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Abstract. Despite growing interest in process analysis and mining
for data-aware specifications, alignment-based conformance checking for
declarative process models has focused on pure control-flow specifica-
tions, or mild data-aware extensions limited to numerical data and
variable-to-constant comparisons. This is not surprising: finding align-
ments is computationally hard, even more so in the presence of data
dependencies. In this paper, we challenge this problem in the case where
the reference model is captured using data-aware Declare with general
data types and data conditions. We show that, unexpectedly, it is pos-
sible to compute data-aware optimal alignments in this rich setting, en-
joying at once efficiency and expressiveness. This is achieved by carefully
combining the two best-known approaches to deal with control flow and
data dependencies when computing alignments, namely A* search and
SMT solving. Specifically, we introduce a novel algorithmic technique
that efficiently explores the search space, generating descendant states
through the application of repair actions aiming at incrementally re-
solving constraint violations. We prove the correctness of our algorithm
and experimentally show its efficiency. The evaluation witnesses that our
approach matches or surpasses the performance of the state of the art
while also supporting significantly more expressive data dependencies,
showcasing its potential to support real-world applications.

Keywords: Multi-perspective conformance checking · Efficient optimal
alignments · Data-aware Declare · Satisfiability modulo theories (SMT).

1 Introduction
Conformance checking [6] is a cornerstone task in process mining. It relates the
observed behaviour contained in an event log to the expected behaviour de-
scribed by a reference process model, with the goal of identifying and reporting
deviations. A widely adopted approach substantiates conformance checking in
the computation of so-called optimal alignments, where each non-conforming log
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trace is compared against the closest model trace(s), indicating where discrep-
ancies are located and calculating a corresponding cost [4].

Lifting the computation of alignments to process models integrating multiple
perspectives (most prominently data and control-flow) has been tackled with in-
creasing interest [19,2,14], and so has been dealing with other forms of data-aware
conformance checking. On the one hand, this reflects a growing prominence of
multi-perspective (in particular, data-aware) process models in the foundations
of process science. On the other hand, computing multi-perspective alignments
provides more informative insights than pure control-flow alignments [19].

Despite this growing interest, alignment-based conformance checking for
declarative data-aware process specifications is still an open problem. Exist-
ing work mainly focuses only on control-flow, concretely expressed using DCR
graphs [8], Declare [18], or Linear Temporal Logic on finite traces (LTLf) [10].
To the best of our knowledge, the only attempt of lifting alignment computation
to a data-aware setting is [2], which considers however a very limited data-aware
extension of Declare where data are numerical and data conditions are restricted
to variable-to-constant comparisons, such as x > 5, which also excludes compar-
isons between variables in different events.

Example 1. To highlight the expressivity of complex data conditions, consider a
model for a shipping company that has a Declare response constraint between
two events: “Package Shipment” (A) and “Delivery Confirmation” (B), such that
after a package is shipped, delivery confirmation must be received. The constraint
is equipped with a data condition that specifies that the delivery confirmation
must be received within 3 days of shipping if the package weighs less than 10 kg
and the delivery address is within a specific geographic region. In any other case,
it must be received within 10 days of shipping. Our approach can handle this con-
dition, expressed in SMT-LIB2 [1] syntax as (A.weight < 10.0 and B.region
== "Europe") ? (B.time - A.time <= 3d) : (B.time - A.time <= 10d).

The fact that previous work did not consider complex constraints like the one
shown in the example is not surprising: finding alignments is computationally
hard, even more so in the presence of data dependencies. Also, this more expres-
sive setting cannot be addressed relying on previous methods [10,2], based on
the construction of an automaton capturing all and only the traces accepted by
the reference Declare specification. In fact, this is not possible even for numerical
datatypes going beyond mere comparison predicates, due to undecidability [15].

In this paper, we tackle this challenge by casting the alignment problem as a
search problem that is solved by repeatedly identifying and repairing constraint
violations. To this end we strategically integrate the two most effective methods
for handling control flow and data dependencies in alignment computation, re-
spectively: A∗ search, in the variant adopted by one of the most recent methods
for Declare [7], and SMT solving [1], so far employed for aligning data-aware
procedural process models [14]. Our technique defines a novel search space that
is explored using the A∗ search algorithm to find an optimal alignment. The
initial state of the search space represents the original trace as an SMT formula.
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When a state is explored, an SMT solver is used to identify constraint violations,
which in turn triggers the generation of child states by repairing the parent state.
This process continues until a goal state is found that has minimal cost and no
violation to repair, from which the optimal alignment can be reconstructed.

We establish correctness of our algorithm through rigorous proofs and provide
an extensive experimental evaluation, showing its ability to operate efficiently
even when complex data conditions are employed. Our method matches or sur-
passes the performance of the state of the art while providing for the first time
concrete support for rich datatypes and data conditions.

The remainder of this paper is structured as follows: Sec. 2 we summarize
related work. In Sec. 3 we recall the necessary preliminaries about data-aware
Declare, and alignments. Sec. 4 is dedicated to our approach to conformance
checking for data-aware Declare specifications. We describe its implementation
in the tool DADA in Sec. 5. In Sec. 6, we provide a detailed evaluation and com-
parison with the state-of-the-art. In Sec. 7, we conclude and give some directions
for future work. Additional material is available online.4

2 Related Work
Although significant research has focused on computing optimal alignments for
imperative process models that incorporate the data perspective [19,14,20,11],
there is a notable lack of work on data-aware alignment techniques for declarative
models. Existing conformance checking methods for declarative models primarily
focus on control-flow [17,10,9,7,8,18]. Notably, they lack the capability to han-
dle data conditions, a critical component of real-world processes. Though some
approaches have been proposed for conformance checking of data-aware Declare
models, they have severe limitations. SQL queries have been employed to fil-
ter traces from a database that match the given specification, but this approach
only considers exactly matching traces [22,21]. Similarly, [3] uses constraint pro-
gramming for trace analysis, but only supports global data. More comprehensive
results are provided by the analysis framework [5], which reports activations,
fulfillments, and violations of constraints. Moreover, importantly, none of the
approaches [22,21,3,5] provides alignments, thus failing to offer detailed insights
into the nature and extent of deviations between observed and expected behav-
ior: This lack of nuanced analysis hinders the ability to identify root causes of
non-conformance and implement targeted improvements, ultimately undermin-
ing the effectiveness of conformance checking efforts.

Closest to our work is the planning-based conformance checking approach [2],
which does compute optimal alignments of data-aware Declare models. However,
their treatment of the data perspective has severe limitations: data conditions
can only refer to activation or target events, excluding correlation conditions
that link the two. Moreover, data conditions are restricted to simple variable-
to-constant comparisons, whereas our approach supports much more expressive
data conditions over a wide range of data types including integers, bit-vectors,
infinite-precision reals, and arrays. Specifically, we support the complete lan-

4 https://apps.citius.gal/dada and https://doi.org/10.5281/zenodo.15470077
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guage of conditions specified in the SMT-LIB2 standard [1], requiring only that
the underlying SMT theory is decidable. Overall, our approach offers a significant
improvement over existing methods in terms of expressiveness and efficiency.

3 Preliminaries
In this section we introduce the required background about event logs, Declare
with data, and alignments. We start with the data condition language and events.

Data conditions. We consider sorts Σ = {bool, int, rat, string} for data pay-
loads, with associated domains D(bool) = B, the booleans; D(int) = Z, the
integers; D(rat) = Q, the rational numbers, and D(string) = S, finite strings.
For a set of variables V and a sort σ ∈ Σ, Vσ denotes the subset of V of sort σ.

Definition 1. A data condition over a set of variables V is an expression c
according to the following grammar:
c := vbool | b | n ≥ n | r ≥ r | r > r | s = s | c ∧ c | ¬c s := vstring | t
n := vint | z | n+ n | −n r := vrat | q | r + r | −r
where vσ ∈ Vσ for σ ∈ Σ, b ∈ B, t ∈ S, z ∈ Z, and q ∈ Q. The set of data
conditions over a set of variables V is denoted by C(V ).

We use data conditions as in Def. 1 in this paper to have a concrete language
to refer to, but our implementation actually allows for arbitrary conditions in
the SMT-LIB2 language [1] that is supported by the SMT solver of choice. In
the sequel, we assume that the underlying SMT theory is decidable, though; this
restriction is required to provide correctness guarantees.

Event logs. Below, we assume an arbitrary infinite set Id of event identifiers; and
a set A of activities, where elements a ∈ A are denoted by lower-case letters.
We consider the following notions of data-aware events, traces, and event logs:

Definition 2. An event e is a triple e = (ι, a, α) such that ι ∈ Id , a ∈ A is an
activity, and α is a partial assignment that maps variables in V to elements of
their domain. Given a set of events E, a trace e is a finite sequence of events
in E, that is, e ∈ E∗; and an event log is a multiset of traces. The domain of
an assignment α is denoted dom(α).

