe local wind situation of waves. This study shows that the GFSs are use-
ful tools to obtain robust and interpretable predictions in ocean wave parameter
estimation problems.
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1 Introduction

Sea waves parameters prediction problems play an important role in many
different ocean engineering tasks, such as the design of marine structures like
oil platforms or harbours [1,2] or in the design and management of marine
energy systems [3,4], like the proper operation of wave energy converters [5],
among others. Among the different sea wave parameters, the significant wave
height (Hm0) and the wave energy flux (P ) are the two most studied in the
literature. In the case of Hm0 , it is usually estimated using in-situ sensors, such
as buoys, recording time series of wave elevation information. The significant
wave height prediction is useful for a number of ocean engineering systems,
including facilities safety in situations of severe weather [6,7]. Regarding the
sea wave energy flux P , it is more related to marine energy [8,9], which is
currently one of the most promising sources of renewable energy, still minor
at a global level, but playing a major role in several offshore islands [10,11].
In this case, the accurate estimation of the wave energy flux P is relevant
to characterize the wave energy production from Wave Energy Converters
(WECs) facilities [12].

The research work on wave parameters’ prediction systems has been intense
in the last years, with special incidence in machine learning or soft-computing
approaches. One of the first works on this topic was the direct prediction of
Hm0 using artificial neural networks in [13]. Improvements on this prediction
system were further presented in [14]. Neural networks have also been applied
to other problems of Hm0 and P prediction, such as [15], where Hm0 and P are
inferred from observed wave records using time series neural networks. In [16] a
neural network is applied to estimate the wave energy resource in the northern
coast of Spain. In [18] and [19] different hybrid algorithms mixed with an
Extreme Learning Machine neural network were proposed for the estimation of
Hm0 and P , in the context of marine energy applications. Alternative methods
based on different computational approaches have been recently proposed.
For example, in [20] different soft-computing techniques are tested for Hm0

prediction. Support Vector regression (SVR) has also been applied to marine
energy related problems such as in [21]. Similarly, [22] and [23] proposed to
feed SVR approaches with information from radar sources in order to obtain
an accurate prediction of Hm0 and P parameters. Classification approaches
have been applied in [24] to analyze and predict Hm0 and P ranges in buoys
for marine energy applications. In [25], use of genetic programming for Hm0

reconstruction problems was proposed.

∗ Corresponding author: Sancho Salcedo-Sanz. Department of Signal Processing
and Communications, Universidad de Alcalá. 28871 Alcalá de Henares. Madrid.
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In spite of this important research work on the application of different Soft-
Computing approaches in wave parameters prediction, the use of fuzzy-based
systems in this field is still under exploration. One of the first works on the
application of fuzzy systems to wave parameters estimation is [34], where the
performance of an Adaptive-Network-Based Fuzzy Inference System (ANFIS)
in a problem of wave parameters estimation is investigated on real data from
lake Ontario. In [31] a Takagi-Sugeno-rule-based Fuzzy Inference System (FIS)
was developed for forecasting sea wave parameters. Input data such as wind
speed and direction, and lagged-wave characteristics were used in this case.
The model was successfully applied to data from an oceanographic buoy de-
ployed in the Aegean Sea (Greece). In [32] a forecasting system based on the
combination of wavelet and fuzzy logic approaches was proposed, for wave
parameters prediction up to 48 hours. The idea of the system is to use the
wavelet technique to separate time series into its spectral bands, and then
these spectral bands are estimated individually by the fuzzy logic approach.
Results in different deep sea and coastal buoys of the Pacific coast of the USA
are shown. In [17] a hybrid genetic algorithm-adaptive network-based fuzzy
inference system model was developed to forecast Hm0 and the peak spec-
tral period at lake Michigan. In [33] a neuro-fuzzy approach is used to define
spatial variability of the significant wave height assumed as a regionalized vari-
able, in such a way that it is possible to estimate the significant wave height
values of a selected station from neighboring stations which exhibit similar
features. Experiments with buoys in the Gulf of Mexico show the performance
of this approach. In [27] Fuzzy Inference Systems (FIS) are combined with
Adaptive Network-based Fuzzy Inference Systems (ANFIS) for the modelling
of non-stationary time series for an improved prediction of wind and wave
parameters. This system was tested with data from weather models in the
North Atlantic.

