
Discovering Infrequent Behavioral Patterns in
Process Models

David Chapela-Campa, Manuel Mucientes, and Manuel Lama

Centro Singular de Investigación en Tecnolox́ıas da Información (CiTIUS)
Universidade de Santiago de Compostela. Santiago de Compostela, Spain
{david.chapela, manuel.mucientes, manuel.lama}@usc.es

Abstract. Process mining has focused, among others, on the discovery
of frequent behavior with the aim to understand what is mainly hap-
pening in a process. Little work has been done involving uncommon be-
havior, and mostly centered on the detection of anomalies or deviations.
But infrequent behavior can be also important for the management of a
process, as it can reveal, for instance, an uncommon wrong realization
of a part of the process. In this paper, we present WoMine-i, a novel al-
gorithm to retrieve infrequent behavioral patterns from a process model.
Our approach searches in a process model extracting structures with se-
quences, selections, parallels and loops, which are infrequently executed
in the logs. This proposal has been validated with a set of synthetic and
real process models, and compared with state of the art techniques. Ex-
periments show that WoMine-i can find all types of patterns, extracting
information that cannot be mined with the state of the art techniques.

Keywords: infrequent patterns, process mining, process discovery

1 Introduction

One of the aims of process mining during the past years has been, among oth-
ers, the study of frequent behavior in order to focus on the more common parts
of a process during the different tasks of process mining —discovery, monitor-
ing, and enhancement. Under this scope, several algorithms have been proposed
to discover process models covering the most common behavior [1,2,3], and to
search frequent structures either directly in the logs [4,5] or extracting the struc-
tures from the process models [6]. The search of infrequent cases —deviations or
anomalous traces— has been also used during the discovery of a process model,
removing them to reduce the complexity of the model without a high decrease
in the fitness [7,8]. Nevertheless, the discovery of infrequent behavior can be also
interesting in order to monitor and enhance a process, and discarding it might
not be a proper solution.

There are scenarios where an infrequent subprocess in the model can hint a
wrong behavior which must be examined. For instance, in insurance companies,
infrequent behavior can be used to recognize fraudulent claims [9]. It can be also
useful to detect intrusions in networks [10], or failures in software behavior [11].

2 D. Chapela et al.

Additionally, in well-structured processes, the behavior supported by a model is
designed and expected to be executed. A substructure of the model with a low
frequency of execution can hint a path in the process that must be reinforced in
order to increase its frequency or, conversely, where the assigned resources could
be restructured to optimize the process.

There are few approaches related with the search of infrequent behavior,
most of them focused on the detection of uncommon anomalous traces in pro-
cess logs [7,8,12,13]. Nevertheless, these techniques focus on the identification of
infrequent traces considering the whole trace as a unit. Further knowledge can be
obtained searching for infrequent patterns, as they allow to focus on infrequent
subprocesses, instead of discovering infrequent full traces —an infrequent trace
can contain frequent behavior, hindering the study of infrequent behavior.

In this paper we present WoMine-i, a novel algorithm to detect infrequent
behavioral patterns from a process model, measuring their frequency with the
instances of the log. The main novelty of our approach is that it can detect infre-
quent substructures of the process model, i.e., behavioral patterns, with all type
of structures —sequences, selections, parallels and loops. The ability to work
with these structures prevents WoMine-i of interpreting the traces as sequences
of events. Furthermore, the extracted information allows to focus on infrequent
subprocesses, and not to analyze infrequent full traces. The algorithm has been
qualitatively compared using various synthetic process models with all related
techniques, showing our algorithm finds the correct infrequent patterns and esti-
mates precisely its frequency while related techniques do not. Experiments have
also been run with real logs of two Business Process Intelligence Challenges, 2012
and 2013.

2 Related Work

There are no approaches in the literature focused directly on the extraction of
infrequent substructures in a process. There are a few techniques, like Heat Maps,
that can be used to detect infrequent behavior in a process model, although that
is not their main objective. Heat Maps provide a simple way to highlight the
frequent structures of a process model considering the individual frequency of
each arc. If the arcs with a frequency higher than a threshold are removed,
the remaining structures are formed by infrequent arcs. The drawback of this
approach is that the frequency of each arc is measured individually. An infrequent
pattern can be composed by arcs that are individually frequent and, therefore,
they will not be part of the result of this technique. Fig. 1 shows an example of a
process model represented by a C-net, and the result of the Heap Maps technique
over this model (Fig. 1a). As can be seen, there are arcs —e.g. (E → G)—
executed in all the traces of the log which are part of an infrequent pattern
(Fig. 1b).

In [7], a state automaton with each state representing an activity of the log is
built. A valuated arc between two states is added when one of them is followed
by the other one in the log. Its value increases as this relation appears in the log.

Discovering Infrequent Behavioral Patterns in Process Models 3

A: Start course B: Take class with Dominic
C: Take class with Marcus D: Study first chapter
E: Study second chapter F: Take optional class
G: Do exam H: Revise correction of exam
I: Pass exam J: Retake class (failed exam)

0-25%
25-50%
50-75%
75-100%

A
B

C

F J

E G H ID

(a) C-net with the arcs highlighted depending on
its individual frequency (Heat Maps).

E G H ID

(b) Infrequent pattern with a frequency of 5%.

