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Abstract. This paper describes a new few-shot video object detection
framework that leverages spatio-temporal information through a rela-
tion module with attention mechanisms to mine relationships among
proposals in different frames. The output of the relation module feeds
a spatio-temporal double head with a category-agnostic confidence pre-
dictor to decrease overfitting in order to address the issue of reduced
training sets inherent to few-shot solutions. The predicted score is the
input to a long-term object linking approach that provides object tubes
across the whole video, which ensures spatio-temporal consistency. Our
proposal establishes a new state-of-the-art in the FSVOD500 dataset.
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1 Introduction

The paradigm of few-shot object detection aims to address the issue of large
training sets in modern object detectors, which shows up mainly in high annota-
tion costs, or, which is worse, eventually in useless deep learning models, simply
because there might not be enough data to train them. This makes few-shot
object detection a timely topic.

Video object detectors leverage spatio-temporal information to tackle chal-
lenges such as motion blur, out of focus, occlusions or high changes in an object
appearance to increase detection precision [9, 6, 7], which is not straightforward
for image object detectors working on isolated frames. Similarly, the issue of large
training sets as a need for a high precision in video object detectors calls for few-
shot video object detectors, which today are less abundant in the literature than
their image few-shot object detector counterpart.

Few-shot becomes even more challenging when referred to attention mecha-
nisms, which today have become widely accepted for modeling object proposal
relationships in video object detection [24], increasing precision, but at the cost
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of multiple video frames in each training iteration. On the contrary, a few-shot
video object detector should learn from a limited number of labeled instances per
object category while exploiting spatio-temporal information at inference time.
In a proper few-shot framework, whole videos are not available for training. This
leads to a data gap between train and test sets that must be addressed.

All the above leads us to design a new few-shot object detector to take
advantage of spatio-temporal information in videos. Our solution comprises a
relation model with attention mechanisms and a classification score optimization
component for spatio-temporal feature aggregation and consistency.

The main contributions of this work are:

– A method to bridge the data gap between training and test sets through
synthetic frame augmentation, which permits the relation module to match
new objects with proposals from the current image in the training phase,
and avoids the degradation of our solution in the single image setting.

– A new spatio-temporal double head for spatial and spatio-temporal infor-
mation with a spatial branch for object location and classification in the
current frame, and a spatio-temporal branch to improve the classification
and predict the overlap among detections and ground truth as a detection
precision metric.

– Object tube generation from the predicted overlap among detections and
ground truth to link detections in successive frames. This benefits from the
generally high spatio-temporal redundancy of videos to modify the classifi-
cation confidence of object detections.

Our approach outperforms both single image and previous video object de-
tectors in FSVOD500, a specific dataset for few-shot video object detection.

2 Related Work

General object detectors based on deep neural networks fall mainly into two
main categories: one- and two-stage detectors. Two-stage detectors [21, 2] gen-
erate a set of object proposals with high probability of containing an object of
interest, and then perform a bounding box refinement and object classification.
In contrast, one-stage detectors [16, 20] directly calculate the final detection set
by processing a dense grid of unfiltered candidate regions.

More recently, object detection frameworks specifically designed to work with
videos [9, 6, 7] were introduced to take advantage of spatio-temporal information,
improving detection precision. The main idea behind these methods is to aggre-
gate per-frame features throughout time, achieving more robust feature maps.
This aggregation can be done at pixel- [12] or at object-level [9, 6, 7], linking
object instances through neighboring frames.

Recently, the few-shot object detection problem has drawn significant atten-
tion in order to replicate the success achieved in the image classification field.
Learning new tasks from just a few training examples is very challenging for
most machine learning algorithms, especially for deep neural networks. Current
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few-shot object detectors follow two main approaches: meta-learning and fine-
tuning.

Meta-learning based methods are one of the research lines to address the
few-shot object detection problem. They learn a similarity metric, so a query
object can be compared with support sets from different categories. FSRW [14]
proposes a framework based on YOLOv2 [20] including a feature reweighting
module and a meta-feature extractor. Alternatively, a two-stage approach based
on Faster/Mask R-CNN is proposed on Meta R-CNN [26]. This work proposes a
new network head that applies channel-wise soft attention between RoI features
given by a Region Proposal Network (RPN), and category prototypes to calculate
the final detection set. The authors in [11] also propose to modify the RPN of a
two-stage architecture, including an attention RPN that takes advantage of the
support information to increase the RPN recall. A key component in all meta-
learning based object detectors is to compute category prototypes from a set
of annotated objects that are general enough to represent each object category.
DAnA [5] implements a background attenuation block to minimize the effect
of background in the final category prototype and also proposes a new method
to summarize the support information in query position aware (QPA) support
vectors.