In this paper we propose the application of FRULER [39] (a Genetic Fuzzy
System (GFS) for regression [40,41]), in a problem of sea wave parameters
estimation from neighbor buoys. FRULER is based on Takagi-Sugeno-Kant
(TSK) rules, and it is composed of an instance selection method for regres-
sion, a multi-granularity fuzzy discretization of the input variables, and an
evolutionary algorithm that uses a fast and scalable method with Elastic Net
regularization to generate accurate and simple TSK-1 fuzzy rules. We show
the performance of FRULER in a problem of Hm0 and P estimation using
three buoys in the West Coast of the USA (California). Results are discussed
in terms of the good interpretability of the obtained rules, which allow an
intuitive explanation of the wave parameters reconstruction using a reduced
number of rules and predictive variables.

The rest of the paper is organized as follows: next section details the calcu-
lation of the parameters of interest in ocean wave characterization, Hm0 and
P in this case. Section 3 presents the TSK rules, which are learned through
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FRULER. Section 4 briefly describes the main components of FRULER [39]:
the instance selection method, the multi-granularity fuzzy discretization, and
the evolutionary algorithm. Section 5 presents the experimental part of the
paper, where the performance of FRULER is tested for Hm0 and P predictions
in the Western coast of the USA. Finally, Section 6 closes the paper with some
final conclusions and remarks on this research.

2 Wave parameters of interest: calculation of Hm0 and P

The accurate characterization of wave parameters is essential in the evalua-
tion of marine systems. Specifically, in the case of wave energy plants or wave
energy converters, it is necessary to characterize the amount of wave energy
available at a particular location, which is given by parameters such as Hm0

and P . In order to obtain these parameters, it is necessary to focus on the
water surface, and take into account the framework of the linear wave theory,
in which the vertical wave elevation (η(r, t)) at a point r = (x, y) on the sea
surface at time t can be assumed as a superposition of different monochromatic
wave components [28,29]. This model is appropriate when the free wave com-
ponents do not vary appreciably in space and time (i.e., statistical temporal
stationarity and spatial homogeneity can be assumed [29]).

In this model, the concept of “sea state” refers to the sea area and the time
interval in which the statistical and spectral characteristics of the wave do
not change considerably. The parameters of a given sea state are then the
combined contribution of all parameters from different sources. For example,
the “wind sea” occurs when the waves are caused by the energy transferred
between the local wind and the free surface of the sea. The “swell” is the
situation in which the waves have been generated by winds blowing on an-
other far area (for instance, by storms), and propagate towards the region of
observation. Usually, sea states are the composition of these two pure states,
forming multi-modal or mixed seas. In a given sea state, the wave elevation
η(r, t) with respect to the mean ocean level can be assumed as a zero-mean
Gaussian stochastic process, with statistical symmetry between wave maxima
and minima. A buoy deployed at point rB takes samples from this process,
η(rB, tj) j = 1,2,⋯, tMAX, generating thus a time series of empirical vertical
wave elevations. The Discrete Fourier Transform (DFT) of this sequence, us-
ing the Fast Fourier Transform (FFT) algorithm, allows estimating the energy
spectral density S(f). Its spectral moments of order n can be computed as
follows:

mn = ∫
∞

0
fnS(f)df. (1)
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The Significant Wave Height (SWH) is then defined as the average (in meters)
of the highest one-third of all the wave heights during a 20-minute sampling
period, and it has been widely researched. It can be calculated from moment
of order 0 in Equation (1), as follows:

Hm0 = 4 ⋅ (m0)1/2 (2)

On the other hand, the wave energy flux is a first indicator of the amount of
wave energy available in a given area of the ocean. Wave energy flux P , or
power density per meter of wave crest [30], can be computed as:

P = ρg
2

4π ∫
∞

0

S(f)
f

df = ρg
2

4π
m−1 =

ρg2

64π
H2
m0

⋅ Te, (3)

where ρ is the sea water density (1025 kg/m3), g the acceleration due to
gravity, Hm0 = 4

√
m0 is the spectral estimation of the significant wave height,

and Te ≡ T−1,0 = m−1/m0 is an estimation of the mean wave period, normally
known as the period of energy, which is used in the design of turbines for wave
energy conversion. Expression (3) (with Hm0 in meters and Te in seconds)
leads to:

P = 0.49 ⋅H2
m0

⋅ Te, (4)

measured in kW /m, which helps engineers estimate the amount of wave energy
available when planning the deployment of WECs at a given location.