Id Trace
0 ABDFEGHI (×16)
1 ABDEGHI (×3)
2 ABDFEGHJGHI (×6)
3 ABDFEGHJGHJGHI (×4)
4 ABDEGHJGHI (×8)
5 ABDEGHJGHJGHJGHI (×11)
6 ACDFEGHI (×19)
7 ACDEGHI (×2)
8 ACDFEGHJGHI (×3)
9 ACDFEGHJGHJGHJGHJGHI (×8)
10 ACDEGHJGHI (×11)
11 ACDEGHJGHJGHI (×9)

(c) 100-trace log.

Fig. 1: An example of a process model with an infrequent pattern that cannot
be discovered through related techniques.

Afterwards, the infrequent arcs are used to filter infrequent traces. The drawback
of this technique is the same as the Heat Maps approach, because the frequency
is measured individually. Furthermore, the automaton interprets the log as a
sequence, without parallels nor other dependencies.

The technique used by Lu et al. in [13] also performs a filtering of traces
using the infrequent parts of a process model. In this case, models are built by
merging the behavior in a subset of traces. The drawback of this approach is
also its inability to measure the frequency of a structure as a whole, analyzing
instead the number of individual executions of an arc.

Bezerra et al. search in [12] for infrequent or anomalous traces in the log ana-
lyzing the whole trace. They present three approaches to filter infrequent traces
depending on their frequency and conformance. The drawback of this technique
is that it takes into account the whole trace, and instead of an infrequent pat-
tern, this approximation returns a set of traces. This makes impossible, without
further analysis, to know which parts of the traces are infrequent. Fig. 1c shows
an example: this log contains four instances with a frequency under 5% (1, 3, 7,
8). Two of them (1, 7) contain the pattern from Fig. 1b, but they also contain
frequent patterns as A-B-D, A-C-D or G-H-J-G-H-I. Trace-clustering tech-
niques [14] could also be used to obtain traces containing infrequent behavior,
but the problem would be the same.

Finally, techniques searching for frequent structures could be adapted to
search infrequent behavior, inverting the main search. The drawback of this al-
ternative lies in the way these algorithms measure the frequency of the patterns.
For instance, the approach of Tax et al. [5] performs an alignment-based method
to detect if the pattern is executed in a trace. When an activity from the trace
does not appear in the pattern, the method performs a move on log without a
penalty because this activity might belong to a parallel branch in the model.
This method gets a frequency of 40% for the pattern in Fig. 1b (traces 0, 1, 6, 7)

4 D. Chapela et al.

which is far from the real value (5%). The shortcoming of this method is that it
analyses the frequency based in the order of the activities in the log, not in the
real path that is being executed in the model. Similarly, pattern-based search
techniques that only use the log to extract frequent behavior would present the
same drawback. Furthermore, the search space of these approaches would be
extremely large, as they do not use the model to build the patterns.

As far as we know there is not algorithms to retrieve infrequent patterns from
a process model. The algorithm presented in this paper, WoMine-i, is able to
retrieve infrequent subgraphs ensuring the low frequency of the entire structure.
This allows to focus on infrequent subprocesses and to abstract from the traces
containing them, simplifying the analysis of the process.

3 Preliminaries

In this paper, we will represent the examples with place/transition Petri nets [15]
due to its comprehensibility. Nevertheless, our algorithm represents the process
with a Causal net (Def. 1).

Definition 1 (Causal net [16]). A Causal net (C-net) is a tuple C = (A, ai, ao,
D, I,O) where:

– A is a finite set of activities;
– ai ∈ A is the start activity;
– ao ∈ A is the end activity;
– D ⊆ A×A is the dependency relation,
– AS = {X ⊆ P(A) | X = {∅} ∨ ∅ 6∈ X};1
– I ∈ A→ AS defines the set of possible input bindings per activity;
– O ∈ A→ AS defines the set of possible output bindings per activity,

such that:

– D = {(a1, a2) ∈ A×A | a1 ∈
⋃
as∈I(a2) as};

– D = {(a1, a2) ∈ A×A | a2 ∈
⋃
as∈I(a1) as};

– {ai} = {a ∈ A | I(a) = {∅}};
– {ao} = {a ∈ A | O(a) = {∅}};
– all activities in the graph (A,D) are on a path from ai to ao.

Definition 2 (Trace). Let A be the set of activities of a process model, and
ε an event —the execution of an activity α ∈ A. A trace is a list (sequence)
τ = ε1, ..., εn of events εi occurring at a time index i relative to the other
events in τ . Each trace corresponds to an execution of the process, i.e., a process
instance.

Definition 3 (Log). An event log L = [τ1, ..., τm] is a multiset of traces τi. In
this simple definition, events only specify the name of the activity, but usually,
event logs store more information as timestamps, resources, etc.
1 P(A) = {A′ | A′ ⊆ A} is the powerset of A. Hence, elements of AS are sets of sets

of activities.

Discovering Infrequent Behavioral Patterns in Process Models 5

A

I

C

B

E

D

G

F

J

H

(a) Petri net, with parallels, selections, and a
loop.

G

F
H

J
D

(b) Valid pattern with a selection and
a parallel.

G

F
H

J

(c) Invalid pattern. J has incomplete input
combinations —{{H}} 6⊆ {{H,D}, {H,E}}.

A
B

D
C

I
E

(d) Valid pattern with a parallel, a
selection and a loop.

Fig. 2: Examples of a process model, valid and invalid patterns.

