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Abstract. Developing robust and performant methods for diagnosing
COVID-19, particularly for triaging processes, is crucial. This study in-
troduces a completely automated system to detect COVID-19 by means
of the analysis of Chest X-Ray scans (CXR). The proposed methodol-
ogy is based on few-shot techniques, enabling to work on small image
datasets. Moreover, a set of additions have been done to enhance the
diagnostic capabilities. First, a network to extract the lung region to
rely only on the most relevant image area. Second, a new cost function
to penalize each misclassification according to the clinical consequences.
Third, a system to combine different predictions from the same image
to increase the robustness of the diagnoses. The proposed approach was
validated on the public dataset COVIDGR-1.0, yielding a classification
accuracy of 79.10% ± 3.41% and, thus, outperforming other state-of-the-
art methods. In conclusion, the proposed methodology has proven to be
suitable for the diagnosis of COVID-19.
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1 Introduction

The assessment of radiological images such as Computerized Tomography (CT)
or Chest X-Ray (CXR) scans has demonstrated to be a reliable method for the
screening and diagnosis of COVID-19 [9]. Different studies pointed out a set
of visual indicators that can be used in this regard, including bilateral and/or
interstitial abnormalities, among others [6]. In this regard, automated methods
powered by machine learning techniques are a useful tool to improve the diagno-
sis workflow by reducing the time needed to analyze each scan [5]. In particular,
convolutional neural networks (CNN) stand out as the most used technique due
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to their ability to extract high-level image characteristics that are useful in the
diagnosis.

The particularity of CNN-based systems is that very large datasets are needed
for the training process. This led the research groups to collect their own sets of
images [3], which turned out to be mostly unbalanced due to the high number
of patients with severe condition. This, in addition to the heterogeneous sources
used to acquire the images, caused the developed systems to report suspiciously
high levels of sensitivity [27]. In the end, this conditioned the applicability of
these models, as the detection of patients with low or moderate severity showed
very poor performance.

Although more than three years have passed since the start of the pandemic,
there are still few high-quality CXR datasets that can be used to build COVID-
19 detection systems [17]. Furthermore, the limited size of the available datasets
makes it difficult to carry out large-scale studies, and forces the researchers to
apply techniques to artificially increase the number of images or to use specific
learning algorithms that take into account the lack of data. Among the latter,
the use of few-shot techniques is particularly relevant [7].

In a traditional setup, a CNN is fed with a large number of images of each
output category during training. The model parameters are modified iteratively
to better detect the relevant features in the images and ultimately improve the
classification performance. If few images are available during the training process,
the model is prone to overfitting the data, that is, learning specific features of
each training image instead of general enough features associated with each
category. In this regard, the few-shot frameworks address this issue through a
meta-learning and fine-tuning approach. The main task in this case is no longer
the extraction of relevant characteristics that identify each category, but those
that allow to know whether two images belong to the same or to a different
category. The strategy consists in comparing template images of each category
(which will be referred to as the support set) with each input image and choosing
the category that yields the higher affinity. An advantage of this methodology is
that the categories used to train the model do not have to be the same as those
used during the test phase.

In this paper, we introduce a new approach for the screening of patients
with COVID-19 from CXR images. The proposal relies on few-shot techniques,
so it is prepared to be used in reduced sets of images. The main contributions
of this work are: 1) a system that focuses only on lung regions to classify the
images, discarding other meaningless structures that may hinder the results; 2) a
novel cost function that penalizes each misclassification according to the specific
clinical cost; 3) an ensemble technique that combines different support sets to
increase the robustness of the classification; and 4) a validation setup in a public
dataset [22] that proves the suitability of the proposed approach regarding the
classification performance.
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2 Related work

Automatic COVID-19 diagnosis from CXR images quickly emerged as a very
active research area, addressing the automatic triage problem applying image
classification techniques. Thus, the initial trend was to rely on well-known tradi-
tional architectures for general image classification such as VGG [13], Xception
[11], or CapsNets [1]. Due to the promising results achieved with these simple
methods, more complex models specifically designed to detect the COVID-19 dis-
ease were proposed. COVID-Net [25] seeks execution efficiency while maintain-
ing a high classification performance with the definition of lightweight residual
blocks. CVDNet [15] focused on extracting local and global features, including
two interconnected paths with different kernel sizes. Also, a lung segmentation
network was introduced as a preprocessing stage to force the network to focus
only on the lung region [22] or to guide the learning algorithm [14].

