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Abstract

Conformance checking is a crucial aspect of process mining, enabling organizations to identify deviations

between actual process behavior and modeled expectations. At the heart of conformance checking lies the

concept of optimal alignments, which provide a detailed, cost-minimized mapping of observed behavior to

expected behavior. Optimal alignments facilitate the identification of root causes of non-conformity and

guide corrective actions. This is a critical area where Artificial Intelligence (AI) plays a pivotal role in driving

effective process improvement. However, computing optimal alignments poses significant computational

challenges due to the vast search space inherent in declarative process models. Consequently, existing

approaches often struggle with scalability and efficiency, limiting their applicability in real-world settings.

This paper introduces DeclareAligner, a novel algorithm that uses the A* search algorithm, an established

AI pathfinding technique, to tackle the problem from a fresh perspective leveraging the flexibility of declarative

models. Key features of DeclareAligner include only performing actions that actively contribute to fixing

constraint violations, utilizing a tailored heuristic to navigate towards optimal solutions, and employing early

pruning to eliminate unproductive branches, while also streamlining the process through preprocessing and

consolidating multiple fixes into unified actions. The proposed method is evaluated using 8,054 synthetic

and real-life alignment problems, demonstrating its ability to efficiently compute optimal alignments by

significantly outperforming the current state of the art. By enabling process analysts to more effectively

identify and understand conformance issues, DeclareAligner has the potential to drive meaningful process

improvement and management.
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1. Introduction

Process mining has become a crucial tool for organizations to analyze and improve their business processes,

leveraging the increasing availability of event log data. Process mining encompasses a range of subjects

(Aalst et al., 2012), including process discovery (reconstructing process models from event logs), conformance

checking (comparing actual behavior with modeled behavior), and enhancement (improving process models

based on insights gained).

Among these, conformance checking (Carmona et al., 2018) is particularly important as it compares an event

log with a process model to identify deviations and discrepancies. One effective approach to conformance

checking is through the use of alignments, which provide a detailed comparison of the executed steps in an

event log with the expected behavior of the process model. Alignments visually represent the differences

between the logged and modeled traces, highlighting discrepancies and mismatches. Optimal alignments

(Adriansyah, 2014) further refine this approach by assigning a cost to each discrepancy and finding the

alignment that minimizes the total cost.

Processes are often modeled using imperative approaches (Aalst, 1997), which spell out every possible

allowed execution path in exhaustive detail. However, many real-world processes exhibit inherent variability,

flexibility, and complexity, making it challenging to capture them using such rigid methods. In such cases,

attempting to create an exhaustive model would likely result in a convoluted representation, characterized by

numerous internal states —often referred to as a “spaghetti model” due to its intricate and cumbersome

nature.

This is where declarative processes come into play (Back et al., 2018). Unlike their imperative counterparts,

declarative process models focus on specifying the constraints that govern the behavior of a process, rather

than dictating its exact execution flow. In essence, declarative models define “what” constraints must be

satisfied during the execution of a process, without prescribing exactly “how” it should be done. This

approach allows for greater flexibility in the actual process behavior, making it particularly suitable for

capturing dynamic and complex processes.

Example. Consider a hospital’s patient discharge process, which includes activities such as medica-

tion prescription, patient education, and follow-up appointment scheduling. A declarative model can

specify constraints for this process, like “a patient must receive medication before being discharged”

—Precedence(ReceiveMedication, Discharge)— or “a follow-up appointment must be scheduled after

the discharge, without any other discharge in between” —AlternateResponse(Discharge, Appointment).

This allows for flexibility in the process while still enforcing key constraints.

However, this flexibility also introduces challenges when it comes to conformance checking. As modeled
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Figure 1: Partial process model of a real-life Dutch financial institute.

constraints only restrict some relationships among activities, all unrestricted behavior is allowed by default.

This means that a declarative model implicitly permits a multitude of different execution paths. The declare

language (Pesic et al., 2007) is widely regarded as one of the leading approaches to declarative process

modeling, offering a flexible and concise way to define constraints on business processes.

Example. A Dutch financial institute serves as a real-life case study for the application of optimal alignment

during this paper’s evaluation. The institute’s loan application process involves a complex series of activities,

including submission, fraud assessments, and approval decisions. Figure 1 shows part of the process model

for this real-life example, and includes constraints such as “a submission cannot be accepted and declined

at the same time” and “a change of contract can be scheduled if a fraud assessment is also scheduled at

some point and vice versa”. By computing optimal alignments of this process against real logs, areas where

actual process execution deviates from intended behavior can be identified, enabling the institute to refine its

processes and improve customer satisfaction.

While much research has been devoted to computing optimal alignments for imperative process models

(Casas-Ramos et al., 2024; Dongen et al., 2017; Dongen, 2018; Lee et al., 2018; Sani et al., 2020; Taymouri

and Carmona, 2020), there is a noticeable gap in optimizing alignment techniques for declarative models.

Simple declarative conformance checking approaches do not compute optimal alignments. These methods,

such as (Chiariello et al., 2022) which is based on satisfiability problems, only report constraint failures

without offering guidance on identifying the underlying issues. Others provide more detailed information,

such as activations, fulfillments, and violations for each constraint (Burattin et al., 2016; Donadello et al.,

2022; Maggi et al., 2019, 2011; Montali et al., 2013), but still fall short of computing optimal alignments.

Another recent study by (Riva et al., 2023) provides basic diagnostics, utilizing a database for both query

and conformance checking. Although it acknowledges the need for richer feedback through alignments, this

functionality is currently planned as future work. Notably, all these approaches fall short in identifying the

root causes of non-conformances or providing minimal fixes, which is precisely the problem that optimal

alignments aim to address.
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More advanced diagnostics computing optimal alignments have been published using finite-state automata

(Giacomo et al., 2017; Leoni et al., 2012). However, these methods can be computationally expensive due to

the extensive search space they need to explore. Recent studies have introduced additional complexities,

such as aligning data-aware declarative models, including (Maggi et al., 2023), which employs SAT solvers,

and (Bergami et al., 2021), which leverages planning techniques. Furthermore, while (Christfort and Slaats,

2023) presents an efficient optimal alignment algorithm, its applicability is limited by its reliance on Dynamic

Condition Response (dcr) graphs, which may pose interoperability challenges and suffer from a lack of

widespread tool support. In addition, other proposals aim to provide more informative results, like (Vespa et

al., 2025), which checks conformance for probabilistic traces, acknowledging the inherent uncertainty in event

log recordings, and (Dongen et al., 2021), which aligns process models defined using both procedural and

declarative paradigms. These advancements, while valuable, necessitate exploring even larger search spaces,

thereby highlighting the need for efficient alignment algorithms for declarative process models.