Definition 4 (Pattern). Let C = (A, ai, ao, D, I,O) be a C-net represent-
ing a process model M . A connected subgraph represented by the C-net P =
(A′, A′i, A

′
o, D

′, I ′, O′), where A′i ⊆ A′ and A′o ⊆ A′ represent respectively the
start and end activities, is a pattern of M if and only if:

– A′ ⊆ A;
– D′ ⊆ D;
– for any α ∈ A′ : I ′(α) ⊆ I(α), O′(α) ⊆ O(α)

A pattern (Def. 4) is a subgraph of the process model that represents the
behavior of a part of the process. For each activity α in the pattern, its inputs,
I ′(α), must be a subset of I(α); and the outputs, O′(α), must be also a subset
of O(α). This ensures that a pattern has not a partial parallel connection. Fig. 2
shows some examples of valid and invalid patterns.

Definition 5 (Simple pattern). A pattern P = (A′, A′i, A
′
o, D

′, I ′, O′) is a
simple pattern if and only if, for all activities α ∈ A′:

– [∃!Φ ∈ I ′(α) : Φ 6⊆ R+
α] ∨ [∀Φ ∈ I ′(α) : Φ ⊆ R+(α)];

– [∃!Θ ∈ O′(α) : Θ 6⊆ R−α] ∨ [∀Θ ∈ O′(α) : Θ ⊆ R−(α)]

Being R+
α the set of successors2 of an activity α, and R−α the set of predeces-

sors 3 of an activity α.

The simple patterns (Def. 5) are those patterns whose behavior can be en-
tirely executed in at least one trace. If the inputs or outputs of an activity have
a selection, it must be able to execute each path in the same trace —at most,
one of the paths is not a loop. For this, the inputs of each activity α must have
all activities reachable from α except, at most, the activities of one path. The
outputs present the same constraint, but in this case they must reach α, not be
reachable from α. Fig. 3 shows two valid simple patterns and an invalid one.

2 The successors of an activity α are the activities with a path from α to them, e.g.,
the successors of B in Fig. 2a are F, G, H and J.

3 The predecessors of an activity α are the activities with a path from them to α, e.g.,
the predecessors of C in Fig. 2a are C, I and A.

6 D. Chapela et al.

C
D

J

H

(a) Valid simple pattern.
The pattern is executed
in the instance [C D H
J].

A

I

C

B

D

(b) Valid simple pattern
with a loop. The pat-
tern is executed in the in-
stance [A B C I C D].

C
E

D J
H

(c) Invalid simple pat-
tern. D and E cannot be
in the same instance of
the pattern.

Fig. 3: Examples of valid and invalid simple patterns of the process model shown
in Fig. 2a.

Definition 6 (Minimal pattern, M -pattern). Each activity of the process
model belongs to, at least, one minimal pattern. The M -pattern of an activity
α corresponds to the closure of α, i.e., the structure that is going to be executed
when α is executed. An exception is made with parallel structures: if α has a
parallel in its inputs or outputs, there must be an M -pattern containing each
parallel path.

Given a C-net C = (A, ai, ao, D, I,O) representing a process model M and
an activity α′ ∈ A, a pattern P = (A′, A′i, A

′
o, D

′, I ′, O′) is a Minimal Pattern
of α′ if and only if is a maximum simple pattern containing α′ and fulfilling the
following rules:

– if |I(α′)| > 1 then [I ′(α′) = ∅] ∨ [|I ′(α′)| = 1, Φ ∈ I ′(α′) : |Φ| > 1];
– if |O(α′)| > 1 then [O′(α′) = ∅] ∨ [|O′(α′)| = 1, Θ ∈ O′(α′) : |Θ| > 1];
– ∀α ∈ R+

α′ : if |O(α)| 6= 1 then O′(α) = ∅;
– ∀α ∈ R−α′ : if |I(α)| 6= 1 then I ′(α) = ∅;
– ∀α ∈ A′, α 6= α′, α 6∈ (R+

α′
⋃
R−α′) : if |I(α)| 6= 1 then I ′(α) = ∅, and if

|O(α)| 6= 1 then O′(α) = ∅

In WoMine-i each activity α′ is associated, at least, to an M -pattern. The
M -patterns of an activity α′ are obtained through an expansion process that
starts in α′ and continues through its inputs and outputs fulfilling the following
rules: i) the process will not expand through the inputs of α′ with size 1 and
being part of a selection; ii) the same stands for the outputs of α′; iii) for all the
successors of α′ the expansion stops if the outputs are formed by a selection; iv)

A

D

C

B

E G

H

F

I

J

(a) Petri net of the process model.

E
F

J

(b) M -pattern of
F.

J

(c) M -pattern of
J.

A
B

C
EA

B

D
E

(d) M -patterns of A.

Fig. 4: A process model and three examples of M -patterns.

Discovering Infrequent Behavioral Patterns in Process Models 7

the same stands for the inputs of the predecessors of α′; v) finally, the process
does not expand either through the inputs or outputs of the activities not fitting
the previous constraints if those are formed by an XOR structure in the model.

Fig. 4 shows some M -patterns of a model. Fig. 4b shows the M -pattern of
F: the process starts in F and expands the M -pattern through F inputs and
outputs, because both are formed by only one path. The backwards expansion
stops in E because its inputs are part of a selection. Fig. 4c depicts the M -pattern
of J. It is formed only by itself, because its inputs are part of a selection and
its outputs are empty. Finally, Fig. 4d presents the two M -patterns of A. As A
is an AND-split with a selection, two M -patterns are created, each one related
to one of the possible paths.