Many datasets with CXR COVID-19 images have been released since the
pandemic outbreak. Due to the lack of available data, the initial approach fol-
lowed by early work on automatic COVID-19 diagnosis was to aggregate multiple
datasets [2,3]. Unfortunately, most of these datasets are biased towards patients
with severe conditions, and generally do not provide a balanced set of positive
and negative samples. The severity level bias might explain the abnormal accu-
racy level reported by some works by not considering the most challenging cases,
i.e., patients with mild and moderate conditions [17]. Also, the variability in the
data acquisition process caused by integrating different datasets from different
sources may cause the model to learn features specific to each device [23].

COVIDGR [22] was presented as a more complete dataset, including high-
quality annotated CXR images for both COVID and non-COVID patients ex-
tracted under the same conditions. Positive patients are also classified into four
severity levels according to the radiological findings. Therefore, this dataset de-
fines a realistic environment to evaluate solutions for automatic COVID-19 triage
systems. However, the number of training samples per severity level remains low,
which hinders the training of traditional models.

To address the problem of data scarcity, simple data augmentation transfor-
mations have been successfully applied to increase the variability of the training
set and prevent the overfitting of the model[13]. This overfitting problem was
also addressed by including handcrafted features [10]. As a step forward, the
generation of synthetic images with generative adversary networks (GAN) was
explored in [12]. Alternatively, transfer learning techniques have also proven to
be highly effective in adapting a model pretrained in a large dataset to a new
domain with limited training samples [12,26].

Few-shot techniques have recently emerged as a popular solution to solve
the general image classification problem, dealing with very limited training sets
[24]. One of the main lines of research in few-shot learning is the definition of
meta-learners. Meta-learning algorithms redefine the classification problem into
a similarity metric learning that can identify if two images belong to the same
category. This property makes meta-learners more generalizable to novel classes
with limited or even no training samples — typically up to 30 labeled samples
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per category. These techniques have been effectively applied to general medical
image processing [4], and to solve the COVID-19 classification problem [7,21].

As data availability in current COVID-19 datasets such as COVID-GR ex-
ceeds the usual few-shot setting but does not suffice to properly train a tradi-
tional classifier, an intermediate solution is desirable. Therefore, we propose a
meta-learning architecture that fully exploits the available labeled information
by performing a model fine-tuning in the complete training set and implement
a support set ensemble at test time.

3 Methodology

The illustration in Fig. 1 depicts a novel classification framework for diagnosing
COVID-19 using CXR scans. Our approach is ideal for cases where a limited
number of images are available for training, as it is the situation with many new
diseases. Here, few-shot classification methods stand out, as they are specifically
developed to handle scenarios where conventional image classification methods
would not perform well enough due to the scarcity of data. In the few-shot ap-
proach, every input image (query) is categorized based on its similarity to the
images of the support set. To accomplish this, the prototypes for each cate-
gory are computed and compared with the query prototype. The prototypes are
derived from the deep feature maps generated by a CNN backbone.

Query Image

L-RPN

L-RPN
Prototype

 

 

Query Prototype

Distance

Fig. 1. The proposed workflow for categorizing images using one support set.

We introduce a lung-focused network as the first step of our pipeline. This
system aims at proposing regions of interest located in the lung area, both for the
query and support images (as seen in Fig. 1 as output of L-RPN). This network
design allows the subsequent classification system to process only the most rel-
evant regions for the diagnosis of COVID-19, leading to improved performance.
Additional information regarding this component is provided in subsection 3.1.