Declare. Tab. 1 lists the Declare templates used in this paper. We call a Declare
constraint an expression that is obtained from a Declare template by substitut-
ing the upper-case template variables by activities in A. Constraints based on
templates (6)–(9) and (10)–(12) are called response and precedence constraints,
respectively, while constraints using (13)–(15) are negation constraints.

Declare templates, as well as the derived constraints, have activations and
targets. Intuitively, an activation is an event whose occurrence imposes the (non)
occurrence of other events. These other events are called targets. For the tem-
plates in Tab. 1, in all response and negation templates, variable A is the acti-
vation and B the target; while in all precedence templates, B is the activation
and A the target. In the remaining patterns, both A and B are targets. Given a
Declare constraint φ, an activity is an activation (resp. target) activity in φ if it
is substituted for an activation (resp. target) variable in the underlying template.
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(1) Existence(n,A): A occurs at least n times.
(2) Absence(n,A): A occurs at most n − 1 times.
(3) Init(A): A is the first activity.
(4) End(A): A is the last activity.
(5) Choice(A,B): Either A or B, or both, occur.
(6) RespondedExistence(A,B): If A occurs, B also occurs.
(7) Response(A,B): If A occurs, B follows.
(8) AlternateResponse(A,B): If A occurs, B follows without an A in between.
(9) ChainResponse(A,B): If A occurs, B is the next activity.
(10)Precedence(A,B): If B occurs, A precedes it.
(11)AlternatePrecedence(A,B): If B occurs, A precedes it without a B in between.
(12)ChainPrecedence(A,B): If B occurs, A is the previous activity.
(13)NotResponse(A,B): If A occurs, B does follow.
(14)NotRespondedExistence(A,B): If A occurs, B does not.
(15)NotChainResponse(A,B): If A occurs, B is not the next activity.

Table 1: Supported Declare templates.

We consider multi-perspective Declare constraints that include data condi-
tions. To that end, for the remainder of the paper we fix a set of sorted process
variables V . Intuitively, these variables are considered the payload of activities;
they are maintained along the entire trace, but may change their values. For
a set Set, let V Set = {vs | v ∈ V and s ∈ Set} be a set of labelled variables
that contains a copy of each variable in V for each element in Set. In particular,
va ∈ V A will be used to represent the value of v while observing activity a.

Definition 3. A Declare constraint with data is a quadruple ⟨φ, cact , ctgt , ccor ⟩
consisting of a Declare constraint φ and data conditions cact , ctgt and ccor .
Precisely, for a ∈ A the activation and T ⊆ A the target activities of φ:
(i) cact ∈ C(V {a}) is called the activation condition, (ii) ctgt ∈ C(V T ) is called
the target condition, and (iii) ccor ∈ C(V {a}∪T ) is the correlation condition.

Intuitively, cact constrains the data variables while the activation activity is
observed, ctgt the data variables while the target activity is observed, and ccor
expresses relationships between the data variables of both activities. For Declare
constraints φ without activation, we assume that all but ctgt are ⊤. For simplicity
of presentation, we assume that the activation and target activity are different,
(though in our implementation this is not required). A Declare specification M
is a set of Declare constraints with data. In the sequel, if no confusion can arise,
we refer to Declare constraints with data simply by constraints.

Example 2. As running example, we use the set of variables V = {x}, activities
A = {a, b, c} and the specification M that consists of the following two con-
straints ψ1 and ψ2, where for readability we write a.v instead of va, for a ∈ A:
– ψ1 = ⟨ChainResponse(a, c),⊤,⊤, c.x > a.x⟩: This specifies that each occur-

rence of a must be directly followed by an event with c such that the value
of x associated with activity c is greater than the value of x seen with a.

– ψ2 = ⟨AlternatePrecedence(c, b), b.x ≥ 0, c.x ̸= 0, c.x < b.x⟩: This states an
alternate precedence relationship between the activation b and the target c,
demanding that if the value of x seen with b is non-negative, an activity c
must occur before activity b, without any other b activities with x ≥ 0 in
between. Furthermore, the x-value of c must be lower than the x-value of b.
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The semantics of Declare constraints with data is the same as in [2], we recall
it in Sec. 11. The set of all traces that satisfy all constraints in M is denoted by
runs(M). We assume for our approach that runs(M) ̸= ∅.
Alignments. We aim to design a conformance-checking procedure that, given a
trace and a Declare specification M, finds an optimal alignment of e and a run
of M. Typically, when constructing alignments, not all events in the trace can
be put in correspondence with an event in a run, and vice versa. Hence we use
a “skip” symbol ≫ and consider the extended set of events E≫ = E ∪ {≫}.

For a set E of events, a pair (e, f) ∈ E≫2 \{(≫,≫)} is called move iff one of
the following cases applies: it is a (i) log move if e∈E and f =≫; (ii) model move
if e=≫ and f ∈E; (iii) edit move if (e, f) ∈ E2, (e, f) = ((ι, a, α), (ι, a, α′)),
dom(α) = dom(α′) and ∃v ∈ dom(α) such that α(v) ̸= α′(v); (iv) synchronous
move if (e, f) ∈ E2 and e = f . We denote by Moves the set of all moves.

For a sequence of moves γ = ⟨(e1, f1), . . . , (en, fn)⟩, the log projection γ|L of
γ is the maximal subsequence e′1, . . . , e′i of e1, . . . , en such that e′1, . . . , e′i ∈ E∗,
that is, it contains no ≫ symbols. Similarly, the model projection γ|M of γ is
the maximal subsequence f ′1, . . . , f ′j of f1, . . . , fn such that f ′1, . . . , f ′j ∈ E∗.

Definition 4 (Alignment). Given a Declare model M, a sequence of moves γ
is an alignment of a trace e against M if γ|L = e, and γ|M ∈ runs(M). The
set of alignments for a trace e wrt. M is denoted by Align(M, e).

Example 3. Consider the trace e = ⟨(#1, a, {x = 0}), (#2, b, {x = 2})⟩. The fol-
lowing are two possible alignments for e against the model from Ex. 2:

γ1 =
a {x = 0}
a {x = 0}

≫
c {x = 1}

b {x = 2}
b {x = 2} γ2 =

a {x = 0}
a {x = 0}

≫
c {x = 3}

b {x = 2}
≫

Each move (e, f) is shown in a column, including e in the first row and f in the
second row. Since event identifiers are irrelevant in alignments, we omit them.

A cost function is a mapping κ : Moves → R+ that assigns a cost to every
move. It is naturally extended to alignments as follows.

Definition 5 (Alignment cost). Given γ ∈ Align(M, e) as before, the cost
of γ is defined as the sum of the costs of its moves, that is, κ(γ) =

∑n
i=1 κ(ei, fi).

Moreover, γ is optimal for e and M if κ(γ) is minimal among all alignments
for e and M, namely there is no γ′ ∈ Align(M, e) with κ(γ′) < κ(γ).

In this paper, we will use the standard cost function κ that assigns κ(e, f) = 1
if (e, f) is a log or model move, κ(e, f) = 0 if (e, f) is a synchronous move, and
for an edit move (e, f) = ((ι, a, α), (ι, a, α′)), κ(e, f) = |{α(v) ̸= α′(v) | v ∈ V }|.
4 Data-Aware Declare Aligner
In this section, we outline the conceptual approach of the Data-Aware Declare
Aligner. Given a Declare specification M and a trace e, the aim is to find an
optimal alignment of e wrt. M. To that end, the basic idea is to start with
the event sequence in e, and subsequently repair it until an event sequence is
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create initial
state S0 from e

choose the unvisited state
S with minimum cost

∃ψ ∈M that
is violated in S

add child states where
violation is repaired

create alignment
from Sno

yes

Fig. 1: Overview of the approach.

obtained that satisfies all constraints in M. To navigate through a large search
space of possible repairs and respective alignments while ensuring an optimal
solution, our approach leverages the A∗ algorithm.

We use the term state to refer to a representation of a candidate alignment.
The formal definition of a state is given below; intuitively, each state consists of
a partially ordered set of events together with data conditions, effectively acting
as a candidate alignment which need not yet satisfy all constraints. Moreover,
each state has a cost, reflecting the cost of alignments extracted from it.

An overview of the approach is sketched in Fig. 1: the initial state S0 rep-
resents the set of events in the input trace, ordered as in e, and with data
conditions that reflect the variable assignments. The procedure then selects the
previously unvisited state S of minimal cost. It is checked whether there are
remaining constraint violations in S. In this case, all possible repairs are applied
to S creating a new child state from each repair, and another search iteration is
performed. Otherwise, an optimal alignment for e is reconstructed from S.