Definition 7 (Candidate arcs). Let C = (A, ai, ao, D, I,O) be a causal net
representing a process model M . An arc 〈αi → αj〉 : αi, αj ∈ A is part of the
A< set, i.e., a candidate arc, if and only if:

– O(αi) = {Θ ∈ AS | Θ = {αj} ∨ αj 6∈ Θ}
– I(αj) = {Φ ∈ AS | Φ = {αi} ∨ αi 6∈ Φ}

The set of candidate arcs, or A<, is a subset of the arcs in the model which
are not part of an AND structure. For instance, all arcs of Fig. 4a, but those
starting in A or ending in E, are included in the A< set.

Definition 8 (Compliance). Given a trace τ ∈ L and a simple pattern SP
belonging to the process model, the trace is compliant with SP , denoted as
SP ` τ , when the replay of the trace in the process model contains the replay of
the pattern, i.e., all the arcs and activities of SP are executed in a correct order,
and each activity fires the execution of its output activities in the pattern.

Definition 9 (Frequency of pattern and simple pattern). Let L be the
set of traces of the process log. The frequency of a simple pattern SP is the
number of traces compliant with SP divided by the size of the log:

freq(SP) =
|{τ ∈ L : SP ` τ}|

|L|
(1)

And the frequency of a pattern P is the maximum frequency of the simple
patterns it represents:

freq(P) = max
∀SP∈P

freq(SP) (2)

Definition 10 (Infrequent Pattern). Given a frequency threshold σ ∈ R : 0 <
σ ≤ 1, a pattern P is an infrequent pattern if and only if freq(P) < σ.

4 Infrequent Pattern Mining Algorithm

Given a process model and a set of instances, i.e., traces, the objective is to
extract the subgraphs of the process model that are executed in a percentage of

8 D. Chapela et al.

...

A
B

C

C

I
J

H

DC

C

I J
H

D
C

E

...A
B

C

I

J
H

EC
A

B ...

C
Freq: 100%

freq:100% freq:40% freq:40%

freq:60%

freq:40%

freq:40%
freq:60%

...

...

Iter. 1

Iter. 2

Iter. 3 Do Not Save
Stop Expansion

Add M-pattern of A Add M-pattern of JAdd M-pattern of I

Add M-pattern of IAdd M-pattern of J Add Arc I→C Add M-pattern of J

Fig. 5: Example of a part of the expansion process starting with the M -pattern
of C. The example shows only three branches of expansion and two iterations.
Some of the expansions have been omitted for the sake of clarity.

the traces under a threshold. A naive approach might be a brute-force algorithm,
checking the frequency of every existent subgraph inside the process model, and
retrieving the infrequent ones. The computational cost of this approach makes
it a non-viable option. The algorithm presented in this paper performs an a
priori search4 starting with the minimal patterns (Def. 6) of the model. In this
search, there is an expansion stage done in two ways: i) adding M -patterns
not contained in the current pattern, and ii) adding arcs of the A< set (Def. 7).
This expansion is followed by a pruning strategy that verifies the upward-closure
property of support —also known as monotonicity [17]. This property ensures
that if a pattern is infrequent, all patterns containing it will be infrequent and,
thus, it is no necessary to continue expanding it —the minimum pattern itself
expresses all the infrequent behavior containing it.

This pruning presents an exception in order to simplify the results: if a pat-
tern is infrequent and maintains the value of its frequency with the expansion,
it is not removed from the expansion stage —it means the pattern is being ex-
panded with a selection branch with less frequency (cf. Def. 9). In this way,
WoMine-i returns the largest patterns expressing the minimum infrequent be-
havior.

Fig. 5 shows an example of a part of the expansion process, assuming a
threshold under 40%. The example starts with the M -pattern of C and shows
three expansions of the first iteration: the M -pattern of A, one of the M -patterns
of I and one of the M -patterns of J. Each of the patterns obtained in the first
iteration is again expanded in the second iteration with the M -patterns of J, an
M -pattern of I, and the arc 〈I → C〉.

The pseudocode in Alg. 1 shows the main structure of the search made by
the algorithm. First, the candidate arcs and the minimal patterns are initialized
(Alg. 1:2). These M -patterns will be the used to start the iterative process. Then,

4 An a priori search uses the previous —a priori— knowledge. It reduces the search
space by pruning the exploration of the paths that will not finish in a valuable result.

Discovering Infrequent Behavioral Patterns in Process Models 9

Algorithm 1. Main structure of WoMine-i.
Input: A process model W , a set T = {T1, T2, . . . , Tn} of traces of W and a threshold tr.
Output: A set of maximum infrequent patterns of W w.r.t. T .