TFA [25] proves that a simple transfer-learning approach, in which only the
last layers of existing detectors are fine-tuned with new scarce data, can achieve
results comparable to those of the state-of-the-art of meta-learning based detec-
tors. The fine-tuning approach is further developed in DeFRCN [19], including
a gradient decoupled layer (GDL) that modulates the influence of the RPN and
the network classification and localization head in the training process and a
prototypical calibration layer (PCB) to decouple the classification and localiza-
tion tasks. Few-shot detectors that follow a fine-tuning approach suffer from a
non-exhaustive training process, in which objects from novel categories in the
base images are not annotated. Therefore, the model learns to treat novel cate-
gories as background in the pre-training stage. This issue is addressed in [3] by
mining annotations from novel categories in base images. An automatic anno-
tation framework was also proposed in [15] to expand the annotations available
for the novel categories through label mining in unlabeled sets.

To the best of our knowledge, there is only one attempt to consider spatio-
temporal information for few-shot object detection [10]. They are also the first
to propose a dataset specifically designed for few-shot video object detection.
Their method is based on a meta-learning approach, including a tube proposal
network to associate objects across frames and a Tube-based Matching Network
to compare tube features with support prototypes. Alternatively, we propose a
fine-tuning based video object detector that implements feature aggregation at
object level to enhance per-frame proposal features.
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Fig. 1: FSVDet architecture overview, without the Confidence Score Optimiza-
tion (CSO) module.

3 Proposed Method

3.1 Problem Definition

We follow the standard few-shot object detection setting established in previous
works [14, 25, 11, 19]. The whole dataset is divided into Dbase, with several anno-
tated objects of the base classes Cbase, and Dnovel, with only a few annotations of
the novel classes Cnovel for training, with Cbase ∩Cnovel = ∅. The detection prob-
lem is defined as K-shot, where K is the number of objects annotated for each
novel category Cnovel. Typically, the number of annotations K used to evaluate
few-shot detectors in the literature ranges from 1 to 30 examples.

Video object detection aims to localize and classify objects in every frame of
an input video. Object detection at each time step t is performed by considering
information from the reference frame ft and N previous frames ft−N , ..., ft−1. In
the proposed framework, we also include a long-term optimization that considers
information from the complete video to optimize the confidence of the detections.
Although we propose a video object detector, annotations are object instances in
single video frames. Thus, Dnovel follows the same definition as for single-image
approaches.

3.2 FSVDet: Few-shot video object detection

We propose FSVDet, a two-stage video object detection framework that can
be trained with few labeled examples. The selected spatial baseline is DeFRCN
[19], a modification of the original Faster R-CNN [21] able to perform a quick
adaptation from a set of base categories Cbase to a new domain Cnovel.

Fig. 1 shows an overview of the proposed network architecture. First, per-
frame image features and object proposals are independently calculated. Then,
proposal boxes b(pt(i)) and the corresponding features ϕ(pt(i)), extracted through
RoI Align for proposal pt(i) in the current frame ft, are fed to the spatial branch
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of the double head. Object localization is exclusively performed with information
extracted from the current frame, while the classification combines spatial and
spatio-temporal information. Spatial classification and spatio-temporal classifi-
cation scores for each category are combined as:

s = stmp + sspt(1− stmp) (1)

being sspt the spatial classification score and stmp the spatio-temporal score.
As our spatial baseline is DeFRCN [19], we also include the Prototypical

Calibration Block (PCB) originally proposed in that work. This module applies
a classification score refinement based on a similarity distance metric between
network detections and category prototypes. For the category prototype calcu-
lation, annotated images from Dnovel are fed to a CNN pre-trained on ImageNet
to extract deep image features. Then, a RoI Align layer extracts object features
with ground truth boxes, calculating K feature maps per each category in Cnovel.
The final category prototype is calculated by an average pooling operator over
the K feature maps of each category. The final classification score is calculated
as follows:

s′ = β · s+ (1− β) · scos (2)

being scos the cosine distance used as similarity metric between category proto-
types and detection features extracted by the same CNN as the category pro-
totypes. The hyperparameter β sets the tradeoff between the two confidence
scores.