4.1 State definition

As mentioned above, a state contains a partially ordered set of events, and
data conditions on their payloads. In order to express conditions that involve
variables in all events, we need, as a technicality, labelled variables: For an event
e = (ι, a, α), let V e = {vι | v ∈ V } be a copy of the set V where each variable
is labelled by the id of e. For a set of events E, let V E =

⋃
e∈E V

e be the set
of variables for all events in E. A state with set of events E can then use data
conditions (cf. Def. 1) on V E to refer to the events’ payloads. In the sequel we
also assume that V contains a special variable τ of type integer, and τ ι will
denote the timestamp of event with id ι. To reason about partial orderings of
events in E, states use ordering conditions, defined next:

Definition 6. An ordering condition o for a set of events E is of the following
form, where e, e′ ∈E, a∈A is an activity, and c is a data condition as in Def. 1:

o := e < e′ | e≪ e′ | first(e) | last(e) | e <a
[c] e

′ | ¬o | ⊤

Here e < e′ expresses that e happens before e′, e≪ e′ that e happens before e′
without any other event in between, first(e) that e is the first, last(e) that e is the
last element, and ⊤ is a condition that is always true. Somewhat more complex,
e <a

[c] e
′ expresses that e happens before e′ without an event e′′ in between that

has activity a and satisfies c, where c is supposed to be a data condition over
V e′′ . A set of ordering conditions on E in satisfiable if there exists a topological
sort of E that satisfies all conditions. A set of ordering conditions O is said to
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entail an ordering condition q, denoted O |= q, if
∧
O∧¬q is unsatisfiable. Note

that the ordering conditions are defined to closely align with the semantics of
the supported Declare templates, as clarified in Def. 8.

Definition 7. A state is a pair S = ⟨E,C⟩ where E is a set of events, and C
is a set of ordering conditions on E and data conditions over V E.

A state ⟨E,C⟩ thus represents a set of events E that is partially ordered by
the ordering conditions in C, and where payloads of events are constrained by
the data conditions in C.

For a trace e = ⟨e1, . . . , en⟩, let E(e) = {e1, . . . , en} be its set of events,
O(e) = {ei < ei+1 | 1 ≤ i < n} be the set of ordering conditions that capture
the event ordering in e, and D(e) the conjunction of all equations vι = α(v)
such that an event e = (ι, a, α) occurs in e and v ∈ dom(α). The initial state
is ⟨E(e), O(e) ∪D(e)⟩, it serves as the starting point for the exploration of the
search space. Note that we use formulas that mix ordering and data conditions;
we will explain in the next section how standard SMT solvers can be used to
perform satisfiability checks of such formulas.

Example 4. Consider the trace e in Ex. 3 with events e1 = (#1, a, {x = 0}) and
e2 = (#2, b, {x = 2}). If no confusion can arise, we write a.x rather than x#1 etc.
for readability. The initial state is S0 = ⟨{e1, e2}, (e1<e2)∧(a.x=0)∧(b.x=2)⟩.
Here e1<e2 expresses that e1 happens before e2; the remaining conditions fix the
values of x in the two events. Fig. 2 shows most of the search space for e and the
specification from Ex. 2 (the complete search space is shown in Fig. 5 ). States
are shown as boxes, S0 being the box on top. The events of a state are shown
as boxes with activities within the state, and arrows in between them indicate
ordering conditions. Here e1 < e2 is displayed by an arrow e1 e2 , e1 ≪ e2 by
e1 e2 , and the condition e1 <

b
[c.x<b.x] e2 obtained from ψ2 by e1 e2

ψ2 . The
formulas at the bottom of states specify data conditions. The states S1–S8 are
obtained from S0 by applying repairs; we will explain below how this is done.

4.2 Constraint violations

We next define when constraints are violated in a state. To that end, we need
some additional notation: given a Declare constraint ψ and events e, e′ ∈ E,
we denote by Ord(ψ, e, e′) the ordering conditions imposed by ψ between an
activation event e and a target event e′, defined as follows:

Definition 8. Let e, e′ be events and ψ = (φ, cact , ctgt , ccor ) a constraint. For
templates φ with an activation, we define Ord(ψ, e, e′) as e < e′ (resp. e′ < e) if φ
is based on a Response (resp. Precedence) template, e≪ e′ (resp. e′ ≪ e) if it is
a ChainResponse (resp. ChainPrecedence) template, ¬(e < e′) for NotResponse,
¬(e ≪ e′) for NotChainResponse, e <a

[cact ]
e′ for AlternateResponse, and

e′ <a
[cact ]

e for AlternatePrecedence. In the last cases, a is the activation activity
of φ. For constraints φ without activation, let Ord(ψ, e) be first(e) or last(e) if
φ is an Init or Last constraint, respectively. In all other cases, Ord(ψ, e) = ⊤.
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a
x 7→ 0

#1 b
x 7→ 2

#2

(a.x=0) ∧ (b.x=2)

ψ1: activation #1 misses target

S0 cost: 0

a
x 7→ 0

#1
c #3

b
x 7→ 2

#2

(a.x=0) ∧ (b.x=2) ∧ (a.x< c.x)

ψ2: activation #2 misses target

S1 cost: 1

b
x 7→ 2

#2

(b.x=2)

ψ2: activation #2 misses target

S3 cost: 1

a
x 7→ 0

#1 c #3

(a.x=0) ∧ (a.x< c.x)

S6 cost: 2

a
x 7→ 0

#1 c #3 c #4 b
x 7→ 2

#2ψ2

(a.x=0) ∧ (b.x=2) ∧ (a.x< c#3.x) ∧ (c#4.x< b.x)

S8 cost: 2

c #1 b
x 7→ 2

#2ψ2

(b.x=2) ∧ (c.x< b.x)

S5 cost: 2

remove activation #2 add target #4

a
x 7→ 0

#1
c #3

b #2ψ2

(a.x=0) ∧ (a.x< c.x) ∧
(c.x< b.x)

S7 cost: 2

a
x 7→ 0

#1
c #3

b
x 7→ 2

#2ψ2

(a.x=0) ∧ (b.x=2) ∧
(a.x< c.x) ∧ (c.x< b.x)

S2 cost: 1

S4 cost: 2

add target #3
remove activation #1

free attribute in #2 force conditions on #3

add target #4

remove activation #2

. . .

. . .

Fig. 2: Search space for the running example.

We also need to instantiate data conditions for events. To that end, given a
Declare constraint ψ = (φ, cact , ctgt , ccor ) and an event e = (ι, a, α) such that
a is an activation activity for φ and b a target activity, we denote by [cact ](e)
(resp. [ctgt ](e)) the condition obtained from cact (resp. ctgt) by substituting va
(resp. vb) with vι for each v ∈ V . Similarly, for another event e′ = (δ, b, α′),
[ctgt ∧ ccor ](e, e′) denotes the condition obtained from ctgt ∧ ccor by substituting
variables va by vι, and vb by vδ for all v ∈ V .

The first kind of violation is a missing target ; intuitively, it applies if a con-
straint ψ can be activated but might lack a target that satisfies all conditions.

Definition 9. A constraint (φ, cact ,ctgt ,ccor ) has a missing target violation in
state (E,C) if one of the following cases applies:
– φ is a response or precedence constraint with activation activity a and there

is an e = (ι, a, α) ∈ E such that C∧ [cact ](e) is satisfiable, but no e′ ∈ E with
target activity such that

∧
C ∧ [cact ](e) |= Ord(φ, e, e′)∧ [ctgt ∧ ccor ](e, e′); or

– φ is of the form Existence(n, a), and e1, . . . , ek are all events with activity a
in E but

∧
C |= Σk

i=1ite([ctgt ](ei), 1, 0) ≥ n does not hold; or
– φ is an Init, End, or Choice constraint and e1, . . . , ek are all events with

target activity in E but
∧
C |= ∨k

i=1 Ord(ψ, ei) ∧ [ctgt ](ei) does not hold.
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Here ite(b, d1, d2) abbreviates an if-then-else expression. In the first case of
Def. 9, e is called activation event.

Fig. 2 shows three cases of missing target violations for the constraints in
Ex. 2: in state S0, ψ1 is activated by the event #1 with activity a, but no target
event with activity c is present. In S1 and S3, ψ2 is violated: in S3 since no event
with activity c occurs, and in S1 because, even though an event with activity c
occurs, namely #3, its conditions do not entail c.x < b.x and #3 <a

[cact ]
#2.

The second kind of violation is dual in that it signals too many targets.