1 Algorithm infrequentSearch(W, T, tr)
2 M ← {m | m ∈ W,m is an M -pattern } // Def. 6

3 A< ← {a | a ∈ W,a is a Candidate Arc } // Def. 7
4 currentPatt←M
5 infreqPatt ← {m | m ∈M , m is infrequent w.r.t. T} // using Alg. 2
6 while currentPatt 6= ∅ do
7 candPatt← ∅
8 forall p ∈ currentPatt do
9 candPatt← candPatt ∪ addArcs(p)

10 complementaryM ← {m | m ∈M , m 6∈ p}
11 forall m ∈ complementaryM do
12 candPatt← candPatt ∪ addMPattern(p, m)
13 end

14 end
15 currentPatt← filterCandidatePatterns(candPatt, infreqPatt)
16 end
17 Delete the redundant patterns of infreqPatt
18 return infreqPatt

19 Function filterCandidatePatterns(candPatt, infreqPatt)
20 currentPatt← ∅
21 forall p ∈ candPatt do
22 measure current frequency of p // using Alg. 2
23 if p has no previous frequency || p’s frequency has not increased then
24 if p is frequent then
25 currentPatt← currentPatt ∪ p
26 else if p is infrequent then
27 if p has no previous frequency || p was frequent || p’s frequency has

maintained then
28 currentPatt← currentPatt ∪ p
29 infreqPatt ← infreqPatt ∪ p
30 end

31 end

32 end

33 end
34 return currentPatt

using the algorithm described in Section 5, the infrequent patterns are included
in the final set (Alg. 1:5).

Afterwards, the iterative part starts (Alg. 1:6). In this stage, an expansion of
each of the current patterns is done, followed by a filtering of the patterns. The
expansion by adding arcs from the A< set (Alg. 1:9) is done with the function
addArcs. The other expansion, the addition of M -patterns that are not in the
current pattern (Alg. 1:10-13), is done with the function addMPattern.

Once the expansion is completed, the obtained patterns are filtered (Alg. 1:15)
to distinguish the promising from the unpromising ones. Firstly, the frequency
of the new pattern is measured, comparing it with the frequency of the pat-
tern before the expansion (Alg. 1:22). If this expansion has caused its frequency
to grow, the pattern is discarded, otherwise the analysis continues (Alg. 1:23).
Then, if the pattern is frequent, it is saved for the next iteration (Alg. 1:25)
—because any frequent pattern can become infrequent by expanding it. And
otherwise, if the pattern is infrequent, it is saved in the results as infrequent one
(Alg. 1:28). But, this is only done if i) it is the first iteration and the pattern has

10 D. Chapela et al.

no previous frequency, ii) the pattern was frequent before the expansion, i.e., it
has become infrequent or iii) the frequency has maintained, i.e., the pattern was
already infrequent and the expansion has not changed its frequency (Alg. 1:27).

Finally, once the iterative process finishes, a simplification is made to delete
the patterns which provide redundant information (Alg. 1:17). This redundancy
is because there are patterns in the k-th iteration which are expanded and thus
are subpatterns of those in the k+1-th iteration. A naive approach to reduce the
redundancy generated by the expansion might be to remove the patterns from
iteration k-th that are expanded in iteration k + 1-th but, with the existence of
loops, there is no assurance that the behavior of a pattern is contained in all its
superpatterns.

The simplification process consists in the deletion of the patterns that are
contained into others, but whose difference is not a loop. For this, each pattern is
compared with its previous patterns in the expansion. If the arcs and activities
of a pattern are contained into the other, and the difference between them does
not contain a complete closed loop, one of the two patterns must be deleted.
The subpattern is deleted if its frequency is higher or equal to the frequency of
the pattern under analysis. Otherwise the pattern under analysis is deleted.

5 Measuring the Frequency of a Pattern

In each step of the iterative process, WoMine-i reduces the search space by
pruning the infrequent patterns (Alg. 1:15). For this, an algorithm to check the
frequency of a pattern is needed (Alg. 2). Following Defs. 9 and 10, the al-
gorithm generates the simple patterns of a pattern and checks the frequency
of each one (Alg. 2:2-6). After calculating the frequency of the simple pat-
terns, the function checks if this is considered infrequent w.r.t. the thresh-
old (Alg. 2:12). The frequency of a simple pattern is measured in function
getPatternFrequency by parsing all the traces and checking how many of
them are compliant with it (Alg. 2:15-19). Finally, to check if a trace is compliant
with a simple pattern, function isTraceCompliant is executed: it goes over
the activities in the trace (Alg. 2:22), replaying its execution in the model, and
retrieving the activities that have fired the current one (Alg. 2:23-24). The sim-
ulation (simulateExecutionInPattern) consists in a replay of the trace,
checking if the pattern is executed correctly (Alg. 2:25).

With the current activity —the fired one— and the activities that have fired
it —the firing activities, retrieved by the simulation—, the executed activities
and arcs are saved, in order to analyze and to detect if the execution of the
pattern is being disrupted before it is completed. Fig. 6 shows an example of
this process. The algorithm starts (#0) with the empty sets of executed arcs
and last executed activities. The first step (#1) executes A. There are no firing
activities because A is the initial activity of the process model. As A is also one
of the initial activities of the pattern, it is saved correctly in the last executed
activities set.

Discovering Infrequent Behavioral Patterns in Process Models 11

Algorithm 2. Check if a pattern is infrequent.
Input: A set T = {T1, T2, . . . , Tn} of traces, a pattern pattern to measure its frequency

w.r.t. T and a threshold to establish the bound of frequency.
Output: A Boolean value indicating if the pattern is infrequent or not.