Despite these advancements, there remains a significant need for more efficient and scalable approaches to

computing optimal alignments for declarative conformance checking. To address this challenge, this paper

introduces DeclareAligner, a novel algorithm that extends the well-established A* search algorithm (Hart

et al., 1968). A* is renowned for its ability to find the shortest path between two nodes in a graph. In the

context of DeclareAligner, these nodes are referred to as states, and the graph —which is termed the

search space— is constructed incrementally as it is explored by the A* algorithm.

The proposed search space is initialized with a starting state that embodies the entire trace. From this

foundation, new states are iteratively generated through the application of targeted corrective actions.

As these actions are applied, each successive state exhibits increasing compliance with the process model,

ultimately yielding a goal state that corresponds to a valid execution of the process. By comparing the original

trace to a valid trace represented by this goal state, an optimal alignment can be extracted, highlighting the

deviations between the actual and expected behavior.

A key advantage of DeclareAligner lies in its ability to leverage the flexibility of declare models,

enabling efficient exploration of the vast search space of possible alignments and ultimately identifying the

optimal alignment. The proposed approach offers several significant innovations that enhance its performance

and scalability:

• It only considers taking actions that directly contribute to repairing violated constraints.

• It proposes several search optimization strategies in order to manage difficult alignments:

– An heuristic that merges the suggested actions for all violated constraints of a state to provide

accurate cost estimates.

– States that cannot reach the optimal alignment are pruned early to eliminate unfruitful branches
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of the search space.

– Actions that are required by chain constraints and do not interfere with other constraints are

applied before the search.

– Actions perform multiple operations at once to avoid intermediate states.

The paper is structured as follows. Section 2 reviews existing approaches and highlights their limitations.

Section 3 introduces the necessary concepts used by the algorithm. In Section 4 DeclareAligner is

presented. Section 5 discusses the results of the empirical evaluation. Finally, Section 6 summarizes the

contributions and suggests future work.

2. Related work

Declarative conformance checking, particularly using the declare language (Pesic et al., 2007), has gathered

significant attention in recent years due to its ability to model complex and flexible business processes and

reason about their behavior. Several approaches have been proposed for declarative conformance checking.

These can be broadly categorized into two types: those that report only basic conformance information and

those that compute optimal alignments to provide detailed insights into process deviations.

Methods in the first category, such as (Chiariello et al., 2022), simply execute recorded events in the process

model and return a boolean result indicating conformance or non-conformance, without providing insights

into specific issues. Other methods in this category, including (Burattin et al., 2016; Donadello et al., 2022;

Maggi et al., 2019, 2011; Montali et al., 2013; Riva et al., 2023) report activations, satisfactions, and violations

for each constraint within the declare model and for every trace in the input log. While these results

are faster to compute than optimal alignments, they do not identify root causes of non-conformance or

suggest fixes. The main limitation of these approaches is that they only provide a high-level indication of

conformance or non-conformance, without offering actionable insights for process improvement.

In contrast to simpler conformance checking methods, computing optimal alignments enables a more detailed

analysis of process deviations and identification of opportunities for improvement. However, these approaches

come at a higher computational cost. Currently, there are only two state-of-the-art approaches for computing

optimal alignments of declarative models, namely those presented in (Leoni et al., 2012) and (Giacomo

et al., 2017). A key characteristic shared by these approaches is the initial conversion of the declare

process model to finite-state automata. Specifically, standard declare constraints can be translated into

Linear-time Temporal Logic over finite traces (LTLf ) specifications, which in turn can be converted into

finite-state automata for each constraint (Giannakopoulou and Havelund, 2001; Westergaard, 2011). The

two state-of-the-art approaches differ primarily in their techniques for searching for the optimal alignment

using these automata:
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• The first approach (Leoni et al., 2012) employs the A* algorithm to find optimal alignments, providing

metrics such as fitness, precision, and generalization. However, this method can be computationally

expensive due to the need to explore a large state space using a relatively simple heuristic.

• The second approach (Giacomo et al., 2017) converts automata to a planning problem and uses classical

planners to find optimal alignments. This approach has shown better efficiency but may face scalability

issues due to the required conversion to a planning task or the lack of control over the approach that

the planner takes.

The field of declarative conformance checking is continually evolving, with researchers exploring novel

approaches to enhance its capabilities. For example, (Maggi et al., 2023) proposes a method that leverages

SAT solvers for data-aware declarative process mining, introducing an additional layer of complexity by

incorporating data-aware constraints into the alignment problem. Similarly, (Bergami et al., 2021) investigates

the application of planning techniques for aligning data-aware declarative process models, which further

complicates alignment computation by considering the impact of data attributes on process conformance.

Additionally, (Christfort and Slaats, 2023) contributes to the understanding of efficient optimal alignment

computation, although its focus on dcr Graphs may limit its broader applicability, as dcr Graphs are not

as widely adopted as declare. Moreover, (Dongen et al., 2021) contributes to this area by examining the

conformance checking of mixed-paradigm process models. However, it is noted that when such models contain

solely declarative constraints without procedural constructs, they generate the largest possible search space,

leading to performance degradation of the A* algorithm. The growing sophistication of these approaches

creates a corresponding need to navigate increasingly vast search spaces, making efficient alignment algorithms

for declarative process models a pressing requirement.

Existing methods for computing optimal alignments using declare models struggle with large process

models and logs. The proposed DeclareAligner algorithm addresses these limitations by introducing a

novel approach that focuses only on actions that can potentially resolve violated constraints, preprocesses

the problem to reduce unnecessary work, and groups multiple fixes together into single actions to minimize

redundant effort. Additionally, the algorithm utilizes an advanced heuristic and detects and removes dead-

ends from the search space. This results in improved performance and scalability, enabling the tackling of

more complex optimal alignment tasks.