3 TSK Fuzzy Rules

The TSK fuzzy rule model was developed by Takagi, Sugeno and Kang [36,37]
as a mathematical tool to fuzzily describe systems using rules, where the an-
tecedent is defined with linguistic variables and the consequent is represented
as a polynomial function of the input variables. These rules are usually de-
noted as TSK-0 for polynomials of order 0, TSK-1 for polynomials of order 1,
and so on. The most common function for the consequent of a TSK rule is a
linear combination of the {X1, . . . ,Xp} input variables (TSK-1):

If X1 is A1 and X2 is A2 and . . . and Xp is Ap then

Y = β0 +X1 ⋅ β1 +X2 ⋅ β2 + ⋅ ⋅ ⋅ +Xp ⋅ βp (5)

where Xj represents the j-th input variable; Aj is the linguistic fuzzy term for
Xj; βj is the coefficient associated with Xj in the consequent part of the rule,

5



representing the weight of the importance of each variable in the consequent
part; and Y is the output variable.

The final output of a TSK fuzzy rule base system with m TSK fuzzy rules can
be computed as the weighted average of each outputs Yk produced by each
rule, where the weight corresponds with the matching degree:

ŷ = ∑
m
k=1 hk ⋅ Yk
∑mk=1 hk

(6)

In Equation (6), the hk represents the weight applied to each output, and it is
computed as the matching degree between the antecedent of each rule rk and
the inputs (x1, x2, . . . , xp):

hk = T (Ak1(x1),Ak2(x2), . . . ,Akp(xp)) (7)

where Akj is the linguistic fuzzy term for the j-th input variable in the k-th
rule and T is the t-norm conjunctive operator, usually the minimum function.

One of the main advantages of the TSK fuzzy rule systems is that they rep-
resent a good trade-off between accuracy and interpretability due to:

● Full description of the input space using linguistic terms in the antecedent
of the rules.

● Ability to learn accurate solutions using different well-studied statistical
methods to optimize the coefficients of the polynomials.

● Easy understanding of the relationship between the inputs and outputs
using a linear combination of the input variables in the consequent of the
rules.

Although the interpretability of TSK fuzzy rules is not as easy a task as in
the case of the Mamdani approach [38], the use of TSK rules can still bring
useful information to many domains.

4 FRULER: Fuzzy RUle Learning through Evolution for Regres-
sion

FRULER (Fuzzy RUle Learning through Evolution for Regression) [39] is
a Genetic Fuzzy System that automatically generates accurate TSK-1 fuzzy
rules for regression problems 1 . The goal of FRULER is to generate fuzzy
knowledge bases with a high accuracy while keeping a low complexity in the

1 For a detailed description of FRULER, please refer to [39].
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learned rules. There is also a scalable distributed version of FRULER, which is
able to solve regression problems for Big Data [42]. The main three components
of FRULER consist of an instance selection method for regression, a multi-
granularity fuzzy discretization of the input variables, and an evolutionary
algorithm that uses Elastic Net regularization to generate simple and accurate
TSK-1 fuzzy rule bases. The first two components of FRULER are part of
a two-stage preprocessing step that was included in the algorithm in order
to improve the accuracy and simplicity of the fuzzy rules obtained by the
evolutionary algorithm.

4.1 Instance selection

The aim of the instance selection method is to reduce the variance of the
models by generating rules using the most representative examples. The tech-
nique is an improvement of the CCISR (Class Conditional Instance Selection
for Regression) algorithm [43], which is an adaptation for regression of the
instance selection method for classification CCIS (Class Conditional Instance
Selection) [44].