1 Algorithm isInfrequentPattern(pattern, T, threshold)
2 simplePatterns← generate the simple patterns of pattern
3 frequencies ← ∅
4 forall simplePattern ∈ simplePatterns do
5 frequencies ← frequencies ∪ getPatternFrequency(simplePattern, T)
6 end
7 maxFreq ← 0
8 if frequencies.length > 0 then
9 maxFreq ← maximum of frequencies

10 end
11 realFreq ← maxFreq/T.length
12 return realFreq < threshold

13 Function getPatternFrequency(pattern, T)
14 executed← 0
15 forall trace ∈ T do
16 if isTraceCompliant(pattern, trace) then
17 executed← executed+ 1
18 end

19 end
20 return executed

21 Function isTraceCompliant(pattern, trace)
22 forall activity ∈ trace do
23 Replay activity in the process model
24 sources← get the activities that fired the execution of activity
25 simulateExecutionInPattern(sources, activity, pattern)
26 if pattern has been successfully executed then
27 return true

28 end

29 end
30 return false

The following activity (#2) in the trace is B. As there is only one firing
activity (A), a single arc is executed (〈A→ B〉). The arc is added to the executed
arcs set, and the activity B to the last executed activities set. The A activity is not
deleted because the set of outputs is formed by {B, C}, and C is still pending.

The next step, activity E (#3), has the same behavior. There is only one firing
activity, i.e., one executed arc. The arc is in the pattern and its source activity is
in the last executed activities set. Hence, the executed arcs set is updated and B
replaced by E in the last executed activities set. After this process, the following
activity is C (#4). Its execution has the same behavior as the execution of B,
but with the deletion of A from the last executed activities, because the set of
outputs {B, C} has been fired.

Finally (#5), F has two firing activities and, thus, two arcs are executed. In
both cases, the source activity of the arcs —C and E— is in the last executed
activities set, and the arc is in the pattern. Thus, a simple addition of F to the
last executed activities set is done when the last of its branches is executed.

At the end of each step, the algorithm checks if the pattern has been correctly
executed (Alg. 2:26), i.e., all its arcs have been correctly executed and the last
executed activities set corresponds with the end activities of the pattern (Ao).

12 D. Chapela et al.

A

B

C

E

D

F

(a) Petri net of a
process model with a
pattern highlighted
in black (the un-
named activity is an
invisible activity).

Trace: A B E C F
Initial activities: {A}
End activities: {F}

#
executed
activities

executed arcs
last executed

activities
0 - ∅ ∅
1 A ∅ A
2 B 〈A→ B〉 A, B
3 E 〈A→ B〉, 〈B → E〉 A, E
4 C 〈A→ B〉, 〈B → E〉, 〈A→ C〉 E, C

5 F
〈A→ B〉, 〈B → E〉, 〈A→ C〉, 〈C → F 〉,
〈E → F 〉 F

(b) Check of the execution of a trace for the pattern highlighted
in Fig. 6a: ’#’ is the step of the algorithm; ’executed activity’ is
the activity currently executed; ’executed arcs’ is the set with
the arcs belonging to the pattern which execution was correctly
saved; ’Last executed activities’ is the set of activities which
have not fired an entire set of their outputs.

Fig. 6: An example that shows how the algorithm checks if a trace is compliant
with a pattern of the process model.

Unlike the other steps, this testing has a positive result when F is executed.
Thus, the trace is compliant with the pattern.

The process of saving the executed arcs and activities has to be restarted
when the executed arc is disrupting the execution of the pattern. For instance,
in step #5, if the arc 〈C → D〉 was executed, this would cause this saving process
to go back by removing the arcs and activities of the failed path and to continue
with the trace to check if the execution of the pattern is resumed later. This
analysis is able to detect the correct execution of a pattern in 1-safe Petri nets5.

6 Experimentation

In this section we evaluate the performance of WoMine-i. First (Sec. 6.1), we
qualitatively compare WoMine-i with the related techniques and, then (Sec. 6.2),
we test WoMine-i on four logs from two Business Process Intelligence Challenges.
These experiments have been executed in a laptop with an Intel i7-3612QM (2.1
GHz) processor and 8GB of RAM (1600 MHz)6.

6.1 Qualitative Comparison Between WoMine-i and the State of
the Art Approaches

We present a qualitative comparison between WoMine-i and related techniques
through a set of illustrative synthetic models. We have classified the related tech-

5 A Petri net is 1-safe when there can be only one mark in a place at the same time.
6 The algorithm and datasets can be downloaded from http://tec.citius.usc.
es/processmining/womine/

http://tec.citius.usc.es/processmining/womine/
http://tec.citius.usc.es/processmining/womine/

Discovering Infrequent Behavioral Patterns in Process Models 13

0-25%
25-50%
50-75%
75-100%

A
B

C
F

E
G

H

I
D

(a) Heat Maps technique (all XOR).

F ID G

(b) Infrequent pattern (frequency of 6%).

Id Trace Id Trace
0 ABDFGI (×4) 6 ACDFGHI (×12)
1 ABEFGI (×17) 7 ACEFGHI (×5)
2 ACDFGI (×2) 8 ABDFGHHI (×11)
3 ACEFGI (×15) 9 ABEFGHHHI (×7)
4 ABDFGHI (×10) 10 ACDFGHHHI (×9)
5 ABEFGHI (×4) 11 ACEFGHHI (×4)

(c) 100-trace log.

Fig. 7: Process model, infrequent pattern and event log of a process.

niques into three groups: i) individual frequency-based, ii) pattern extraction-
based and iii) trace-based.