Next, a CNN network is used as the backbone to generate rich representa-
tions of the regions proposed in both the query and the support images. The
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obtained per-region feature maps are combined to create a per-image feature
representation. Then, the feature maps corresponding to the support images of
each category are averaged to obtain the per-category feature map. In a further
step, these maps are refined through gradient descent to obtain robust proto-
types which can be utilized to evaluate the similarity of each query image to each
category. This evaluation of affinity is performed using Earth Mover’s Distance
(EMD) [19], which determines the pairwise distance between the prototypes of
the query and those belonging to support regions. Therefore, the pair of regions
that show the minimum EMD value is deemed to be the most similar.

In typical image classification using few-show methods, a minimal amount
of support images is utilized, with the most common cases raging from 1-shot
to 10-shot, meaning between one and ten images per category. Nevertheless,
these conditions are not applicable in this specific scenario, as more images per
category are available in the dataset. Hence, we suggest a different approach
employing a group of S sets of k support images each, rather than merely select-
ing a single set randomly, to mitigate the impact of each support image. This
concept is outlined in subsection 3.2.

For training purposes, four categories of COVID-19 affection are considered,
namely negative, mild, moderate, and severe. Since the magnitude of classifica-
tion errors should vary depending on the proximity between the correct and the
predicted categories, we propose a novel cost function that incorporates expert
knowledge in this regard. This technique is explained in more detail in subsection
3.3.

3.1 L-RPN: Lung-aware region proposal network

It is commonly agreed that the lung area is the most affected by COVID-19,
and so it has been widely used as the main radiological indicator for diagnosis.
However, the position of the patient during a CXR scan is not homogeneous,
as it depends on his/her severity and the presence of ventilation or monitoring
devices that may not be removable. This situation can lead to a high degree
of variability in the CXR scans in terms of the position and scale of the lungs,
which inevitably makes diagnosis even more difficult. In this work, a network to
propose lung-aware regions of interest is utilized to make the image classification
task focus only on the lung area and discard other meaningless regions in the
image.

The process of generating region proposals, depicted in Fig. 1, is performed
at the beginning of the proposed pipeline. It is presented in Fig. 2, and it has
three main steps. First, a U-Net segmentation network [18] is applied to the
input CXR image to extract the lung mask. Second, the minimum rectangle
which encloses the lung masks is obtained and enlarged by 5% in all dimensions
to avoid losing any pixel on the lung border. Given that the lower part of the
lungs can often be difficult to see, especially in severe cases, the box is further
enlarged on the lower side to a maximum height/width ratio of 1. Third, a set
of M rectangular regions of interest is randomly generated within the limits of
the box.
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Fig. 2. L-RPN pipeline to focus on the pulmonary zone only.

3.2 Support set ensemble

When the data available to train a machine learning model is scarce, an effective
way to improve performance is by generating new synthetic training data by
applying random transformations. This image augmentation can be used during
both training and inference. In the first case, the variability of training data
is increased, and so the model is able to learn richer image features. In the
second case, different versions of a given image can be used to obtain different
predictions, which can be combined for a more robust prediction.

In this work, an inference-time augmentation is performed, so S support sets
are generated and kept static throughout the test step. In this regard, a given
query image can be compared with all the support sets to obtain the similarity
vectors asi , being i ={1, · · · , N} the category index, and s ={1, · · · , S} the index
of the corresponding support set. Then, the similarity vectors are aggregated so
that the chances that an image has to be assigned to a specific category can be
obtained by a voting formula:

pi =

S∏
s=1

ea
s
i∑N

j=1 e
as
j

(1)

where pi is the probability of belonging to the i-th class, and asi is the similarity
value obtained for the i-th class through the s-th support set.

3.3 Misdiagnosis-sensitive learning

The common clinical approach for COVID-19 triaging is the same as in other
diseases. First, a cheap test is used in a large sample of the population. As these
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tests are characterized by a high number of false positives —negative patients
tested positive—, a more accurate and expensive test is used to refine the diag-
nostic of the patients tested positive.

The aim of this work is to develop a binary classifier to differentiate be-
tween COVID-19 positive and COVID-19 negative CXR images. To make the
model robust enough, we used the extra categories provided by the COVIDGR-
1.0 database. In particular, the images in this dataset are categorized into five
classes: negative patients without visible lung abnormalities and positive patients
with no, mild, moderate, and severe visual affection. In the following, we will re-
fer to these classes as N_NORMAL, P_NORMAL, P_MILD, P_MODERATE
and P_SEVERE.