The selection process starts calculating a score for each of the instances based
on the distances to similar and different examples. Then, an initial core of
instances is selected, sorted by the score. After this, the instance selection
method iteratively selects instances and adds them to the set until the error
increases. Finally, in order to further improve the number of selected instances,
the method applies a post-processing step to select examples close to the
decision boundary.

4.2 Multi-granularity fuzzy discretization.

In this step, the fuzzy linguistic labels are automatically generated from data
through fuzzy discretization (Figure 1), using a multi-granularity approach
where each variable var is divided into i fuzzy labels, i.e., givar = {Ai,1var, . . . ,Ai,ivar}.

The generation of the fuzzy linguistic labels consists of a two-step process.
First, the variable is discretized to obtain a set of split points Cg for each
granularity g. These split points are generated in an interative way, adding a
new split point at each step to generate two new intervals, which preserves
the interpretability between contiguous granularities. Then, the fuzzy labels
are defined for each granularity using the selected split points. In FRULER,
the discretization process searches for the split point that minimizes the mean
squared error when a linear model is applied to each of the resulting intervals.
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Fig. 1. Example of multi-granularity discretization.

4.3 Evolutionary algorithm

Finally, the objective of the evolutionary algorithm is to learn accurate and
simple TSK-1 rule bases for a regression problem. The integration of the evo-
lutionary algorithm with the preprocessing stage is as follows:

(1) The instance selection process is executed over the training examples Etra
in order to obtain a subset of representative examples ES.

(2) The multi-granularity fuzzy discretization algorithm obtains the fuzzy
partitions for each input variable.

(3) The evolutionary algorithm searches for the best data base configuration
using the obtained fuzzy partitions, generates the entire linguistic TSK
rule base using ES and evaluates the different rule bases using Etra.

The chromosome in the evolutionary algorithm is codified with a double coding
scheme (C = C1 +C2). In this encoding C1 represents the granularity of each
input variable. In turn, C2 represents the lateral displacements of the split
points of the input variables fuzzy partitions.

FRULER uses the Wang & Mendel algorithm to create the antecedent part
of the rule base for each individual. The coefficients of the consequent part
of the rules, i.e., the importance weight of each variable in the consequent, is
automatically learned using the Elastic Net method [45]. Elastic Net linearly
combines the `1 (Lasso regularization) and `2 (Ridge regularization) penalties
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of the Lasso and Ridge methods, minimizing the following equation:

β̂ = arg min
β

∣∣Y −X ⋅ β∣∣22 + λ ⋅ α ⋅ ∥β∥22 + λ ⋅ (1 − α) ⋅ ∥β∥1 (8)

where β is the coefficients vector, Y is the outputs vector, X is the inputs ma-
trix, λ is the regularization parameter and α represents the trade-off between
`1 and `2 penalization. In order to solve the minimization problem of Elastic
Net (Equation (8)), we used Stochastic Gradient Descent (SGD).

The rule base is generated using only those examples in Es. This way, those
examples that are not representative are not taken into account and, therefore,
the method avoids the generation of too specific rules and reduces the time
needed to create the rule base.

The fitness function is:

fitness =MSE(Etra) =
1

2 ⋅ ∣E ∣
∣E ∣

∑
i=1

(F (x i) − y i)2 , (9)

where Etra is the full training dataset and F (xi) is the output obtained by
the knowledge base for input xi. Using all the examples for evaluation can be
seen, in some way, as a validation process, as the rule base was constructed
with a subset of them (ES).

5 Experiments and results

To evaluate the performance of the proposed approach, we present some ex-
periments in which we tackle the estimation of the significant wave height and
energy flux with FRULER. We focus on two aspects of the system: its inter-
pretability and accuracy. Furthermore, in order to validate that FRULER is
able to learn interpretable knowledge bases without loss of accuracy, we also
compare the results against two other accurate but non-interpretable state-of-
the-art predictive models.

5.1 Problem description

Figure 2 and Table 1 show the three buoys considered in this study at the
Western coast of the USA, and their main characteristics [46]. In this case we
consider the reconstruction of buoy 46069 from a number of predictive vari-
ables from the other two buoys. For this, 10 predictive variables measured at
each neighbor buoy are considered (a total of 20 predictive variables to carry
out the reconstruction). Table 2 shows details on the predictive variables for
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46069

46025

46042

Fig. 2. Western USA buoys considered in this study. In red the buoy where the Hm0

and P predictions are carried out from data of the blue buoys.