Finally, we define the Confidence Score Optimization method (CSO) that
links object detections throughout the video and updates their classification
scores. The linking method is based on the category agnostic scores and the
overlap between detections in consecutive frames. The goal of this method is
to modify the classification score of detections in each tube, ensuring spatio-
temporal consistency. Further details of this method are given in Sec. 3.6.

3.3 Single image spatio-temporal training

Traditional video object detectors randomly select support frames in the input
video sequence for each reference frame for training [9, 6, 7]. However, few-shot
object detectors are trained with a limited number of annotated instances per
category. Hence, the training set is composed of single images rather than fully
annotated videos.

Our model overcomes this issue with the generation of a set F of synthetic
support frames fq for each training image It by inserting transformations of
objects from It in different positions of fq. In so doing, each annotated object
αt(j) from It is subject to horizontal random flipping and inserted L times in
fq in random positions within the image boundaries. The relative size of the
object with respect to the whole image sets an upper bound for L. Undesirable
artifacts from a naive insertion of a cropped object in a different position from
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Fig. 2: Examples of real reference frames (left) and their corresponding synthetic
support frames (right). The synthetic support frames might appear flipped.



Relation networks for few-shot video object detection 7

the original object in an image is addressed with a seamless cloning operator
[18]. Fig. 2 shows a set of synthetically generated support frames.

Reusing the original image background to place new objects decreases the
probability of inconsistencies between background and foreground features. Re-
ducing these background mismatches is crucial as the detector learns not only
the object features but also the context features [4, 1]. Previous methods for
position selection to insert new objects in video frames rely on spatio-temporal
consistency and many annotated objects to select valid positions [4, 1]. However,
the data availability restrictions of few-shot training makes the application of
these methods infeasible.

3.4 Proposal feature aggregation

Relations among objects in the same image were successfully explored in [13],
defining an object relation module based on the multi-head attention introduced
in [24]. Similar approaches were also successfully applied in video object detec-
tion, mining relations between objects in different frames [13, 9, 7].

The goal of the feature aggregation module is to compute M relation features
rmR for each object proposal pt(i) ∈ Pt in the reference frame ft:

rmR (pt(i),PSF ) =

R∑
r=1

|Pr|∑
j=1

wm
t(i),r(j) (WV ϕ(pr(j))), m = 1, ...,M (3)

where PSF = {P1,P2, ...,PR} contains object proposals in the R support frames.
In training, Pt contains the proposals extracted from the input image It while
PSF contains proposals from the synthetic frames set F (Sec. 3.3). wm

t(i),r(j) is
a pairwise relation weight between pt(i) and each proposal pr(j) in the support
frame fr based on appearance and geometry similarities [13].

Following previous work [9, 7], we implement a multi-stage relation module
with a basic stage and an advanced stage. The basic stage enhances proposal
features in the current frame Pt by mining relationships with the proposals in
the support frames PSF , generating P ′

t. In the advanced stage, the proposals in
PSF are first improved by aggregating them with the top-ϵ% scoring proposals in
PSF . This enhanced support proposal features are finally used in this advanced
stage to aggregate with proposals in P ′

t, generating the final proposal set.

3.5 Loss function

We propose a double objective optimization loss for the training of the spatio-
temporal branch of the network double head: a classification loss and an overlap
prediction. On the one hand, the classification loss function is implemented as
a cross-entropy loss, following the standard approach to train a multi-class clas-
sifier. On the other hand, the overlap prediction is based on estimating the
overlap of each detection with the actual objects in the image. This loss func-
tion is implemented as a binary cross-entropy loss. Hence, the final loss for the
spatio-temporal branch is defined as:
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L = LCLS + LIoU (4)

3.6 Confidence Score Optimization (CSO)

Confidence prediction plays a fundamental role in object detection. First, redun-
dant detections are removed by means of Non-Maximum Suppression (NMS).
Then, a confidence threshold is usually applied to discard low confidence detec-
tions. Commonly, the classification score is used as detection confidence.

Long tube generation has been successfully applied to optimize detection
confidence, leveraging long-term spatio-temporal consistency [9, 8]. This idea is
the basis of our Confidence Score Optimization (CSO) method, which first builds
long tubes from detections of one object and, then, increases the classification
scores based on the detections of the tube. We propose to calculate the link score
ls between a detection dt(i) in frame ft and a detection dt′(j) in ft′ as follows:

ls(dt(i), dt′(j)) = ψ̂(dt(i)) + ψ̂(dt′(j)) + 2 · IoU(dt(i), dt′(j)) (5)

being ψ̂(dt(i)) the predicted IoU score described in Sec. 3.5. This increases the
probability of linking detections with greater predicted overlap with the ground
truth.