Definition 10. A constraint ψ = (φ, cact , ctgt , ccor ) has an excessive target vi-
olation in a state S = (E,C) if one of the following cases applies:
– φ is of the form Absence(n, a) and there are n events e1, . . . , en in E with

activity a such that
∧
C ∧∧n

i=1[ctgt ](ei) is satisfiable;
– φ is a negation constraint, some e0, e1 ∈ E have activation and target activ-

ity, resp., and
∧
C∧Ord(ψ, e0, e1)∧[cact ](e0)∧[ctgt∧ccor ](e0, e1) is satisfiable.

The events e1, . . . , en in Def. 10 are called excessive target events.
For instance, for the states in Fig. 2, a constraint ⟨NotResponse(a, b), a.x ≥

0,⊤, b.x > a.x⟩ would have an excessive target violation in states S0 and S1,
but not in S3. On the other hand, ⟨Absence(b),⊤, b.x=3⟩ would be violated in
state S7, but not in S0 where the data conditions exclude b.x=3.

A constraint ψ is violated in a state if it has a missing or excessive target. A
state S = ⟨E,C⟩ is a goal state if no constraint in M is violated in S and C is
satisfiable. In Fig. 2, all leaves of the search tree (S2 and S4–S8) are goal states.

4.3 Repairing violations

Our approach subsequently expands the search space by selecting a state where
a constraint is violated, generating child states by repairing the violation in
different ways. Four kinds of repairs are distinguished: (a) addition of an event,
which will be reflected as a model move in the alignment; (b) removal of an
event that stems from the trace, corresponding to a log move in the alignment;
(c) freeing a data attribute in an event that stems from the trace, corresponding
to an edit move; and (d) enforcement of conditions.

The applicable repairs and resulting states depend on the violated constraint
ψ = (φ, cact , ctgt , ccor ) ∈ M and current state S = ⟨E,C⟩. First, if ψ has an
activation event eact ∈ E, the following repairs are applied for both missing and
excessive target violations to disable the activation:
(1) Removing an activation event. This repair only applies if eact stems from

the trace e. The resulting state is S′ = ⟨E \ {eact}, C ′⟩ where C ′ is like C
with conditions involving eact removed.

(2) Freeing a data attribute. This applies to an event eact = (ι, a, α) from the
trace e if α does not satisfy ¬[cact ](eact). The repair removes an assignment
α(v) of eact for some v ∈ V . For C ′ = C \ {vι = α(v)} ∪ {¬[cact ](eact)}, the
new state is S′ = ⟨E,C ′⟩.

(3) Enforcing the negated activation condition. The resulting state is S′ =
⟨E,C ′⟩ with C ′ = C ∪ {¬[cact ](eact)}.
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If the violation is a missing target for ψ, then a target event can be added,
or an existing event with the correct activity can be enforced to satisfy the
data conditions, or in some cases events can be removed that block ordering
conditions. More precisely, the following repairs apply:

(4) Adding a target event. A new state is of the form S′ = ⟨E ∪ {e}, C ′⟩ where
e = (ι, a, ∅) is a new event with fresh identifier ι. If ψ has an activation
and e′ is the activation event, then C ′ = C ∪ {Ord(ψ, e′, e), [cact ](e′), [ctgt ∧
ccor ](e

′, e)}. Otherwise, C ′ = C ∪ {Ord(ψ, e), [ctgt ](e)}.
(5) Freeing a data attribute. This applies to events e = (ι, a, α) in E that

stem from the trace e and have the target activity but do not satisfy [ctgt ∧
ccor ](e

′, e) if ψ has an activation event e′, resp. [ctgt ](e) otherwise. The repair
removes some assignment α(v) for v ∈ V , which can avoid the violation. The
new state is S′ = ⟨E′, C \ {vι = α(v)}⟩ where E′ is like E but where e is
modifed to (ι,a,α′) such that α′ is like α except being undefined for v.

(6) Enforcing conditions. This applies to an event e ∈ E with activity a, i.e.,
a potential target event. The new state is S = ⟨E,C ′⟩, where if ψ has an
activation, and e′ is the activation event that caused the missing target,
then C ′ = C ∪ {Ord(ψ, e′, e)} ∪ {[cact ](e′), [ctgt ∧ ccor ](e

′, e)}; otherwise,
C ′ = C ∪ {Ord(ψ, e), [ctgt ](e)}.

(7) Removing a blocking event. This applies if an event et ∈ E with activity a
is according to the ordering conditions in C not in the right position to act
as target for ψ, but removing another event e from the trace can make room
for et. E.g., Init constraints delete the first event, and ChainResponse con-
straints remove the events directly succeeding the activation. The resulting
state is S′ = ⟨E \ {e}, C ′⟩ where C ′ is like C with conditions on e removed.

If ψ has an excessive target, we can either remove an excessive target event, or
change the data conditions such that an event with target activity no longer acts
as a target. Precisely, the following fixes apply:

(8) Removing excessive target events. This works like (1) above, but removes
excessive target events if they stem from the trace.

(9) Freeing a data attribute. This repair is similar to (2) above, but it applies
if there is an excessive target event e = (ι, a, α) in E that stems from the
input trace. However, we now enforce the negation of target and correlation
conditions. The resulting state is S′ = ⟨E′, C ′⟩ where E′ is like E but where
e is modified to (ι, a, α′) such that α′ is like α except that it is undefined for
v ∈ V . Let Ĉ = C \ {vι = α(v)}. If there is an activation event e′, we set
C ′ = Ĉ ∪ {¬[ctgt ∧ ccor ](e′, e)}; otherwise, C ′ = Ĉ ∪ {¬[ctgt ](e)}.

(10) Enforcing negated conditions. Let e ∈ E be an excessive target event.
There are two resulting states S′ = ⟨E,C ′⟩ and S′′ = ⟨E,C ′′⟩. If there
is an activation event e′, then C ′ = C ∪ {¬[ctgt ∧ ccor ](e

′, e)}; otherwise,
C ′ = C ∪ {¬[ctgt ](e)}. Moreover, C ′′ = C ∪ {¬Ord(e′, e)}.

Note that all applicable repairs are applied in all possible ways. For instance,
when freeing a data attribute, a new state is generated for every event e and
every variable assignment in e that satisfies the conditions in (2). Also, if there



12 Casas-Ramos, J. et al.

is a missing target violation and φ is a Choice constraint having two targets, a
child state is created for each possible target.

For example, in Fig. 2, S1 is obtained from S0 by adding a target event #3
(repair (4)); S3 is obtained from S0 by removing the activation event #1 (repair
(1)); S7 is obtained from S1 by freeing the data attribute x in event #2 (repair
(2)); and S2 is obtained from S1 by forcing conditions on event #3 (repair (6)).

4.4 A∗-based search

Starting from the initial state that represents the input trace e, our algorithm
subsequently chooses a state with a violation and generates child states by ap-
plying all possible repairs. By a search space for e and M, we mean below a
graph of states where the root is S0, and all states have as children the states
obtained by all possible repairs, if any. To guide the search, the A∗ algorithm
maintains for each state S a cost cost(S) ∈ R, which can be shown to match ex-
actly the cost of alignments extracted from S. The initial state has cost 0. When
expanding a state S, the cost of a child state S′ is determined by the applied
repair: when adding or removing events, or freeing a data attribute, we have
cost(S′) = cost(S) + 1; when forcing condition satisfaction, cost(S′) = cost(S).
In Fig. 2, each state is labelled with its respective cost.

Since repairs result in child states of increased cost, by a fair exploration of
the search space, the A∗ algorithm can conclude at some point that all goal states
that might possibly be detected in the future will have a higher or equal cost
than the goal states found so far. At this point the search terminates, returning
a goal state Sg with minimal cost K.

4.5 Alignment extraction

From a goal state S = ⟨E,C⟩, we extract an alignment as described by the
pseudocode in Alg. 1. The first step is to obtain an SMT model µ of the conditions∧
C. This induces a list of model events f = ⟨f0, . . . , fm−1⟩ that satisfies all

ordering conditions, and where for each fj = (ιj , aj , αj) the assignment αj is
given by αj(v) = µ(vιj ) for all 0 ≤ j < m.