Table 1
Geographic coordinates and buoy’s description.

Characteristics Station 46025 Station 46042 Station 46069

33○44’58”N 119○3’10”W 36○47’29”N 122○27’6”W 33○40’28”N 120○12’42”W

Site elevation sea level sea level sea level

Air temp. height 4 m above site elevation 4 m above site elevation 4 m above site elevation

Anemometer height 5 m above site elevation 5 m above site elevation 5 m above site elevation

Barometer elevation sea level sea level sea level

Sea temp. depth 0.6 m below water line 0.6 m below water line 0.6 m below water line

Water depth 905.3 m 2098 m 1020.2 m

Watch circle radius 1327 yards 2108 yards 1799 yards

this problem. Data for two complete years (1st January 2009 to 31st December
2010) with a hourly time resolution were used. Note that complete data (with-
out missing values in both predictive and objective variables) are available for
the considered period in the three buoys.

5.2 Methodology

Data were divided into training and test sets in such a way that data from the
complete year 2009 were used for the training, and data from the complete
year 2010 were used for the test, to estimate how well the proposed approach
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Table 2
Predictive variables used in the experiments.

Acronym Predictive units

variable

WDIR Wind direction [degrees]

WSPD Wind speed [m/s]

GST Gust speed [m/s]

WVHT Significant wave height [m]

DPD Dominant wave period [sec]

APD Average period [sec]

MWD Direction DPD [degrees]

PRES Atmospheric pressure [hPa]

ATMP Air temperature [Celsius]

WTMP Water temperature [Celsius]

performs on unseen data. We trained each model using the training data set
and we measured the performance of the models on the test set in terms of the
Root Mean Square Error (RMSE) and the Nash-Sutcliffe Efficiency Coefficient
(CE). The coefficient of efficiency CE proposed by Nash and Sutcliffe is a
normalized statistic that determines the relative magnitude of the residual
variance compared to the measured data variance [47]. It is defined as:

CE = 1 − ∑
n
i=1(yi − F (xi))2
∑ni=1(yi − ȳ)2

(10)

where yi are the true observations and F (xi) are the predicted values. The
range of CE lies between (− inf,1], where a CE = 1 indicates a perfect fit, and
negative values of the coefficient indicates that the model performs arbitrarily
worse.

Finally, to validate the interpretability of the rules obtained with FRULER,
we analyzed the resulting knowledge bases, and we provide an explanation of
the different rules that are consistent with the underlying physical processes
of the observed phenomena.

5.3 Results

FRULER has been applied to the prediction of Hm0 and P from neighbor
buoys (Figure 2), obtaining accurate estimations but, also, highly interpretable
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Table 3
Comparison of the results obtained by the proposed FRULER with state of the art
algorithms for this problem.

Algorithm RMSE (Hm0) (m) CE (Hm0) RMSE (P ) (kW/m) CE (P )

FRULER 0.408 0.710 2.734 0.729

GGA-ELM 0.435 0.563 2.874 0.760

GGA-SVR 0.392 0.740 2.663 0.756

results supported by the underlying physical processes. First, we compare the
Root Mean Square (RMSE) error and the CE coefficient of FRULER with the
results of the state of the art hybrid algorithms in the same problem. Specif-
ically, we compare the performance of the FRULER approach with a hybrid
Grouping Genetic Algorithm – Extreme Learning Machine (GGA-ELM) and
a Support Vector Regression algorithm (GGA-SVR), reported in [19]. Table 3
shows the obtained results. As can be seen, FRULER performance is competi-
tive in terms of the quality of results obtained, with slightly better performance
than GGA-ELM and slightly worse results than GGA-SVR, both for Hm0 and
P predictions. Although the performance of all the algorithms is similar, GGA-
ELM and GGA-SVR are black-boxes approaches, whereas FRULER provides
fully interpretable results, accordingly to the physical characteristics of the
prediction problem. This is the main advantage of the prediction system pro-
posed in this paper. Moreover, the scatter plots of the predictions are shown in
Figures 3 and 4, where the reader can appreciate the similarity in the results
among the three methods compared.