With the main goal of enhancing the current triaging methods, the followed
approach in this work is targeted at reducing the number of positive patients
tested negative. To do so, the cost function proposed to train the model is pro-
vided with a novel penalty term which is based not only on the distance between
classes in terms of visual affection, but also on the clinical implication of each
misclassification. Thus, the penalty term follows the principle that the penalty is
supposed to be maximum when a severe patient is classified as negative, as the
clinical cost is very high. In contrast, a positive patient with moderate affection
should lead to a low penalty when he/she is classified as severe, as the clinical
cost is negligible and the visual affection can be very similar in both classes.

The addition of this cross-penalties is carried out through a cost matrix M
which indicates the penalty of every possible misclassification scenario. This
matrix, developed by an expert radiologist, is shown in Table 1, and is included
in the modified cross-entropy equation (2). Each matrix cell Mij denotes the
penalty of a patient of the i-th class when is predicted to belong to the j-th
class. As mentioned above, the highest penalties are associated with severe and
moderate patients which are assigned to the negative class. It should be noted
that the P_NORMAL class is not included in the cost matrix M because, as
will be explained in Section 4.1, this class is not used in the training process.

Table 1. Cost matrix M included in the new loss function in equation (2).

Predicted
Negative Mild Moderate Severe

Real

Negative 0 0.1 0.2 0.3
Mild 0.3 0 0.1 0.2
Moderate 0.4 0.1 0 0.1
Severe 0.5 0.075 0.025 0

The cost of making a prediction on a patient belonging to the i-th class is
calculated via

Li = −log(pi) +
∑
j∈C′

[− log(1− pj)Mij ] , C ′ =C \ {Ci} (2)
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where C ′ is the set consisting of all classes except the class Ci.

4 Experiments

We performed all experiments in the COVIDGR-1.0 dataset [22] to compare the
results of our method with previous state-of-the-art approaches for automatic
COVID-19 diagnosis with CXR images. This dataset provides a balanced set with
426 positive samples and 426 negative samples. It includes the level of severity
for positive patients, including RT-PCR positive cases identified as negatives by
expert radiologists.

We report both the overall classification performance and the detailed results
for each level of severity. We follow the same experimental setting established by
[22], calculating the mean and standard deviation for five 5-fold cross-validation.
For a fairer comparison, the same data splits were used for all the methods.

4.1 Implementation details

The L-RPN module described in subsection 3.1 follows a U-net model trained
on the Montgomery and SCR datasets [8,20]. The number of regions extracted
from the lung area M is set to 9. All input images are resized to 128 × 128
pixels.

The backbone of the few-shot classifier is implemented as ResNet-12 pre-
trained on the miniImageNet dataset [24]. The support set contains 10 randomly
selected images for each training episode —each training iteration of the meta-
learner—, while we select S = 5 static support sets with 10 images each for vali-
dation and test. These support images for validation and test are extracted from
the training set, performing inference on the complete test set. Positive patients
with no radiological findings —category P_NORMAL in COVIDGR-1.0— are
not considered for training, as their strong similarity to negative samples could
hinder the training process. However, the test set must include images from this
category to maintain a more realistic evaluation setting.

The initial learning rate is 0.5×10−3, applying a reduction factor of 0.5 after
each 500 episodes. The maximum number of training episodes is set to 5,000
with a validation stage every 50 episodes. Then, the best performing model on
the validation set is selected as the final classifier. As the goal is to implement
a triage system, both the global classification accuracy and the sensitivity are
taken into account to establish the validation iteration. Therefore, the validation
performance V P is defined as:

V P = α ∗ sensitivity + β ∗ accuracy (3)

where α and β are hyperparameters set to 0.3 and 0.7 respectively.
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4.2 Results

We conducted a series of experiments and compared our model with the state-
of-the-art using binary classification metrics. These include accuracy, specificity,
sensitivity, precision, and F1 (the last two are reported for both positive and
negative classes). Accuracy measures the global classification performance by
means of the percentage of images correctly classified, and so it is a useful metric
to compare different approaches. Sensitivity is essential for detecting positive
cases in a triage system, but a maximum sensitivity could be obtained if every
patient is classified as positive, which in the end would make no sense. Therefore,
a good balance between sensitivity and specificity is needed to minimize false
positives. The F1 considers this balance, utilizing recall and precision metrics
for each class.