The first process model (Fig. 7) presents several selections, an optional task
and a loop. WoMine-i finds the pattern in Fig. 7b appearing in the 6% of the
traces. On the contrary, individual frequency-based techniques —e.g. Heat Maps
(Fig. 7a)— detect parts of the pattern as frequent. Pattern-based techniques —
as Local Process Models— get a frequency of 48% (traces 0, 2, 4, 6, 8 and 10) for
the pattern —the correct value is 6%. Finally, trace-based techniques retrieve
full traces, being necessary a post analysis to extract infrequent patterns —e.g.
traces 0, 2, 5, 7 and 11 have a frequency under 6% but contain both frequent
and infrequent behavior.

The second example presents a more complex model with loops, parallels
and selections (Fig. 8). The approach presented in this paper discovers, with a
5% of frequency, an infrequent pattern denoting as uncommon the execution of
the C-E parallel structure after the loop of G-H. As can be seen, based in the
individual frequency of the arcs is impossible to extract this infrequent behavior.
Local Process Models can extract this pattern successfully but the obtained
frequency is not reliable. Also, the search space is larger because they do not
rely on the process model. Trace-based techniques present the same problem as
in the previous example but, as traces are longer, the post analysis becomes
more difficult.

A

K

B

C

D

E

I

J
H G

F L

(a) Infrequent pattern detected by
WoMine-i (frequency 5%).

0-25%
25-50%
50-75%
75-100%

A B

C

D

E
F L

GH
I

J
K

(b) Heat Maps technique applied to the
process model.

Fig. 8: Results of WoMine-i and Heat Maps for a process model composed by a
sequence with a selection, and two loops.

14 D. Chapela et al.

Table 1: Behavioral structure of the infrequent patterns extracted for a threshold
of 5% from the process models of the BPICs. It shows the results for two process
models (ProDiGen and Inductive Miner) on each log.

Threshold : 5%
runtime (secs)

#patt frequency #activities #sequences #choices #parallels #loops
pre alg

P
D

G 2
0
1
2 a 0.208 16.439 1 0±0 11.00±0.00 2.00±0.00 4.00±0.00 0±0 0±0

o 0.202 343.106 21 0.02±0.01 6.67±0.91 0.52±0.51 3.33±1.62 0±0 0.38±0.50

2
0
1
3 clo 0.056 0.700 3 0.03±0.02 2.00±1.73 0±0 0±0 0.33±0.58 0.33±0.58

op 0.036 4.806 12 0.02±0.02 6.00±0.43 0±0 1.58±1.08 1.50±0.52 1.50±1.09

IM

2
0
1
2 a 0.208 16.766 2 0±0 10±0 1.50±0.71 1.50±2.12 0±0 0±0

o 0.202 79.027 4 0.02±0.02 5.25±2.87 0±0 2.25±3.30 1.75±1.26 1.25±1.89

2
0
1
3 clo 0.056 6.630 1 0.01±0.00 1.00±0.00 0±0 0±0 0±0 0±0

op 0.036 0.474 5 0.02±0.01 3.00±2.74 0±0 0±0 0.40±0.55 0.60±0.55

6.2 Infrequent Patterns for the BPI Challenges

The objective of this section is twofold: on the one hand, to test WoMine-i on
complex real logs from the Business Process Intelligence Challenge (BPIC)789

demonstrating the ability to retrieve all type of structures and, on the other
hand, to analyze the influence of the model in the retrieved patterns. We used
4 BPIC logs, and we mined the process models with two different discovery
algorithms, ProDiGen (PDG) [3] and the Inductive Miner (IM) [2].

A series of experiments have been run for these logs and models with different
thresholds. Table 1 shows the structural characteristics of the mined infrequent
patterns for a threshold of 5%. As explained in Sec. 5, the algorithm needs
to replay the trace in the model to retrieve the executed arcs. This process is
independent of the threshold —it only depends on the traces (log) and on the
model. Thus, the runtime is divided in two parts to distinguish this preprocessing
time and the time spent by the algorithm. As can be seen, WoMine-i is able to
retrieve infrequent patterns with all type of structures. Regarding the runtime,
the preprocessing time is short, being 208 ms the longest time. The time spent
by the algorithm is longer, and depends on the model and patterns extracted.
Log 2012 o shows a difference in the runtime due to the number of patterns
extracted —a model with more uncommon structures will return as infrequent
this behavior, increasing the runtime. Nevertheless, the other runtimes are under
20 seconds (2012 a), and 7 seconds (2013).

Besides, we have compared the number of patterns discovered for the PDG
and the IM models. As can be seen, except for one log (2012 a), the algorithm
retrieves more patterns with the PDG model than with the IM one. This is due
to the structure of the models: the higher number of relations in the IM model

7 BPIC 2012 - 10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.
This dataset has been split into two logs: 2012 a contains the events related with the
state of an application process, while 2012 o has the events related with the state of
an offer belonging to an application process.

8 BPIC 2013 clo - 10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11
9 BPIC 2013 op - 10.4121/uuid:3537c19d-6c64-4b1d-815d-915ab0e479da

10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11
10.4121/uuid:3537c19d-6c64-4b1d-815d-915ab0e479da

Discovering Infrequent Behavioral Patterns in Process Models 15

Accepted

Declined

End

Start
Selected

Created

Sent Sent_back

Cancelled

Fig. 9: Infrequent pattern (2%) retrieved from the BPIC 2012 o. All relations are
selections (XOR)

allows to embrace more infrequent behavior with few small patterns, while with
the PDG model is necessary to build larger patterns —smaller patterns with
IM. Results with 2012 a show a case where the infrequent patterns represent
behavior not recorded in the log, but allowed by the models —frequency 0.