Regarding the interpretation of the specific solutions found, first we analyze
the results for the Hm0 prediction case. Figures 5, 6 and 7 show the three
rules obtained by FRULER for the prediction of Hm0 , and the most important
variables involved in the final prediction. The variables on the left side of the
figures represent the multi-granularity dicretization of the variables in the
antecedent part of the rule, as automatically learned by FRULER. In Figure
5, variables MWD 46042 and GST 46025 were selected for the antecedent
part, and were discretized into two labels. We can interpret these labels as
“Low” and “High”. In the case of MWD 46042, the definition of “Low” goes
from 0 to 342, whereas “High” is interpreted as values above 221. Note that
values between 221.6 and 342 have different degrees of membership for “Low”
and “High” labels. As for the case of the GST 46025, “Low” means those
values between 0 and 21.2, and “High” above 5.7.

Panel on the right shows the weight of each variable in the consequent part,
i.e., the coefficient βj of each variable Xj. These are the values selected by
FRULER that minimize the expression represented in Equation (8), during
the learning process.

12



(a) (b)

0 1 2 3 4 5 6 7

H
m0

(theoretical) [m]

0

1

2

3

4

5

6

7

H
m

0
p
re

d
ic

te
d
 [
m

]

(c)

Fig. 3. Scatter plots in the problem of Hs prediction by the ELM, SVR and FRULER
approaches after the feature selection process with the GGA-ELM approach; (a)
ELM; (b) SVR; (c) FRULER

Following the definition of a TSK rule, as described in Equation (5), the TSK
rule represented in Figure 5 can be defined as:

IF MWD 46042 is “High” and GST 46025 is “Low” then

Y = 0.07 ⋅WSPD 46042 + 0.08 ⋅GST 46042 + ⋅ ⋅ ⋅ + 0.12 ⋅WTMP 46025 (11)

As can be seen, all the rules are triggered based only on two antecedent vari-
ables (MWD 46042 and GST 46025, i.e mean ocean waves direction and wind
gust), and they mainly correspond to two different physical situations of swell
(Rule 1 and Rule 3) and wind-sea (Rule 2). Recall that swell is defined as
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Fig. 4. Scatter plots in the problem of P prediction by the ELM, SVR and FRULER
approaches after the feature selection process with the GGA-ELM approach; (a)
ELM; (b) SVR; (c) FRULER

those ocean surface waves which are not generated by the immediate local
wind, but instead by distant weather systems, such as storms etc. Note that
swell is opposed to a locally generated wind wave (wind-sea), which is mainly
produced by local mechanisms such as wind blowing. In particular, for Rules
1 and 3, we are in a situation of swell in both cases, but the difference be-
tween them due to variable MWD (mean wave direction). Note that in Rule
1, the antecedent MWD 46042 goes from values of 221.6○ to 360○, whereas
in Rule 3, MWD 46042 covers a different range of directions from 0○ to 342○

approximately.

This affects the influence that the consequent variables have in the prediction
of Hm0 . For Rule 1, we can appreciate the great impact that the following
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Fig. 6. Rule 2 for the Significant Wave Height.
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Fig. 7. Rule 3 for the Significant Wave Height.

consequent variables have in the prediction: WVHT 46042, MWD 46042,
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Fig. 8. Predominant wave direction in Rule 1 for the Significant Wave Height.

PRES 46042, WVHT 46025, and PRES 46025. This is corroborated in Fig-
ure 5. On the other hand, in Rule 3, the consequent variables that affect the
most in the prediction ofHm0 are:WVHT 46042,MWD 46042,WVHT 46025,
DPD 46025, APD 46025, MWD 46025, ATMP 46025, and WTMP 46025.
Note how the value of Hm0 in both neighbor buoys is included in the predic-
tion, as expected, plus a number of alternative variables to make the prediction
more accurate. Figure 7 shows that, in Rule 3, the overall influence of the con-
sequent variables belonging to buoy 46025 is much higher than in Rule 1 — all
the variables from buoy 46025 but WSPD 46025 are important for the pre-
diction. This seems reasonable, since in this case the swell mainly comes from
the South, where buoy 46025 is located. Figures 8 and 9 show these two cases
of swell in relation with the MWD in buoy 46042. Note the clear difference in
the swell situation captured by each rule (swell from the North-west and swell
from the South).