3. Preliminaries

Event logs record sequences of events that happened during the execution of a process. A single occurrence

of an activity is called an Event. Each event is characterized by a trace identifier, activity name, timestamp,

and optional additional information. Events are grouped into traces, i.e., sequences of events that occur in a
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Table 1: Event log data collected for an e-learning process. Each row shows an event. An example trace with ID Case234

is ⟨Enroll, Test, Exam⟩.

Trace ID Activity Timestamp

Case234 Enroll 2023-09-01 22:16:29

Case675 Class 2023-11-01 04:10:07

Case234 Test 2023-11-15 02:09:48

Case675 Exam 2023-12-13 07:24:41

Case234 Exam 2024-01-19 06:42:33
...

...
...

specific context or scope. In essence, a trace provides a snapshot of how a particular process instance has

unfolded over time. For the purposes of this paper, only the ordered sequence of activities contained within

each trace is necessary. An example log is shown in Table 1.

Definition 1 (Trace). A trace is an ordered sequence of activities σ = ⟨A1, . . . , An⟩, where each activity Ai

is extracted from events that belong to the same case, i.e., that share the same trace identifier. They are

sorted according to the timestamp of the associated event.

Definition 2 (Log). An event log L = [σ1, . . . , σn] is a multiset of traces.

The most widely used declarative process modeling language is declare (Pesic et al., 2007). It defines a list

of parametrized templates that, when instantiated with specific activities, become constraints restricting

the execution of those activities. Table 2 provides a comprehensive overview of all supported declare

templates. For formal definitions, refer to (De Smedt et al., 2015). A declare process model is simply a set

of constraints.

A constraint is considered violated when the specified condition or rule is not met within the trace. This

means that the activities in the process occur in a manner that breaches the constraint. If a constraint is not

violated, it is considered satisfied.

A few constraints such as Init(A) are always active. However, most constraints have an activation activity. If

the activation does not appear in the trace, the constraint is always (vacuously) satisfied. For example, the

activity A of Response(A, B) is the activation, as this constraint ensures that B must appear at some point

after A, only if A appears in the trace.

Branching is an important part of the declare language as it allows defining more complex constraints by
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Table 2: Supported declare constraints and their natural language descriptions.

Existence(n, A): A occurs at least n times. Participation(A): A occurs at least once.

Absence(n, A): A occurs at most n-1 times. AtMostOne(A): A occurs at most once.

Exactly(n, A): A occurs exactly n times. Init(A): A is the first activity.

End(A): A is the last activity. Choice(A, B): Either A or B, or both, occur.

ExclusiveChoice(A, B): Either A or B, but not both, occur. RespondedExistence(A, B): If A occurs, B also occurs.

Response(A, B): If A occurs, B follows. Precedence(A, B): If B occurs, A precedes it.

AlternateResponse(A, B): If A occurs, B follows without

any other A in between.

AlternatePrecedence(A, B): If B occurs, A precedes it without

any other B in between.

ChainResponse(A, B): If A occurs, B is the next activity. ChainPrecedence(A, B): If B occurs, A is the previous activity.

CoExistence(A, B): If A occurs, B also occurs, and vice

versa.

Succession(A, B): Combines Response and Precedence.

AlternateSuccession(A, B): Combines AlternateResponse

and AlternatePrecedence.

ChainSuccession(A, B): Combines ChainResponse and

ChainPrecedence.

NotRespondedExistence(A, B): If A occurs, B does not. NotCoExistence(A, B): If A occurs, B does not, and vice versa.

NotResponse(A, B): If A occurs, B does follow. NotPrecedence(A, B): If B occurs, A does not precede it.

NotSuccession(A, B): If A occurs, B does not follow, and if

B occurs, A does not precede it.

NotChainResponse(A, B): A is not immediately followed by B.

NotChainPrecedence(A, B): B is not immediately preceded

by A.

NotChainSuccession(A, B): A is not immediately followed by B

and B is not immediately preceded by A.

inserting multiple activities instead of just one in each parameter of the template. When multiple branched

activities are applied to a parameter of a template, any of them can trigger the effect associated with the

parameter. Branched activities are shown between square brackets to avoid confusion.

Example. Figure 2 shows an example model from a hospital in both graphical and textual form with the

following constraints:

• Exactly(1, ERT) specifies that ERT must occur exactly once in each trace.

• Absence(2, IVA) indicates that IVA cannot occur more than once.

• Choice(ANC, L) defines that either ANC or L must appear at some point in the trace.

• ChainResponse(IVA, RB) enforces that whenever IVA occurs, RB must also occur immediately after it.

• ChainPrecedence([ANC, ERT], RB) is an example of branching that specifies that whenever RB occurs,

ANC or ERT must occur immediately before it.

An alignment maps a trace to a process model, highlighting conformance issues and enabling applications
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(a) Graphical representation.

(b) Text version.

Figure 2: Example of a declare process.

like model repair and auditing. An alignment is a sequence of legal moves that traverse both the trace and

the process model from start to finish.

Definition 3 (Legal move). Let M be a declare model with activities AM , L be a log with activities AL,

and i be the first index (zero-based) of the trace that still needs to be aligned such that σ[i] is the next

activity to align. A move is a tuple (aL, aM ), where aL ∈ AL ∪ ≫ and aM ∈ AM ∪ ≫. Legal moves are

moves of the following forms:

• Synchronous moves (σ[i], σ[i]) are available if the execution of the activity an does not permanently

violate any constraint of M . This updates the state of the model accordingly and advances the index i

to the next trace activity.

• Log moves (σ[i],≫) are available if i < |σ|. This move increments i by one, progressing in the trace

without affecting the model.

• Model moves (≫, a) where a ∈ AM are available if all constraints of M would not become permanently

violated if a is executed. This updates the state of the model by executing a.

Log and model moves may be referred to as asynchronous moves.

Definition 4 (Alignment). An alignment γ = ⟨γ1, . . . , γn⟩ is a sequence of legal moves which reaches the

end of the trace and a state of the model which satisfies all constraints.