Table 2 shows a detailed comparison of our method with state-of-the-art
approaches assessed on the COVIDGR-1.0 dataset [22]. The reported results
comprise a set of methods developed and/or tested by other authors, includ-
ing a general-purpose classifier —ResNet-50— and methodologies specifically
designed for COVID-19 CXR images. The results in this table do not include
the P_NORMAL class for a better comparability, as no previous study uses
this category in their experiments. Overall, our method achieves the best results
in all metric except for specificity and precision in the positive class. However,
the best-performing method in these metrics —COVIDNet-CXR— achieves very
poor results in the other metrics, lacking more than 37% behind our method in
terms of sensitivity. In fact, our approach outperforms the second-best result by
around 11 points in this key metric for any triage system. Also, regarding the
overall accuracy, we set a new state-of-the-art result on this dataset, improving
previous methods by 2.9% accuracy.

Table 2. Results on COVIDGR-1.0.

Specificity N_Precision N_F1 Sensitivity P_Precision P_F1 Accuracy
COVIDNet [25] 88.8±0.9 3.4±6.2 73.3±3.8 46.8±17.6 81.7±6.0 56.9±15.1 67.8±6.1
CAPS [1] 65.7±9.9 65.6±4.0 65.2±5.0 64.9±9.7 66.1±4.5 64.9±4.9 65.3±3.3
ResNet-50 [22] 79.9±8.9 71.9±3.1 75.4±4.9 68.6±6.1 78.8±6.3 72.7±3.5 74.3±3.6
FuCiTNet [16] 80.8±7.0 72.0±4.5 75.8±3.2 67.9±8.6 78.5±5.0 72.4±4.8 74.4±3.3
SDNet [22] 79.8±6.2 74.7±3.9 76.9±2.8 72.6±6.8 78.7±4.7 75.7±3.4 76.2±2.7
ours 75.1±6.5 85.3±3.7 79.7±3.9 84.0±4.9 73.8±4.9 78.4±3.1 79.1±3.4

Moreover, we compare our method with the best previous approach —COVID-
SDNet— for all severity levels in COVIDGR-1.0, including the P_NORMAL cat-
egory. As seen in Table 3, our method achieves the best results in every subset,
achieving the largest margins in the most demanding subsets. Thus, COVID-
SDNet underperforms a random classifier in the P_MILD subset, tending to
classify these patients as positive cases. Our approach is capable of increasing
the classification accuracy in this demanding subset by more than 16%. This
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proves that our method is more robust against images with minimal radiological
findings.

Table 3. Obtained accuracy by severity level in COVIDGR-1.0.

COVID-SDNet[22] ours
P_NORMAL - 41.6±13.1
P_MILD 46.0±7.1 62.4±9.9
P_MODERATE 85.4±1.9 89.4±6.2
P_SEVERE 97.2±1.9 99.5±1.7

5 Conclusions

We have defined a new few-shot classifier for CXR images, able to correctly
identify positive COVID-19 cases. Although the proposed method follows a few-
shot architecture, the combination of support sets leverages all the information
available, boosting the performance. Furthermore, the L-RPN module ensures
that the diagnosis is made only from lung information, which makes the model
robust against poorly framed CXR images due to different patient positions
or the use of external monitoring devices. Experimental results show that our
method scores the best result in the COVIDGR data set, improving the binary
classification of COVID-19 cases by around 3 accuracy points. Regarding the
four severity levels defined in COVIDGR, our method outperforms the second
best approach in all cases, especially in the challenging subset that contains
patients with mild condition with an improvement of more than 16%.
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