Alg. 1 then walks simultaneously along e and f , using i as an index for e and
j for f , and adds an edit or synchronous move if the current events ei and fj
share the same id (so fj stems from a trace event ei), a model move if the id of
the model event fj does not occur in e, and otherwise a log move. (For an event
e = (ι, a, α), we write e.id to refer to ι.) In Line 6, the number of mismatching
assignments in ei and fj determines whether the move is an edit or synchronous
move. Note that the alignment extracted from a state is in general not unique as
there can be multiple SMT models. For instance, by applying Alg. 1 to state S2

resp. state S6 in Fig. 2, one obtains the alignments γ1 resp. γ2 shown in Ex. 3.
Our correctness result below shows that the alignment extracted from S is

optimal with cost K (cf. the proof in Sec. A.2). Our running example illustrates
this result: in Fig. 2, the goal state with minimal cost is S2, and indeed the
optimal alignment γ1 is extracted from it (cf. Ex. 3).
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Algorithm 1 Extracting an alignment from a state
Require: State S = ⟨E,C⟩, trace e = ⟨e0, . . . , en−1⟩
Ensure: Alignment for e
1: model ← SMT model of formula

∧
C

2: ⟨f0, . . . , fm−1⟩ ← sort events in E by assignment to ordering conditions in model
3: moves ← [], i ← 0, j ← 0
4: while (i < n) ∨ (j < m) do
5: if (i < n) ∧ (j < m) ∧ (ei .id = fj .id) then
6: moves.append(editOrSynchronousMove(ei , fj ))
7: i ← i + 1, j ← j + 1
8: else if (j < m) and fj .id does not occur in e then
9: moves.append(modelMove(fj ))

10: j ← j + 1
11: else
12: moves.append(logMove(ei))
13: i ← i + 1

14: return moves

Theorem 1 (Correctness). If S is a goal state with minimal cost K in a
search space for M and e then the list of moves γ returned by Alg. 1 on input
S and e is an optimal alignment of e wrt. M with cost K.

5 Implementation
Our approach has been implemented in the tool DADA written in Kotlin, using
the SMT solvers Z3 [12] and Yices [13] as backends. DADA requires two inputs:
a multi-perspective event log in XES format [24] and a Declare specification with
data M. The model format is backward compatible with the one of [2]. Never-
theless, the syntax for data conditions has been significantly enhanced, allowing
users to leverage the full expressiveness of the SMT-LIB2 language [1]. Also,
the cost function can be customized, providing the cost of log, model, and edit
moves as inputs. The Declare constraints language supported by our approach is,
in fact, more expressive than initially introduced in Sec. 3. Specifically, branching
in Declare constraints is enabled, as described in [7], and all Declare templates
listed in [7, Tab. 2] have been implemented. The tool produces an optimal align-
ment in a human-readable format, similar to Ex. 3. It can also export the search
space as a graph, like in Fig. 2.
Encoding. The SMT solver reasons on control flow and data dependencies in
tandem, to identify violations and possible repairs for each constraint. We thus
need to check satisfiability of formulas that mix ordering and data conditions.
Data conditions as in Def. 1, but also much richer conditions, can be directly
expressed in SMT-LIB2. Ordering conditions on a set E are encoded as follows:
for every event e ∈ E we use the SMT variable τe of integer type that encodes the
event’s timestamp. Then an ordering constraint e1 < e2 is directly translated to
τe1 < τe2 ; first(e) is translated to

∧
e′∈E\{e} τe < τe′ and similar for last(e); and

e≪ e′ is translated to τe1 < τe2 ∧
∧

e∈E\{e1,e2}(τe > τe2 ∨ τe < τe1). A constraint
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e1 <
a
[c] e2 is translated to τe1 < τe2∧

∧
e∈Ea

(¬[c](e)∨τe > τe2∨τe < τe1), where Ea

is the set of all events in E with activity a, with e1 and e2 excluded. Moreover, for
efficiency, we use the SMT solver’s assumption mechanism to temporarily check
conditions, such as those in Defs. 9 and 10. This approach allows us to assert
temporary assumptions on top of a core set of formulas, avoiding unnecessary
re-computations and improving performance.

Optimizations. We mention the most influential optimizations. The first is se-
lecting a violation to repair: as violations can be processed independently, the
implementation selects for repair the one that generates the fewest child states,
to delay the state explosion. helps avoid state explosion.

The second optimization is about detecting dead-ends: in every state, all
violations are precomputed, and for every violation it is checked which repairs
are applicable. In case no repair is applicable for some violation, the state is a
dead end, and the branch can be pruned from the search space.

Finally, we prune unsatisfiable states. If a state S = ⟨E,C⟩ was generated
where

∧
C is unsatisfiable, conflicting conditions were added while generating

the state. Therefore, the state can be dropped from the search space.

6 Evaluation
In our evaluation we execute all tested algorithms in the same environment,
namely a Java Virtual Machine5 run on an Intel 5220R CPU with 8 GB of RAM.
The source code, executable, dataset and raw results are publicly available.6

Dataset. The evaluation utilizes a synthetic dataset that systematically varies in
complexity, originally introduced in [2]. The complexity of the process models is
influenced by the number of constraints (3, 5, 7, or 10) and constraint modifi-
cations (replacing 0, 1, 2, or 3 constraints). For each model, multiple event logs
with varying trace lengths were generated (10, 15, 20, 25, or 30 events), result-
ing in 68,000 trace-model pairs. The models feature simple variable-to-constant
conditions over categorical (with values c1, c2, or c3) and integer (ranging
from 0 to 100), such as categorical is c1 or integer > 10.

Performance comparison. We compare DADA, using either the Z3 [12] SMT
solver or the Yices [13] SMT solver, to Bergami2021 [2], using the original
SymBA* [23] planner or the Fast Downward [16] planner. Our experiments mea-
sure the execution time for each pair of model and trace. To ensure all alignments
are optimal, we validate that the alignment costs produced by DADA-Z3 and
DADA-Yices match those generated by Bergami2021-BA and Bergami2021-FD.

Fig. 3 shows how, as the complexity of the trace-model pairs increases, the
state-of-the-art algorithms exhibit a sharp increase in execution times, whereas
our approach demonstrates better scalability. Notably, our approach aligns any
trace-model pair in at most 5 seconds, and DADA-Z3 is on average 2.9 times
faster than Bergami2021-FD and 5.9 times faster than Bergami2021-BA

5 OpenJDK 64-Bit VM Temurin 21.0.6+7-LTS
6 https://apps.citius.gal/dada and https://doi.org/10.5281/zenodo.15470077

https://apps.citius.gal/dada
https://doi.org/10.5281/zenodo.15470077
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Fig. 4: Performance evaluation incorporating correlation constraints.

Constraint flexibility. While the previous experiment was limited to the data
conditions supported by [2], our approach can leverage the power of SMT solvers
to define complex data dependencies such as the following correlation conditions.
In these conditions, A refers to the activation and T to the target; cat is an
abbreviation for the categorical attribute, and timestamp is the event’s time.
(C1) A.timestamp + A.integer * 1d > T.timestamp + T.integer * 1d
(C2) (A.cat - "0") % 10 < (T.cat - "0") % 10
(C3) (A.cat == T.cat) ? (T.cat % 2 == 0) : (A.integer > T.integer)

We create a new dataset by adding random negations, disjunctions and con-
junctions of the previous correlation conditions to the original constraints, while
retaining the original activation and target conditions, resulting in models like:
Response[activity 1, activity 2]|...|...|¬(¬C1 or ¬(¬C3 and ¬C2))|
Chain Response[activity 3, activity 4] |...|...|¬C1 or ¬C2 or C3|

The added correlation conditions make the alignment problem even harder
by potentially increasing (a) the number of repairs required to reach the optimal
alignment, (b) the number of ways in which it is possible to repair them, and
(c) the work performed by the SMT solver within each state. For these reasons,
the models were simplified by only considering the ceiling of half of the con-
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straints generated in this way. Fig. 4 shows that our approach can handle these
advanced conditions, with only a small percentage of alignments timing out or
running out of memory (0.06% for DADA-Yices and 0.91% for DADA-Z3).

7 Conclusions
This paper presents a novel approach to computing data-aware optimal align-
ments between event logs and declarative process models, combining A* search
and SMT solvers. Our key contributions include a new encoding scheme for the
control flow, using an SMT solver to reason about control flow and data con-
ditions, and an efficient A*-based search strategy that resolves constraint viola-
tions through repair actions. Notably, the available constraint language is much
richer than in earlier work, including a wide range of constructs supported by
current SMT solvers. We prove its correctness and demonstrate its efficiency in
experiments, matching or surpassing state-of-the-art performance while support-
ing more expressive data dependencies. Future work includes exploring further
optimizations such as advanced pruning strategies and heuristic functions.

Acknowledgments. This work was partially funded by the Spanish Minis-
terio de Ciencia [grant numbers PID2020-112623GB-I00, PID2023-149549NB-
I00, TED2021-130374B-C21], co-funded by the European Regional Devel-
opment Fund (ERDF). J. Casas-Ramos gratefully acknowledges the sup-
port of CiTIUS for funding his research stay. M. Montali was partially
supported by the NextGenerationEU FAIR PE0000013 project MAIPM
(CUP C63C22000770006) and the PRIN MIUR project PINPOINT Prot.
2020FNEB27. A. Gianola was partly supported by Portuguese national funds
through Fundação para a Ciência e a Tecnologia, I.P. (FCT), under project
(DOI: 10.54499/UIDB/50021/2020). This work was partially supported by the
‘OptiGov’ project (DOI: 10.54499/2024.07385.IACDC), fully funded by the
‘Plano de Recuperação e Resiliência’ (PRR) under the investment ‘RE-C05-i08
- Ciência Mais Digital’ (measure ‘RE-C05-i08.m04’), framed within the financ-
ing agreement signed between the ‘Estrutura de Missão Recuperar Portugal’
(EMRP) and FCT as an intermediary beneficiary.