Table 3 illustrates an example alignment, with each legal move as a column and the top and bottom rows

represent the log and model parts respectively. A cost function assigns a penalty or cost to each move in an

alignment, reflecting the degree of mismatch between the observed and modeled behavior. The standard cost

function assigns a cost of 1 to asynchronous moves and a cost of 0 to synchronous ones. Table 3 has a total
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Table 3: Alignment of the trace ⟨ANC, L, IVA, RB⟩ with the process from Figure 2. Activities are shown as their initials.

LOG ANC L ≫ IVA RB

MODEL ANC L ERT ≫ RB

cost of 2.

Definition 5 (Alignment cost, optimal alignment). A cost function C : (AL ∪ {≫})× (AM ∪ {≫}) \ (AL ×

AM ∪ {≫} × {≫})→ (0,∞) assigns a cost cγi
to each possible legal asynchronous move, where AL is the

set of activities in the trace and AM is the set of activities in the declare model. Each valid alignment

is assigned a cost cγ = cγ1 + · · · + cγn . An optimal alignment for a given trace and model is any of the

alignments with the minimum total cost.

4. DeclareAligner algorithm

DeclareAligner is built on top of A* search, a popular pathfinding and graph traversal algorithm that

efficiently finds the shortest path between two nodes in a weighted graph. The A* search algorithm, known

for its completeness and optimality guarantees, is particularly well-suited for the optimal alignments task as

this task can be expressed as a graph that repairs violated constraints until all constraints are satisfied. The

nodes of this graph are referred to as states.

The DeclareAligner algorithm consists of several key components, as illustrated in Figure 3. The process

commences with an initial state, which represents the current trace (Section 4.1). Prior to initiating the

search for the optimal alignment, the algorithm performs preprocessing on the initial state (Section 4.5.2)

effectively reducing the workload by starting closer to the solution. Subsequently, the A* search algorithm

recursively explores a search space that is tailored to the computation of optimal alignments. The graph is

incrementally constructed by applying fixes to violated constraints, thereby generating neighboring states

(Section 4.2). This exploration is facilitated by various optimizations, including a tailored heuristic (Section

4.3), early pruning of dead-ends (Section 4.5.1), and the grouping of multiple fixes into single actions (Section

4.5.3). When a state that has no violated constraints is explored, the optimal alignment can be extracted

(Section 4.4).

4.1. State definition and notation

The algorithm explores a search space where each state is created by applying fixes to resolve constraint

violations. A state contains the following attributes:

• Cost is a measure of the severity of fixes required to reach the state from the initial state.
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State definition and exploration
(Section 4.1)

Constraint Preprocessing
(Section 4.5.2)

State exploration and selection
(Section 4.2)

Heuristic
(Section 4.3)

Early Pruning
(Section 4.5.1)

Grouped Fixes
(Section 4.5.3)

Extraction of the optimal alignment
(Section 4.4)

Solution
found

Figure 3: High-level overview of DeclareAligner.

A

B

C

Precedence

Response

Figure 4: Process model of the running example.

• Heuristic is an estimate of the additional cost needed to transition from the current state to a goal

state where all constraints are satisfied.

• LTGraph is a directed acyclic graph showing dependencies between activities or activity groups, with

nodes connected by arcs that indicate precedence relationships. Activity groups can represent two

types of relationships: branched activities, denoted as [A, B], where all activities have the same effect

so they are interchangeable; or chained activity groups, denoted as A > B, where B directly follows A.

• Violated activations is a list of constraint activations that remain violated.

• Will fix is the activation that will be addressed next (Section 4.2).

The algorithm commences with an initial state, denoted as state0, which serves as the starting point for the

search process. The initial state is constructed by creating an LTGraph that reflects the original problem

instance: each activity of the trace is added as a node and connected to the node for the next activity of the

trace to indicate their strict precedence. The initial state has a cost of 0 since no edits have been made yet.

Example. To facilitate understanding of the concepts presented, a running example will be utilized

throughout this section. The running example consists of the trace ⟨A, A⟩ and the process model shown in

Figure 4:

• Response(A, [B, C]) enforces that if A appears in the trace (activation), then either B or C must
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Figure 5: Initial state for the running example.

occur at any point after the activation.

• Precedence(C, B) specifies that if B appears in the trace (activation), then C must occur at any

point before the activation.

The initial state for the running example is depicted in Figure 5, which shows from top to bottom:

• State identifier (State0 ), cost and heuristic values. The cost of the initial state is always 0, whereas the

heuristic value is computed by identifying actions that are required to reach a goal state and adding

their costs (Section 4.3).

• The LTGraph, which enforces the order between the two A activities present in the trace. Distinct

subscripts identify each activity instance to avoid ambiguity.

• Lists of violated activations for each process model constraint. The initial state reveals that A0 and A1

are violated activations of the response constraint, stemming from the absence of B or C activities

succeeding each A activity in the LTGraph. There are no violated activations for the precedence

constraint, as there is no B in the LTGraph.

• The selected activation to repair, which in this case is A1 (Section 4.2).

4.2. State exploration and selection

Neighbor generation is guided by identifying violated constraint activations and proposing repair actions.

When multiple violations occur, those suggesting actions with the highest average costs are prioritized. This

strategy of exploring high-cost actions first is grounded in the observation that non-zero cost actions result

in asynchronous moves in the optimal alignment (Definition 3). Such actions can have a profound impact on

other constraints, as they involve adding and removing activities. By prioritizing high-cost actions early in

the search process, the risk of cascading effects that can arise when they are applied deeper in the search

space, where numerous states are awaiting exploration, is mitigated. As a result of resolving high-cost actions

first, subsequent repair actions suggested by other constraints tend to have localized effects on the state. This

makes them more likely to be successfully repaired without triggering additional conflicts, and ultimately

facilitating a faster convergence towards an optimal alignment.

In cases where multiple violated activations have equal average costs, a secondary prioritization strategy to

resolve ties is employed. Forward-looking constraints (e.g., Response) prioritize their last failed activation
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(d) Subset of branched activities example.

A B C AMerge B > C B > C

(e) Merge chains example.

Figure 6: Examples of fix kinds applied to an LTGraph.

because all activations can be fixed if the target is inserted after this point. Analogously, backward-looking

constraints favor their first failed activation. Negative constraints, however, require the opposite approach:

since the goal is to avoid introducing targets altogether, removing the targets from the first activation

effectively fixes all subsequent activations for forward-looking constraints and removing them from the last

activation does so for backward-looking ones.