Rule 2 shows a completely different scenario. This rule takes into account
wind-sea situations, which are characterized by an irregular sea, where local
meteorological values have more relevance than in the previous case of swell. In
this case, we must highlight the antecedent GST 46025 because it is decisive
to determine if we are in a swell situation or wind sea condition. In Rule
2, we can see that the values of GST 46025 go from 5.7 m/s to 21.2 m/s,
which are larger values than those in Rules 1 and 3 — label GST 46025 has
the maximum membership values in the range 0-5.7 m/s. This fact causes
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Fig. 10. Rule 1 for the Energy Flux.

higher wind gusts, that produce the physical situation of wind-sea, captured
in Rule 2. The variables with a higher influence in the prediction of Rule 2 are:
WSPD 46042,GST 46042,ATMP 46042, PRES 46025,ATMP 46025, and
WTMP 46025. It is very interesting to check out that the local meteorological
variables have more importance in this case, as shown in Figure 6.

Regarding the prediction of the wave energy flux P , FRULER provides 8 rules
(Figures 10 to 17), triggered based on 4 antecedent variables (WSPD 46042,
DPD 46042, MWD 46042 and WTMP 46042). Note that in this case, the
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Fig. 11. Rule 2 for the Energy Flux.
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Fig. 12. Rule 3 for the Energy Flux.
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Fig. 13. Rule 4 for the Energy Flux.

antecedent variables only refer to buoy 46042. A more in depth analysis of
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Fig. 14. Rule 5 for the Energy Flux.
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Fig. 15. Rule 6 for the Energy Flux.
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Fig. 16. Rule 7 for the Energy Flux.

these antecedent variables shows that wind speed and the dominant wave
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Fig. 17. Rule 8 for the Energy Flux.

period (value and direction) together with the water temperature are the main
variables taken into account by the rules learned with FRULER. The inclusion
of the dominant wave period and its direction in this case is significant, as it is
fully related to the wave energy flux (see Equation (4)). A direct interpretation
of the rules in this case is harder, since there are 8 rules. However, it is possible
to locate interpretable swell cases in Rules 1, 6 and 7 (i.e. high values of
period, low value of local wind). The differences are given by the dominant
period direction (north in the case of Rules 1 and 7, and mainly south in the
case of Rule 6). Rules 1 and 7 are different due to the values of temperature.
In the latter case, the higher the temperature, the more important are the
variables of buoy 46042 in the prediction, mainly the significant wave height
and the variables related to the wave period, as expected. The rest of the rules
provided by FRULER describe situations of wind-sea wave, and other local
events related to the prediction of wave energy flux.

In summary, the rules learned by FRULER are able to obtain very accurate
and interpretable predictions, both for significant wave height and wave en-
ergy flux estimations. The comparison with the state of the art approaches
reflects that there are no significant differences in accuracy between the best
method (GGA-SVR) and FRULER — +4% in RMSE for Hm0 and +3% for
P . Moreover, GGA-SVR is a black-box approach, while the linguistic rules
generated by FRULER are fully interpretable, and the generated knowledge
bases have a low number of rules with few antecedent variables.

6 Conclusions

In this paper we have applied FRULER in two different problems related to
ocean wave energy — significant wave height and wave energy flux predictions
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— using data from three buoys in the California coast. The FRULER approach
is based on an evolutionary algorithm to obtain Takagi-Sugeno-Kant (TSK)
fuzzy rules, together with an instance selection method and a multi-granularity
fuzzy discretization of the input variables. We have shown how the proposed
system is able to obtain robust and very accurate predictions for both objective
variables, with a precision very similar to the best state of the art approach.
Moreover, the predictions obtained by FRULER are fully interpretable in the
case of the significant wave height, and partially interpretable for the harder
case of the energy flux problem.
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