Disclosure of Interests. The authors have no competing interests to declare.

References
1. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: Version 2.7. Tech.

rep., University of Iowa (2025)
2. Bergami, G., Maggi, F.M., Marrella, A., Montali, M.: Aligning data-aware declar-

ative process models and event logs. In: 19th BPM. pp. 235–251. LNCS (2021)
3. Borrego, D., Barba, I.: Conformance checking and diagnosis for declarative business

process models in data-aware scenarios. Expert Syst. Appl. 41, 5340–5352 (2014)
4. Bose, R.P.J.C., van der Aalst, W.M.P.: Process diagnostics using trace alignment:

Opportunities, issues, and challenges. Inf. Syst. 37(2), 117–141 (2012)
5. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-

perspective declarative process models. Expert Syst. Appl. 65, 194–211 (2016)
6. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -

Relating Processes and Models. Springer (2018)



Efficient Conformance Checking of Rich Data-Aware Declare Specifications 17

7. Casas-Ramos, J., Lama, M., Mucientes, M.: DeclareAligner: A leap towards ef-
ficient optimal alignments for declarative process model conformance checking
(2025), arXiv 2503.10479

8. Christfort, A.K.F., Slaats, T.: Efficient optimal alignment between dynamic condi-
tion response graphs and traces. In: 21st BPM. LNCS, vol. 14159, pp. 3–19 (2023)

9. De Giacomo, G., Fuggitti, F., Maggi, F.M., Marrella, A., Patrizi, F.: A tool for
declarative trace alignment via automated planning. Softw. Imp. 16, 100505 (2023)

10. De Giacomo, G., Maggi, F.M., Marrella, A., Patrizi, F.: On the disruptive effective-
ness of automated planning for LTLf-based trace alignment. In: Proc. 31st AAAI.
pp. 3555–3561. AAAI Press (2017)

11. De Leoni, M., Van Der Aalst, W.M.: Aligning event logs and process models for
multi-perspective conformance checking: An approach based on integer linear pro-
gramming. In: Proc. 11th BPM. LNCS, vol. 8094, pp. 113–129. Springer (2013)

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Proc. 14th TACAS.
LNCS, vol. 4963, pp. 337–340. Springer (2008)

13. Dutertre, B.: Yices 2.2. In: Proc. 14th CAV. LNCS, vol. 8559, pp. 737–744 (2014)
14. Felli, P., Gianola, A., Montali, M., Rivkin, A., Winkler, S.: Cocomot: Conformance

checking of multi-perspective processes via SMT. In: Proc. 21st BPM. LNCS, vol.
12875, pp. 217–234 (2021)

15. Felli, P., Montali, M., Patrizi, F., Winkler, S.: Monitoring arithmetic temporal
properties on finite traces. In: Proc. 37th AAAI. pp. 6346–6354. AAAI Press (2023)

16. Helmert, M.: The fast downward planning system. Journal of Artificial Intelligence
Research 26, 191–246 (2006)

17. de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: Aligning event logs and
declarative process models for conformance checking. In: Proc. 10th BPM. LNCS,
vol. 7481, pp. 82–97 (2012)

18. de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: An alignment-based framework
to check the conformance of declarative process models and to preprocess event-log
data. Inf. Syst. 47, 258–277 (2015)

19. Mannhardt, F., de Leoni, M., Reijers, H., van der Aalst, W.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407–437 (2016)

20. Nagy, Z., Werner-Stark, A.: An alignment-based multi-perspective online confor-
mance checking technique. Acta Polytechnica Hungarica 19(4), 105–127 (2022)

21. Riva, F., Benvenuti, D., Maggi, F.M., Marrella, A., Montali, M.: An SQL-based
declarative process mining framework for analyzing process data stored in rela-
tional databases. In: Proc. BPM Forum. LNBIP, vol. 490, pp. 214–231 (2023)

22. Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Efficient
and customisable declarative process mining with SQL. In: Proc. 28th CAiSE.
LNCS, vol. 9694, pp. 290–305. Springer (2016)

23. Torralba, A., Alcázar, V., Borrajo, D., Kissmann, P., Edelkamp, S.: SymBA*: A
symbolic bidirectional A* planner. In: Planning Competition. pp. 105–108 (2014)

24. XES Working Group: IEEE standard for extensible event stream (XES) for achiev-
ing interoperability in event logs and event streams. IEEE Std 1849-2023 (2023)



18 Casas-Ramos, J. et al.

A Appendix
In this appendix, we first define formally the semantics of Declare constraints
with data, and then provide a formal correctness proof of our approach.

A.1 Semantics of Declare with Data

The following definition clarifies when a trace satisfies Declare constraints with
data. For an assignment α with domain V , we write αa for some a ∈ A for the
same assignment on labeled variables, i.e., the assignment with domain {va | v ∈
V } that sets αa(va) = α(v). Moreover, we write α |= c to express that α satisfies
a condition c. For the union of two assignments α, β with disjoint domain we
write α ∪ β.

Definition 11. A constraint ψ = ⟨φ, cact , ctgt , ccor ⟩ is satisfied by a trace e =
⟨e0, . . . , em−1⟩ if
– φ = Existence(n, a), there are n distinct events ei1 , . . . , ein in e such that for

all 1 ≤ j ≤ n and if eij has the form eij = ⟨ιj , a, αj⟩ it holds that αa
j |= ctgt ;

– φ = Absence(n, a), and e does not satisfy ⟨Existence(n, a), cact , ctgt , ccor ⟩;
– φ = Init(a), e0 = ⟨ι, a, α⟩, and αa |= ctgt ;
– φ = End(a), em−1 = ⟨ι, a, α⟩, and αa |= ctgt ;
– φ = Choice(a, b), and there is some ei = ⟨ι, d, α⟩, 1 ≤ i < m, such that d = a

and αa |= ctgt , or d = b and αb |= ctgt ;
– φ = RespondedExistence(a, b), and either there is no ei = ⟨ι, a, α⟩, 0 ≤ i <
m, such that αa |= cact , or there is some ej = ⟨ι′, b, β⟩, with 0 ≤ j < m and
i ̸= j, such that αa ∪ βb |= ctgt ∧ ccor ;

– φ = Response(a, b), and either there is no ei = ⟨ι, a, α⟩, 0 ≤ i < m, such
that αa |= cact , or there is some ej = ⟨ι′, b, β⟩, with i < j < m, such that
αa ∪ βb |= ctgt ∧ ccor ;

– φ = AlternateResponse(a, b), and either there is no ei = ⟨ι, a, α⟩, 0 ≤ i < m,
such that αa |= cact , or there is some ej = ⟨ι′, b, β⟩, with i < j < m, such that
αa∪βb |= ctgt ∧ccor , and for all ek with i < k < j of the form ek = ⟨ι′, d, αk⟩
either d ̸= a or αa ̸|= cact ;

– φ = ChainResponse(a, b), and either there is no ei = ⟨ι, a, α⟩, 1 ≤ i ≤ n,
such that αa |= cact , or i < m−1 and ei+1 = ⟨ι′, b, β⟩ and αa∪βb |= ctgt∧ccor ;

– φ = Precedence(a, b), and either there is no ei = ⟨ι, b, α⟩, 0 ≤ i < m, such
that αb |= cact , or i > 0 and there is some ej = ⟨ι′, a, β⟩, with 0 ≤ j < i,
such that αb ∪ βa |= ctgt ∧ ccor ;

– φ = AlternatePrecedence(a, b), and either there is no ei = ⟨ι, b, α⟩, 0 ≤ i <
m, such that αb |= cact , or i > 0 and there is some ej = ⟨ι′, a, β⟩, with
0 ≤ j < i, such that αb ∪ βa |= ctgt ∧ ccor , and for all ek with j < k < i of
the form ek = ⟨ι′, d, αk⟩ either d ̸= b or αb ̸|= cact ;

– φ = ChainPrecedence(a, b), and either there is no ei = ⟨ι, b, α⟩, 0 ≤ i < m,
such that αb |= cact , or i > 0 and ei−1 = ⟨ι′, a, β⟩ and αb ∪ βa |= ctgt ∧ ccor ;

– φ = NotResponse(a, b), and e does not satisfy ⟨Response(n, a), cact , ctgt ,
ccor ⟩;

– φ = NotRespondedExistence(a, b), and e does not satisfy the constraint
⟨RespondedExistence(n, a), cact , ctgt , ccor ⟩; or
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– φ = NotChainResponse(a, b), and trace e does not satisfy the constraint
⟨ChainResponse(n, a), cact , ctgt , ccor ⟩.