Generating neighboring states is accomplished by constructing actions, which comprise sequences of corrective

modifications applied to the LTGraph in response to a violated constraint activation. All violations of

declare constraints can be repaired by applying a combination of the following fix kinds:

• Insert or remove node (Fig. 6a). Adds or deletes a node of the LTGraph, updating adjacent arcs

when removing a node.

• Add an arc (Fig. 6b). Enforces the origin node to precede the destination node.

• Set start or end node (Fig. 6c). Sets a node as the first or last node, adding arcs to all other nodes

and ensuring it remains in that position.
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• Subset of branched activities (Fig. 6d). In scenarios where a constraint is activated or violated

by only a subset of branched activities present in a LTGraph node, this fix kind can be employed to

avoid activation or enforce the target, respectively.

• Merge or split chains (Fig. 6e). To efficiently implement chain constraints, the LTGraph nodes

are capable of representing lists of possibly branched activities (separated by >). This fix kind merges

two nodes, preserving their chained relationship without the need to add arcs to all other nodes.

Only the insert or remove node fix kind has a non-null cost. This is because adding a node triggers a model

move in the optimal alignment, while removing a node causes a log move (Section 4.4). In contrast, all other

fix kinds only reduce the set of possible alignments that the LTGraph represents, without modifying their

costs.

The standard cost function assigns a uniform cost of one to each insertion or removal operation. The cost of

an action is the sum of the costs of its individual fixes. Each action taken contributes to increasing the cost

of the current state.

Definition 6 (State cost). Let T be the complete set of actions applied to the initial state in order to reach

the current state s, and let ct(t) be the cost of the action t, the cost of s can be defined as:

cost(s) =
∑

action∈T

ct(action)

The next state to explore is the previously unexplored state with the lowest total estimated cost (cost +

heuristic). The algorithm continues to iteratively explore and select states until either a goal state is explored

or no further states remain to be explored, in which case there is no optimal alignment.

Example (continued). Figure 7 illustrates the complete search space explored by the algorithm to find the

optimal alignment for the running example. The representation of an action is an arc connecting the parent

state to the neighboring state. The arc is labelled with the fixes of the action. Goal states are highlighted

with a green border, and the path to the optimal goal state is marked with green arrows.

As previously mentioned the initial state (state0 ) has two violated activations for the response constraint. In

this case, the algorithm selects the A1 activation from the LTGraph to repair. There are only two possible

fixes, which create the neighboring states of state1 and state2 :

• State1 removes the activation so that the constraint is never activated, with a cost of 1.

• State2 inserts the expected target of the constraint, which can be either of the activities B or C.

This results in the addition of the LTGraph node [B, C] after the activation. This action results

in satisfying both activations of the response constraint. However, it also activates the precedence
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State0 Cost:0 Heuristic:1

State1 Cost:1 Heuristic:1

Remove A1

State2 Cost:1 Heuristic:0

Insert [B, C]
Add A1→ [B, C]

State3 Cost:1 Heuristic:0

Choose subset [C]

State4 Cost:2 Heuristic:0

Insert C
Add C → [B, C]

Figure 7: Search space discovered for the running example. Best viewed in color.

constraint as one of the branched activities triggers it.

The algorithm selects state2 to explore next based on its lower cost + heuristic value. state2 has only

one violated activation to repair for the precedence constraint, resulting in the generation of the following

neighboring states:

• State3 removes the activation through a cost-free operation, which involves selecting a subset of

branched activities to avoid triggering the precedence constraint.

• State4 inserts the target activity before the activation. Note that the LTGraph now aggregates a

series of possible activity orderings into a single state, reducing the size of the search space.

Ultimately, the algorithm reaches the goal state with the lowest cost, which in this case is state3. The optimal

alignment can then be extracted from the goal state (Section 4.4).
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Algorithm 1 Heuristic function
1: function Heuristic(state)

2: activations← violatedActivations(state)

3: actionSets← {actions(a) | a ∈ activations}

4: combination← HDijkstra(actionSets)

5: return
∑

action∈combination ct(action)

6: function HDijkstra(actionSets)

7: hstates← {{}} ▷ Set of unexplored hstates

8: loop ▷ Main loop of Dijkstra’s algorithm

9: hstate← RemoveLeastCost(hstates)

10: if hstate is a goal state then

11: return hstate

12: hactions←HActions(hstate, actionSets)

13: for all haction ∈ hactions do

14: child← HExplore(hstate, haction)

15: AddOrReplace(hstates, child)

4.3. Heuristic

The heuristic function used in DeclareAligner leverages knowledge about required repair actions to

provide an accurate estimate of the remaining cost to reach a goal state. Given that all violated activations

must be addressed, this approach is based on two key insights:

• Minimum required actions. At least one action from the set of repair actions suggested for each

violated activation is necessary to resolve the violation.

• Optimistic merging. Actions that can fix multiple violations must be merged optimistically to avoid

overestimating the remaining cost.

The heuristic function, formally defined in Algorithm 1, takes advantage of these insights to compute an

accurate estimate of the remaining cost. The process begins by identifying all violated activations in the

current state (alg. 1:2). For each violated activation, the set of proposed repair actions is retrieved (alg. 1:3).

Next, Dijkstra’s algorithm (Dijkstra, 1959) is used to search for the combination of one action from each set

that incurs the lowest total cost (alg. 1:4). The main loop of the search (alg. 1:8) involves four key functions:

• The RemoveLeastCost function (alg. 1:9) deletes and returns the unexplored heuristic state with

the lowest total cost from the set of hstates, where the cost is determined by the sum of action costs.
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A D
[B, C]

C

Figure 8: Example of an LTGraph with branched activities.

This state becomes the next candidate for exploration in the search process.

• The HActions function (alg. 1:12) selects the next violated activation that was not previously explored

and adds all of its suggested fixes as new actions to discover new neighboring states.

• The HExplore function (alg. 1:14) discovers a new child state from each of the proposed actions of

the HActions function. It does so by adding the selected action to the current state and merging it

with existing actions to avoid overestimating the cost.

• The AddOrReplace function (Alg. 1:15) checks whether the generated child state is already in hstates.

If not, it adds the child; otherwise, it replaces the existing hstate only if the new one has a lower cost.