Fig. 9 shows an example of a pattern extracted by WoMine-i from the PDG
model of the BPIC 2012 o log, which corresponds to a Dutch Financial Institute.
The extracted pattern appears in the 2% of the traces, and models the selection
of a procedure, followed by the creation and shipment of it, and ended by sending
it back and canceling the procedure, but with a return to the selection, instead
of a finalization of the instance. This behavior might be from a illegal execution
where the procedure is restarted after a cancellation, while the normal execution
should be the ending of it. Trace-based approaches extract complete traces —
the traces of the log have up to 35 activities—, hindering the identification of
the pattern. On the other hand, pattern-based approaches might consider the
infrequent pattern as executed although other activities, that are not part of the
pattern, are executed before the end of the it.

7 Conclusion and Future Work

We have presented WoMine-i, an algorithm designed to search infrequent behav-
ioral patterns in an already discovered process model, being able to discover pat-
terns with the most common control structures, including loops. This structures
allow to discover, for instance, subprocesses executed less than the expected, or
uncommon wrong behavior. We have compared WoMine-i with other proposals,
showing that our approach discovers uncommon behavior that other techniques
are not able to detect. Moreover, we have also tested our algorithm with com-
plex real logs from the BPICs. Results show the importance of the infrequent
patterns to analyze and optimize the process model.

Acknowledgments.

This research was supported by the Spanish Ministry of Economy and Competi-
tiveness (grant TIN2014-56633-C3-1-R) and the Galician Ministry of Education,
Culture and Universities (grants GRC2014/030 and accreditation 2016-2019,
ED431G/08). These grants are co-funded by the European Regional Develop-
ment Fund (ERDF/FEDER program).

16 D. Chapela et al.

References

1. Weijters, A., van Der Aalst, W.M., De Medeiros, A.A.: Process mining with the
heuristics miner-algorithm. Technische Universiteit Eindhoven, Tech. Rep. WP
166 (2006) 1–34

2. Leemans, S.J., Fahland, D., van der Aalst, W.M.: Discovering block-structured
process models from event logs-a constructive approach. In: International Confer-
ence on Applications and Theory of Petri Nets and Concurrency, Springer (2013)
311–329

3. Vázquez-Barreiros, B., Mucientes, M., Lama, M.: Prodigen: Mining complete,
precise and minimal structure process models with a genetic algorithm. Information
Sciences 294 (2015) 315–333

4. Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Pre-
fixspan: Mining sequential patterns efficiently by prefix-projected pattern growth.
In: proceedings of the 17th international conference on data engineering. (2001)
215–224

5. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.: Mining local process
models. Journal of Innovation in Digital Ecosystems (2016)

6. Greco, G., Guzzo, A., Manco, G., Pontieri, L., Saccà, D.: Mining constrained
graphs: The case of workflow systems. In: Constraint-Based Mining and Inductive
Databases. Springer (2006) 155–171

7. Conforti, R., La Rosa, M., ter Hofstede, A.H.: Filtering out infrequent behavior
from business process event logs. IEEE Transactions on Knowledge and Data
Engineering (2016)

8. Ghionna, L., Greco, G., Guzzo, A., Pontieri, L.: Outlier detection techniques for
process mining applications. In: International Symposium on Methodologies for
Intelligent Systems, Springer (2008) 150–159

9. Yang, W.S., Hwang, S.Y.: A process-mining framework for the detection of health-
care fraud and abuse. Expert Systems with Applications 31(1) (2006) 56–68

10. Münz, G., Li, S., Carle, G.: Traffic anomaly detection using k-means clustering.
In: GI/ITG Workshop MMBnet. (2007)

11. Lo, D., Cheng, H., Han, J., Khoo, S.C., Sun, C.: Classification of software behaviors
for failure detection: a discriminative pattern mining approach. In: Proceedings
of the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining, ACM (2009) 557–566

12. Bezerra, F., Wainer, J.: Algorithms for anomaly detection of traces in logs of
process aware information systems. Information Systems 38(1) (2013) 33–44

13. Lu, X., Fahland, D., van den Biggelaar, F.J., van der Aalst, W.M.: Detecting
deviating behaviors without models. In: International Conference on Business
Process Management, Springer (2015) 126–139

14. De Weerdt, J., vanden Broucke, S., Vanthienen, J., Baesens, B.: Active trace
clustering for improved process discovery. IEEE Transactions on Knowledge and
Data Engineering 25(12) (2013) 2708–2720

15. Desel, J., Reisig, W.: Place/transition petri nets. In: Lectures on Petri Nets I:
Basic Models. Springer (1998) 122–173

16. Van Der Aalst, W., Adriansyah, A., Van Dongen, B.: Causal nets: a modeling
language tailored towards process discovery. In: International Conference on Con-
currency Theory, Springer (2011) 28–42

17. Leung, C.K.S. In: Monotone Constraints. Springer US, Boston, MA (2009) 1769–
1769

	Discovering Infrequent Behavioral Patterns in Process Models
	Introduction
	Related Work
	Preliminaries
	Infrequent Pattern Mining Algorithm
	Measuring the Frequency of a Pattern
	Experimentation
	Qualitative Comparison Between WoMine-i and the State of the Art Approaches
	Infrequent Patterns for the BPI Challenges

	Conclusion and Future Work