A.2 Correctness Proof

The following is straightforward to show by a case distinction on ψ.

Lemma 1. Let ψ = (φ, cact , ctgt , ccor ) be a constraint. A state S does not violate
ψ if and only if for all γ ∈ Γ (S), it holds that γ|M satisfies ψ.

We next show that if Alg. 1 returns γ on input S and e then γ is indeed an
alignment for e, though in general only wrt. a subset of M, and the cost of γ
coincides with cost(S). Below, for a fixed trace e, we denote by Γ (S) the set of
alignments that can be extracted from S, i.e., that are possible results of Alg. 1
on input S (recall that the alignment extracted from a state S is in general not
unique).

Below, we make the following assumption (†) on the search space generated
for M and e: Repairs that remove an event e are only applied if e was never
modified beforehand by a repair that changes the assignment.

Lemma 2 (Soundness). For each γ ∈ Γ (S), it holds that γ|L = e and κ(γ) =
cost(S).

Proof. First of all, it is easy to see that if S = ⟨E,C⟩ and γ ∈ Γ (S) then γ|L = e
because Alg. 1 adds for every ei in e a log or synchronous/edit move, since i is
incremented from 0 to n− 1.

It remains to show the claim about the cost of γ, which we prove by induction
on the depth n at which S occurs in the search tree. The statement holds for
the initial state S0, where an alignment γ ∈ Γ (S) consists of only synchronous
moves, so κ(γ) = 0 = cost(S0).

Let S′ = ⟨E′, C ′⟩ be at depth n+1 in the search tree. The induction hypoth-
esis is that the claim holds for all states at level n. We perform a case distinction
on the repair applied at the parent S = ⟨E,C⟩ of S′ to create S′.
1. If an event e was added, then e has a fresh id that does not occur in the

trace. Each alignment γ′ ∈ Γ (S′) stems from some model µ for C ′. By
construction of the repair (the constraints remain the same), µ also satisfies
C, giving rise to an alignment γ ∈ Γ (S). By the induction hypothesis, γ is
an alignment of e with cost cost(S). Alignment γ′ must be like γ except for
an additional model move (as the added id is fresh, it cannot match an event
in the trace), so that κ(γ′) = κ(γ) + 1. Since we have cost(S′) = cost(S) + 1
and κ(γ) = cost(S) by the induction hypothesis, the claim holds.

2. If an event was removed, then this event stems from the trace, and was not
modified beforehand by assumption (†). Each alignment γ′ ∈ Γ (S′) stems
from some assignment µ′ for C ′. Ordering conditions and data conditions
are independent. Thus there is an assignment µ that coincides with µ′ on
ordering constraints and assigns arbitrary data values compatible with C.
Even though data values differ, for all moves except for the one concerning
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the removed event, their costs coincide, as required data values are enforced
by dedicated conditions. The corresponding alignment γ ∈ Γ (S) has a syn-
chronous move where γ′ has a log move, so cost(γ′) = cost(γ) + 1. Since
cost(S′) = cost(S) + 1 and cost(γ) = cost(S) by induction hypothesis, the
claim holds.

3. Suppose a data attribute v in an event e = (ι, a, α) was freed. Each alignment
γ′ ∈ Γ (S′) stems from some assignment µ′ for C ′. Ordering conditions and
data conditions are independent. Thus there is an assignment µ for C that
coincides with µ′ on ordering constraints and assigns data values compatible
with C, in particular µ(vι) = α(v). Even though data values differ, for all
moves except for the one concerning e, their costs coincide, as required data
values are enforced by dedicated conditions. Since cost(S′) = cost(S) + 1
and cost(γ) = cost(S) by induction hypothesis, the claim holds.

4. Suppose conditions were enforced. Then any model of C is also a model of
C ′ as C ′ ⊆ C, and each alignment γ ∈ Γ (S) that stems from some model
µ for C is also an alignment in Γ (S). Since cost(S) = cost(S′), the claim
follows from the induction hypothesis. ⊓⊔

Let two alignments γ and γ′ for e and M be equivalent if |γ| = |γ′| and the
move in γ at position i is a log/model/synchronous move if so is the move in γ′
at position i, and where edit moves edit the same variables. However, variable
values in the model component of γ and γ′ that do not match a variable in a
trace may differ, as well as event identifiers.

Lemma 3 (Completeness). Let γ be an optimal alignment for e and M.
Then there is a goal state Sg in the search space such that Γ (Sg) contains an
alignment equivalent to γ.

Proof. Let γ be an optimal alignment for e = ⟨e1, . . . , en⟩ and M. Let γ|M =
f = ⟨f0, . . . , fm⟩.

We show that there is a sequence of states S0, S1, S2, . . . , Sg in the search tree
such that, intuitively, by descending along this path the respective alignment
gets closer and closer to γ, and Sg is a goal state that satisfies the claim. More
precisely, we show that for each state Si = ⟨E,C⟩, there is a correspondence
relation RSi

⊆ E × {f0, . . . , fm} associating some of its events with events in f
that satisfies the following invariants:
(i) For every pair (e, f) ∈ RSi

, the two events have the same activity.
(ii) For all events e ∈ E \ {e1, . . . , en}, there is some fj in f such that (e, fj) ∈

RSi
. That is, all added events have a correspondent in f . Moreover, for all

edit or synchronous moves (e, fj) in γ, fj has a match in RSi .
(iii) Let ER ⊆ E be the set of events {e ∈ E | ∃f.(e, f) ∈ RSi}, µ the (partial)

assignment on vars(C) that sets, for all (e, f) ∈ RS with ι the id of e,
µ(τ ι) = time(f) and µ(xι) = α(x), where f = (ι′, a, α). Then µ satisfies
(C \ C0)|VR

where VR is the union of all V ι such that ι is an id of an event
in ER.

(iv) Only attributes of events are freed that have via RS a correspondent in f .



Efficient Conformance Checking of Rich Data-Aware Declare Specifications 21

Moreover, the sequence of relations is monotonically increasing, i.e., we have
RS0

⊆ RS1
⊆ RS2

⊆ . . . .
We first show existence of a sequence S0, S1, S2, . . . that satisfies the invari-

ants, then we reason that it contains a goal state Sg that satisfies the claim.
At depth k = 0, we have S = S0 and E = {e1, . . . , en}. Let RS0

consist
of all pairs (ei, fj) such that (ei, fj) is a synchronous or edit move in γ. The
relation RS0

satisfies (i) because in edit and synchronous moves the activity is
shared. Item (ii) and (iii) are vacuously satisfied as no events were added, and
(iv) because no attributes were freed.

Consider now a state S = ⟨E,C⟩ at depth k. If S is a goal state, we are done,
so we assume that S has a violation. Suppose S gets repaired for a constraint
ψ = ⟨φ, cact , ctgt , ccor ⟩ ∈ M. Consider first the case of a missing target violation;
by a case distinction, we decide a next state S′.
1. Suppose first that ψ does not have an activation. For simplicity, we consider

the case of a single target, but the case for Existence is similar. Let fj be
the target of ψ in f .
(a) If there exists some e = (ι, a, α) ∈ E such that (e, fj) ∈ R then e and fj

must have the same activity by (i), and we must have C ̸|= Ord(ψ, e) ∧
[ctgt ](e) (⋆), otherwise there would be no violation. Let fj = (ι′, a, α′).
– Suppose there is some v ∈ dom(α) such that α(v) ̸= α′(v). This is

only possible if e stems from the trace, since added events have no
fixed values. Thus, let S′ be the child state obtained from a repair
(5) where attribute v was freed.

– Otherwise, if
∧
C ∧ Ord(ψ, e) ∧ [ctgt ](e) is satisfiable, let S′ be the

result of a condition enforcement repair (6). The repair is applicable
because as observed above e and fj have the same activity, and
the resulting state is satisfiable because C ∧ Ord(ψ, e) ∧ [ctgt ](e) is
satisfiable.

– Otherwise,
∧
C ∧Ord(ψ, e) ∧ [ctgt ](e) is not satisfiable. Since µ sat-

isfies (C \ C0)|VR
and µ satisfies Ord(ψ, e) ∧ [ctgt ](e), there must

be some event e′ ∈ E from the trace, i.e. which adds conditions to
C0, that causes unsatisfiability. In fact, as assignments in e and fj
have no mismatches,

∧
C∧Ord(ψ, e) must be unsatisfiable. Precisely,

Ord(ψ, e) must be first(e) (resp. last(e)), but C contains e′ < e (resp.
e′ > e) for some trace event e′. Then e′ cannot have a match in RS

because µ satisfies C \ C0 restricted to E|RS
by (iii). Hence we can

apply repair (7) to remove e′, obtaining a state S′. Note that by
invariant (iv), no attribute in e′ can have been freed because it has
no correspondent in RS .