The search algorithm concludes upon exploring the first hstate that meets the goal criteria, namely, when the

hstate includes at least one action from each activation (alg. 1:10). This is always found since any combination

that includes actions from all activations is valid, and Dijkstra’s algorithm ensures that the optimal one

is found (alg. 1:11). Hence, the returned hstate is the combination of actions from all violated activations

that yields the lowest cost. The resulting heuristic value is determined by this minimum possible cost of the

combined actions (alg. 1:5). This value provides an informed estimate of the effort required to resolve all

outstanding issues and achieve a valid solution.

Example (continued). Consider state0 from Figure 7. Two similar violated activations propose actions that

either remove the activation or insert a new node after it, both of cost 1. However, the insert actions can be

combined to solve both violations simultaneously. The heuristic searches for the lowest-cost combination of

actions, which in this case is a single insert action of cost 1. This yields a heuristic value of 1 for state0.

4.4. Extraction of the optimal alignment

To extract the optimal alignment from the goal state, a topological sort for the LTGraph is found. A

topological sort is a linear ordering of nodes in the LTGraph such that for every edge, the starting node

comes before the ending node in the order. There can be multiple topological sortings for the nodes of an

LTGraph, but the algorithm ensures that any one of them will have equivalent cost for a goal state. Since

the objective is to obtain any optimal alignment, selecting any one of them results in the optimal alignment

of the problem. This results in a sequence of activities executed in the model, where branched activities are

resolved by selecting any one of them.

We then process both the nodes from the topological sort and the original trace simultaneously to extract
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Table 4: Example of optimal alignment extracted from the LTGraph shown in Figure 8 and the trace ⟨A0, D, A1⟩ .

LOG A ≫ D ≫ A

MODEL A C D C ≫

the optimal alignment:

• If an LTGraph node was inserted when performing an action, a model move is added to the alignment

and advance the topological sort.

• Otherwise:

– If the next LTGraph node matches the next activity in the trace, a synchronous move is added

to the alignment and advance both.

– Otherwise, a log move is added to the alignment and advance the trace.

Any remaining activities in the trace are handled by adding them as log moves. The collected sequence of

moves is the optimal alignment.

Example. Let ⟨A, D, A⟩ be the trace and Figure 8 be the LTGraph of the goal state from which the

optimal alignment will be extracted. A valid topological sort of the LTGraph is ⟨A0, C, D, C⟩, after

selecting C from the branched activities [B, C]. This yields an optimal alignment where A0 is a synchronous

move, followed by a model move for the inserted activity C, another synchronous move for D, and another

model move for the inserted activity C. Finally, since the last A from the trace was not processed, it results

in a log move, producing the optimal alignment shown in Table 4.

4.5. Optimizations

Several optimization techniques can further improve the efficiency and effectiveness of the DeclareAligner

algorithm. These enhancements build upon the foundation established in the previous sections and are

designed to refine the performance of the algorithm.

4.5.1. Early Pruning

The DeclareAligner algorithm improves search efficiency by pruning branches that cannot lead to a

goal state. If any violated activation has no repair action, it is impossible to reach a goal state from that

point. The reason behind this is that the violated activation will never be repaired even if all other violated

activations are eventually repaired through the exploration of the search space. Since the heuristic already

computes the suggested actions for all violated activations, the detection of dead-ends incurs no additional

overhead.
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State0 Cost: 0 Heuristic: 0

State1 Cost: 1 Heuristic: 0

Insert B
End B

Figure 9: Illustrative example highlighting the advantages of enabling the Early Pruning optimization, cutting down the search

space from 7 discovered states to just 2. Best viewed in color.

To determine whether an action is feasible for a given state, a cycle detection algorithm is executed on

the resulting LTGraph after applying the action. This is because the LTGraph represents a strict order,

and any cycles would result in an impossible topological sort. In other words, if a cycle were present, it

would indicate that there are conflicting requirements in the graph, making it impossible to extract a valid

alignment from the given state. By detecting such cycles, actions that would lead to inconsistencies can be

identified and pruned.

Example. The example illustrated in Figure 9 demonstrates the benefits of early pruning. Initially, the end

constraint is repaired by inserting a B activity at the end of the LTGraph. Upon exploring this second

state, it is identified that the alternate succession constraint would require the insertion of a C after the

B, and this cannot be satisfied without creating a cycle in the LTGraph (B ⇄ C), indicating conflicting

requirements. As a result, this state is recognized as a dead-end, since repairing the alternate succession

constraint is necessary to reach a goal state.

Without early pruning, the algorithm would proceed by addressing the violated A0 activation of the init

constraint, leading to the discovery of numerous additional neighbors before ultimately realizing that each of

these states cannot reach a goal state due to the impossibility of solving the alternate succession constraint. In

this simple scenario, enabling early pruning reduces the search space from 7 states to 2 states. For problems

with more constraints, the difference is even more pronounced, as checking all constraints for dead-ends

prevents unnecessary exploration and avoids realizing later that no solution exists.
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State0 Cost: 0 Heuristic: 1

State1 Cost: 1 Heuristic: 0

Insert D 1

Add D 1 → (B > A0)

State2 Cost: 1 Heuristic: 1

Remove A0

Figure 10: This example shows how Constraint Preprocessing simplifies the search space by decreasing the number of discovered

states from 9 to just 3. Best viewed in color.

4.5.2. Constraint Preprocessing

The DeclareAligner algorithm can leverage preprocessing techniques to reduce problem complexity for

certain constraints, specifically those containing “chain” in their name. By merging nodes in the LTGraph

of the initial state that are affected by chain constraints, the algorithm can significantly improve efficiency

while maintaining optimality. To achieve this, care must be taken to ensure that merged nodes can be split

later if necessary.

This preprocessing step involves combining two consecutive chained activities into a single node in the

initial state if they satisfy the constraint. By applying this preprocessing step before initiating the search, a

substantial number of states can be eliminated from consideration, resulting in improved overall efficiency.

Example. Figure 10 illustrates the impact of this optimization on the search space. In this example, the

process model requires that immediately after an B, a C does not appear. Since this condition is met in the

initial trace, the optimization merges the nodes for B and A0 into a single LTGraph node.