To build the object tubes we apply the Viterbi algorithm, using as association
scores the values generated by Eq. 5 [9, 6, 7]. Then, detections belonging to each
tube are updated, setting their classification score to the mean classification
score of the top-20% detections of the tube.

4 Experiments

We have evaluated our proposal on the FSVOD-500 dataset [10]. It contains 2,553
annotated videos with 320 different object categories for Dbase, and 949 videos
with 100 object categories for Dnovel

3. Object categories in Cbase and Cnovel
are completely different. Following [10], we experiment with different partitions
of Dtrain

novel and Dtest
novel for fine-tuning. Thus, we randomly divide Dnovel into two

subsets (Dtrain
novel and Dtest

novel), keeping the same distribution of videos per object
category. The subsets are interchanged, so each video is in Dtest

novel once. We repeat
this whole process 5 times —with different random splits—, and the reported
results include the mean and standard deviation of these 5 executions.

We use ResNet-101 pretrained on ImageNet [22] as backbone. For training,
we first learn the spatial part of FSVDet on Dbase. Then, we fine-tune both the
spatial and spatio-temporal parts on Dtrain

novel —the spatio-temporal weights are
randomly initialized. Training of the spatial part is done with a batch size of
16, with a learning rate of 2 × 10−2 for the first 20K iterations, reducing it to
2×10−3 for the next 5K iterations, and to 2×10−4 for the last 5K iterations. For
3 FSVOD500 also contains a validation set with 770 annotated videos with 80 object

categories. We do not use this set in the experimentation.
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Table 1: Results on the few-shot video object detection FSVOD-500 dataset.
Type Method AP50

Obj. Det. Faster R-CNN [21] 26.4±0.4

Few-shot Obj.
Det.

TFA [25] 31.0±0.8

FSOD [11] 31.3±0.5

DeFRCN [19] 37.6±0.5

Vid. Obj. Det. MEGA [6] 26.4±0.5

RDN [9] 27.9±0.4

Mult. Obj.
Track.

CTracker [17] 30.6±0.7

FairMOT [27] 31.0±1.0

CenterTrack [28] 30.5±0.9

Few-shot Vid.
Obj. Det.

FSVOD [10] 38.7±0.7

FSVDet 41.9±2.0

fine-tuning the learning rate is 1×10−2 for the first 9K iterations, reducing it to
1×10−3 for the last 1K iterations. The spatio-temporal training is performed for
40K iterations with 1 image per batch and an initial learning rate of 2.5× 10−4,
reducing it to 2.5 × 10−5 after the first 30K iterations. The loss function is the
cross entropy with label smoothing regularization [23]. For training, 2 synthetic
support frames are generated for each input image with a maximum number
of γ = 5 new objects into each support frame. For test, 15 support frames
are used for each video frame to mine object relations. The hyperparameter
β that modulates the influence of the Prototypical Calibration Block on the
classification score is set to 0.5. For the relation module, the ratio of proposals
selected for the advanced stage ϵ is 20%.

Tab. 1 shows the results of several state-of-the-art approaches on the FSVOD-
500 dataset for a shot size of K = 5 —the one tested in [10]. As the few-shot
video object detection problem remains almost unexplored with only one pre-
vious work, for comparison purposes we also include single image few-shot ob-
ject detectors, traditional video object detectors and methods based on multiple
object tracking (MOT). The results for traditional video object detectors and
MOT-based methods were originally reported in [10]. FSVDet outperforms pre-
vious approaches, improving our single image baseline (DeFRCN) by 4.3 points,
and previous few-shot video object detectors by 3.2 points. Traditional video
object detectors that include attention mechanisms for mining proposal relation-
ships [9, 6] fail to perform few-shot object detection, falling behind single image
few-shot detectors. This proves the need for algorithms specifically designed for
few-shot video object detection.
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5 Conclusions

We have proposed FSVDet, a new few-shot video object detection framework
that, first, applies attention mechanisms to mine proposals relationships between
different frames. Then, a spatio-temporal double head classifies object proposals
leveraging spatio-temporal information, and it also predicts the overlap of each
proposal with the ground truth. Finally, overlapped predictions are used in an
object linking method to create long tubes and optimize classification scores.
Moreover, we have defined a new training strategy to learn from single images
while considering a group of input frames at inference time. FSVDet outperforms
previous solutions by a large margin, and establishes a new state-of-the-art result
for the FSVOD-500 dataset for few-shot video object detection.
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