In all these cases RS stays the same and thus satisfies conditions (i) −
−(iii). Moreover, in the first case the freed attribute belongs to an event
that has a correspondent in RS , so also (iv) is satisfied.

(b) Now assume there is no match for fj in R. Then fj cannot be in a
synchronous or edit move in γ by invariant (ii). So fj is in a model
move, thus let S′ be the state obtained from a repair (4) where a target
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event e was added. Set RS′ = RS∪{(e, fj)}, which satisfies the invariants
(i)− (iii), and (iv) is satisfied because no additional attribute is freed.

2. Now suppose ψ has an activation, let eact ∈ E be the activation event of the
violation.
(a) Suppose there is some fj such that (eact , fj) ∈ R. Suppose first that for

fj = ⟨ι′, a, α′⟩, α′ does not satisfy cact .
– If there is some v ∈ dom(α) such that α(v) ̸= α′(v) then let S′ be the

child state obtained from a repair (2) where attribute v was freed.
– Otherwise, let S′ be the result of a condition enforcement repair (3).

Second, suppose α′ satisfies cact , so it must have a target fk in f , k ̸= j.
i. If there exists some etgt = (ν, b, β) ∈ E such that (etgt , fk) ∈ RS

then we must have C ̸|= Ord(ψ, eact , etgt)∧ [ctgt ∧ccor ](eact , etgt) (⋆),
otherwise there would be no violation. Let fk = (ν′, b, β′).
– If there is some v ∈ dom(β) such that β(v) ̸= β′(v) then etgt

must stem from the trace. Let S′ be the child state obtained
from a repair (5) where attribute v was freed.

– Otherwise, if
∧
C ∧ Ord(ψ, eact , etgt) ∧ [ctgt ∧ ccor ](eact , etgt)

is satisfiable, let S′ be the result of a condition enforcement
repair (6). The repair is applicable because of (⋆), and as∧
C ∧Ord(ψ, eact , etgt)∧ [ctgt ∧ ccor ](eact , etgt) is satisfiable, also

the resulting state is satisfiable.
– Otherwise, if

∧
C ∧ Ord(ψ, eact , etgt) ∧ [ctgt ∧ ccor ](eact , etgt)

is unsatisfiable, this must be because of some trace events
in E that have no correspondent in f via RS , since

∧
(C \

C0)|VR
∧ Ord(ψ, eact , etgt) ∧ [ctgt ∧ ccor ](eact , etgt) is satisfied

by µ according to property (iii). In fact, as assignments in
e and fj have no mismatches (this was already excluded
above),

∧
C ∧Ord(ψ, eact , etgt) must be unsatisfiable. Precisely,

Ord(ψ, eact , etgt) must be eact ≪ etgt but C contains eact < e′

and e′ < etgt (or similar for precedence) for some trace event e′.
Then e′ cannot not have a match in RS , and apply repair (7) to
remove e′, obtaining a state S′. Note that by (iv) no attribute
in e′ has ever been freed because e′ has no correspondent in RS .

ii. Now assume there is no match for fk in RS . Then fk cannot be in a
synchronous or edit move in γ by property (ii). So fk is in a model
move. Let S′ be the state obtained from a repair (4) where a target
event e was added. Set RS′ = RS ∪ {(etgt , fk)}, which satisfies the
invariants.

(b) Suppose there is no (eact , fj) ∈ RS . By invariant (ii), eact stems from
the trace. We then apply the repair (1) to remove the activation event
eact , obtaining a state S′. Note that the activation event cannot have
been modified, otherwise there would be a match in RS by property
(iv).

It can be checked that in all cases, the invariants (i)− (iv) remain satisfied.
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Second, consider an excessive target violation. Let etgt be the excessive target
event that caused the violation.
3. Suppose first that ψ does not have an activation. For simplicity, we consider

the case of a single target, but the case for Absence is similar.
– Suppose there is some fj such that (etgt , fj) ∈ RS . Suppose first that for
fj = ⟨ι′, a, α′⟩, α′ does not satisfy ctgt .
• If there is some v ∈ dom(α) such that α(v) ̸= α′(v) then etgt must

stem from the trace. Let S′ be the child state obtained from a repair
(9) where attribute v was freed.

• Otherwise, let S′ be the result of a condition enforcement repair (10).
It can be checked that in all cases, the invariants (i) − −(iv) remain
satisfied.

– Suppose there is no fj such that (etgt , fj) ∈ RS . Then etgt must stem
from the trace by property (ii). We apply repair (8) to remove an extra
target.

4. Now suppose ψ has an activation, let eact ∈ E be the activation event of the
violation.
(a) Suppose first there is some fj such that (eact , fj) ∈ RS .

i. Suppose there is some fk in f such that (etgt , fk) ∈ RS . Let etgt =
(ν, b, β) and fk = (ν′, b, β′). Since f satisfies ψ, the assignment µ
cannot satisfy Ord(ψ, eact , etgt) ∧ [ctgt ∧ ccor ](eact , etgt).
– If there is some v ∈ dom(β) such that β(v) ̸= β′(v) then etgt

must stem from the trace. Let S′ be the child state obtained
from a repair (9) where attribute v was freed.

– Otherwise, we apply a condition enforcement repair (10). If µ
does not satisfy Ord(ψ, eact , etgt) then we take the state S′ =
⟨E,C ′⟩ where C ′ = C ∪ {¬Ord(ψ, eact , etgt)}. Otherwise, µ does
not satisfy [ctgt ∧ ccor ](eact , etgt), and we take the state S′′ =
⟨E,C ′′⟩ where C ′ = C ∪ {¬[ctgt ∧ ccor ](eact , etgt)}.

ii. Suppose there is no fk in f such that (etgt , fk) ∈ RS . Then etgt must
stem from the trace. We apply repair (8) to remove the target event.

(b) Suppose there is no fj such that (eact , fj) ∈ RS . Then eact must stem
from the trace. We then apply repair (1) to remove an activation event.

It can be checked that in all cases, the invariants (i)− (iv) remain satisfied.
This concludes the proof of existence of a sequence S0, S1, S2, . . . .

For S = ⟨E,C⟩ a state in this sequence, consider the measure M(S) =
(m− |RS |, traceEvents(E), bnd(E), viol(S)), where |RS | is the number of pairs
in RS , traceEvents(E) is the number of events in E that stem from the trace,
bnd(E) the number of bound variables in events in E stemming from the trace,
and viol(S) the number of violations in S.

We observe that along the sequence S0, S1, S2, . . . , we have M(S0) >
M(S1) > M(S2) > . . . , where we compare tuples lexicographically: Indeed,
the measure decreases for repairs where an event was added because we always
add an entry to RS ; for all other repairs, RS stays the same. The measure de-
creases when removing an event as the number of trace events decreases; while
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for all other repairs the number of trace events stays the same. When freeing
an attribute, the number of bound variables decreases, and when enforcing con-
straints, the number of violations decreases (while the number of bound variables
is unaffected).

Thus by well-foundedness, we must at some point reach a state Sg = (E,C)
with viol(Sg) = 0, i.e., a goal state. We show that m = |RSg

|: Suppose to
the contrary that there is an event fj in f with no e such that (e, fj) ∈ RSg

.
There must be a move with fj in γ, but it cannot be an edit or synchronous
move by condition (ii). So it must be a model move. Since µ satisfies C \ {C0}
restricted to E|RSg

, and Sg has no violation, so with Lem. 1 we conclude that also
⟨f1, . . . , fj−1, fj+1, . . . , fm⟩ must satisfy M, which contradicts minimality of γ.
Hence m = |RSg

|, so every event in f has a matching event in E. By assumption
(iii), assignment µ satisfies all constraints in C. Hence µ can be used in Alg. 1
to obtain an alignment of e and M that is equivalent to γ. ⊓⊔

Theorem 1 (Correctness). If S is a goal state with minimal cost K in a
search space for M and e then the list of moves γ returned by Alg. 1 on input
S and e is an optimal alignment of e wrt. M with cost K.

Proof. By Lem. 2, every alignment extracted from a goal state is an alignment
for e and M. Moreover, by Lem. 3, for an optimal alignment γ of e and M there
is some goal state Sg that allows to extract an alignment equivalent to γ, and
by Lem. 2 it satisfies cost(S) = κ(γ). The claim then follows from correctness of
A∗, i.e., the fact that a state with minimal cost is returned. ⊓⊔
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Fig. 5: Complete search space for running example
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