If Constraint Preprocessing were disabled, the nodes of the LTGraph would still need to be merged to

enforce the not chain succession constraint, necessitating an intermediate action. Consequently, the search

space for this simple example would consist of 9 states instead of just 3 states. Notably, this optimization

enables chain constraints to behave similarly to most other constraints: if there is no issue with the original

trace, there is no need to generate repair actions during the search.

4.5.3. Grouped Fixes

This optimization technique involves consolidating multiple fixes into a single action, thereby eliminating

the need to propose individual fixes separately. This approach is particularly effective when dealing with

complex actions that require a specific sequence of fixes. For instance, in cases where an activity must appear

a certain number of times in the trace, grouping the necessary fixes into a single action allows for efficient
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State0 Cost: 0 Heuristic: 2

State1 Cost: 2 Heuristic: 0

Remove A0
Remove A1

State2 Cost: 1 Heuristic: 1

Remove B

Figure 11: Example search space demonstrating the benefits of the Grouped Fixes optimization, which reduces the number of

discovered states from 7 to 3. Best viewed in color.

insertion of all the required occurrences simultaneously.

Consolidating these fixes has a significant impact on the search space. By avoiding the generation of

intermediate states, the algorithm reduces the need to explore many more unnecessary combinations of fixes.

Example. Figure 11 illustrates the benefits of this optimization technique. Consider a scenario where the

NotCoexistence(A, B) constraint is violated because both A and B appear in the trace. In this case, the

only possible actions to resolve the violation are removing all instances of A or removing all instances of B.

Thanks to grouped fixes, these actions can be performed in a single exploration step, allowing the algorithm

to reach the goal state after discovering only 3 states.

In contrast, disabling this optimization would result in a significantly larger search space. For this simple

example, the search space would consist of 7 states instead of just 3, highlighting the effectiveness of grouped

fixes in improving the efficiency of the algorithm.

5. Evaluation

DeclareAligner is implemented in Kotlin and executed on the same Java Virtual Machine1 as the other

state-of-the-art algorithms that have been tested. Experiments are conducted on an Intel Xeon Gold 5220R

CPU in single-threaded mode with 4GiB of RAM. The source code, dataset and binaries are available online2.

5.1. Datasets

The evaluation utilizes the same datasets as those in (De Giacomo et al., 2023), extended with additional

alignment problems to include all declare constraint templates.

1OpenJDK Temurin-22.0.1+8
2https://apps.citius.gal/ltgraph/

21

https://apps.citius.gal/ltgraph/


• D1. Real-life dataset from (De Giacomo et al., 2023). A personal loan application process log

from a Dutch financial institute serves as the real-life dataset. Its process model contains 16 constraints

and the dataset has a total of 854 trace-model pairs.

• D2. Synthetic dataset from (De Giacomo et al., 2023). Synthetic logs are generated using three

declare models with 10, 15, and 20 constraints. To introduce noise into the system, a modification

strategy wherein a subset of constraints are replaced with their negative counterparts was employed.

Specifically, 3, 4, or 6 constraints are randomly selected and substituted with their negated versions,

while maintaining the same activities as arguments. For instance, the RespondedExistence(A, B)

constraint may be replaced with its negation, NotRespondedExistence(A, B). The log generator from

(Di Ciccio et al., 2015) produces four logs for each modified model, containing 100 traces of varying

lengths (1-50, 51-100, 101-150, and 151-200 events). These noisy logs are aligned with the original

models, totaling 3,600 trace-model pairs.

• D3. Extended dataset. 16 declare templates were missing from the original test datasets, including

alternate relation constraints, choice constraints, and various negative constraints. Additional synthetic

log-model pairs are generated following the same procedure described in the previous paragraph, but

ensuring all constraint templates are present in the results. This adds another 3,600 trace-model pairs.

The complete dataset contains 8,054 trace-model pairs.

5.2. Case study: Dutch finantial institute

To demonstrate the practical utility of DeclareAligner, a concrete example from the loan application

process of the Dutch financial institute, i.e., dataset D1, is considered. The complete process model contains

16 constraints that govern the behavior of the process. For simplicity, this case study focuses on three relevant

constraints:

• NotCoExistence(A_ACCEPTED, A_DECLINED): An application cannot be both accepted and declined

at the same time.

• NotSuccession(O_SELECTED, O_CREATED): An offer cannot be created at any point after it has been

selected.

• Succession(O_CREATED, O_SENT): After creating an offer, it must eventually be sent, and, if an order

was sent, it must be eventually preceded by the creation of the order.

Since the recorded traces are too long to reproduce here, consider the following relevant subsequence of a

trace extracted from the recorded log data: σ = ⟨A_ACCEPTED, O_SELECTED, O_CREATED, O_SENT, O_SELECTED,

O_CREATED, O_SENT, A_DECLINED⟩. Running DeclareAligner on the full model and trace detects several

errors in the traceand returns the optimal alignment shown in Table 5. This alignment includes three
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Table 5: Optimal alignment of the case study.

LOG A_ACCEPTED O_SELECTED O_CREATED O_SENT O_SELECTED O_CREATED O_SENT O_DECLINED

MODEL ≫ ≫ O_CREATED O_SENT ≫ O_CREATED O_SENT O_DECLINED

asynchronous moves: log move on A_ACCEPTED, and two log moves on O_SELECTED. These errors indicate

that the activities corresponding to these moves should not have been performed in the trace, as they are

incompatible with the constraints of the model. The algorithm determines that the cheapest way to reach

conformance with the model is to not perform them.

The optimal alignment chosen by DeclareAligner resolves the contradiction between accepting and

declining an application, which violates the “an application cannot be both accepted and declined at the

same time” business rule. Additionally, the trace shows two instances of an offer being selected, created, and

sent, which contradicts the constraint “an offer cannot be created at any point after it has been selected”. An

alternative alignment would require a log move on the creation of the offer instead, but this would violate the

“if an order was sent, it must be eventually preceded by the creation of the order” constraint, necessitating

further repairs in the trace. DeclareAligner carefully considers all possible alignments to ensure that the

returned solution is optimal.

The detected problems are common issues in this loan application process. Many applications are accepted

and later declined after a lengthy review process, causing confusion and delays. Furthermore, offers are often

selected before they are created, suggesting issues with internal procedures. These problems can have serious

consequences, such as incorrect or unfair treatment of applicants, and can damage the reputation of the

financial institute. By using DeclareAligner to analyze process execution and detect errors, businesses

can improve the quality and consistency of their processes, providing better service to their customers.

5.3. Ablation study

This ablation study evaluates the impact of each component in DeclareAligner to determine how they

individually contribute to its overall performance. Various metrics are collected for each trace-model pair,

such as execution time (Time), expanded states (ExpStates), and the timeouts (Timeouts). The results of

the ablation study are shown in Table 6.

Early Pruning (Section 4.5.1) results in a significant decrease of 34.8% in average execution times. Furthermore,

it enables the computation of many more alignments, reducing the number of timeouts by 985.

This improvement is mainly due to the pruning of a large number of states that would have led to unsolvable

constraints, reducing the number of expanded states by 85.7%. By avoiding unnecessary computations and
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Table 6: Ablation study results. Time and ExpStates represent the average over the complete dataset. Timeouts is the

number of trace-model pairs for which the time limit was reached. Reduction values indicate improvements relative to

the baseline algorithm, expressed as percentages for Time and ExpStates, and absolute differences for Timeouts.

EP CP GF Time (s)

Time

reduction ExpStates

ExpStates

reduction Timeouts

Timeout

reduction

105.8 — 3,568.6 — 2,674 —

68.9 34.8% 510.4 85.7% 1,689 985

76.8 27.4% 2,664.7 25.3% 1,973 701

54.2 48.8% 984.7 72.4% 1,170 1,504

55.2 47.8% 764.8 78.6% 1,348 1,326

36.4 65.6% 187.5 94.7% 706 1,968

17.3 83.7% 423.9 88.1% 359 2,315

7.6 92.8% 107.0 97.0% 113 2,561

reducing the search space, this optimization ultimately is capable of computing complex alignments that

would not be possible otherwise.

Example. To demonstrate the effectiveness of the optimizations, a specific example from dataset D23 is

considered. This process model comprises 10 constraints, representing a diverse range of constraint templates.

The trace itself contains 50 events, and its optimal alignment has a cost of 4. Without any optimizations

enabled, the algorithm computes the alignment in 1.44 seconds, expanding 530 states in the process. This

provides a useful reference point for evaluating the benefits of each optimization, illustrating why each of the

proposed optimizations is particularly effective for this concrete example.

Enabling only Early Pruning significantly reduces the search space, decreasing the number of expanded states

to 46 and the search time to approximately 0.46 seconds. Although this optimization prunes dead-ends by

an order of magnitude, its impact on execution time is limited to a factor of three due to the additional

overhead of checking all constraints for violations and suggesting repairs at each state expansion. However,

as demonstrated by the comprehensive evaluation, the benefits of Early Pruning outweigh this extra cost,

leading to improved overall performance.

Constraint Preprocessing (Section 4.5.2) yields a significant decrease in execution time (27.4%). This

improvement is accompanied by a considerable reduction in the number of timeouts, with 701 fewer cases

3The example consists of the process model defined in synthetic/10_constraints/10Constraints.xml and the trace labeled

as “Synthetic trace no. 33” from the log file .../3_constraints_inverted/log-1-50.xes.gz.
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timing out.

The primary reason for this improvement is that constraint preprocessing allows the algorithm to start from

a more advanced initial state, thereby avoiding the generation of numerous unnecessary states (25.3%). By

performing shortcuts for highly likely operations upfront, this optimization reduces the overall search space,

making it possible to compute alignments more efficiently.

Example. Continuing the running example, enabling only Constraint Preprocessing yields a significant

reduction in search space, decreasing the number of expanded states to 15 and the search time to approximately

0.09 seconds. This optimization is particularly effective in this case due to the presence of multiple chain

constraints in the process model: ChainResponse(act. 14, act. 15), ChainPrecendence(act. 16, act.

17), and NotChainSuccession(act. 22, act. 23). By merging activities that appear consecutively in the

trace and satisfy these constraints into a single LTGraph node during preprocessing, the algorithm avoids

suggesting multiple repair actions during the search process, thereby preventing unnecessary widening of the

search space. The fact that each of these constraints is activated multiple times in the example trace further

amplifies the benefits of this optimization, making it a key factor in achieving the observed performance

gains.

Grouped Fixes (Section 4.5.3) leads to a substantial reduction in execution time (48.8%) and a decrease

in timeouts by 1,504 cases. This improvement is primarily due to the fact that grouped fixes enable the

algorithm to prune the search space more effectively, reducing the number of expanded states by 72.4% and

avoiding unnecessary exploration of intermediate states and their neighbors.

Example. Continuing the running example, enabling only Grouped Fixes yields a significant reduction in

search space, decreasing the number of expanded states to 123 and the search time to approximately 0.53

seconds. A notable aspect of this example is the presence of a Response(act. 11, act. 12) constraint,

which is initially violated six times in the given trace. Fortunately, each repair can be performed in a single,

consolidated action that simultaneously inserts a node and adds an arc to enforce the desired behavior,

effectively positioning the added activity in the correct region of the trace. By grouping these fixes together,

the algorithm avoids generating intermediate states for this constraint, as well as several others in the

example, resulting in a more efficient search process and improved overall performance.

Pairing any two optimizations generally leads to positive outcomes. This can be attributed to the fact that

each optimization targets a distinct aspect of the search space, thereby reducing the number of expanded

states required. Constraint Preprocessing focuses on moving the initial state closer to the goal, whereas

Grouped Fixes avoid intermediate states when expanding neighbors. Meanwhile, Early Pruning eliminates

dead-ends in the search space, preventing unnecessary exploration.
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Combining all three optimizations yields the most substantial improvements across all tested metrics. The

average execution time decreases by 92.8%, the expanded states are reduced by 97.0%, and timeouts are

reduced by 2,561 cases. By integrating these three optimizations, DeclareAligner is able to leverage their

complementary strengths, resulting in a more efficient search strategy.

Example. To conclude the running example, enabling all three optimizations yields the most impressive

performance gains, with a mere 5 expanded states and a search time of approximately 0.03 seconds. This

shows how the optimizations are complementary and can be combined to achieve significant performance

improvements.

5.4. State-of-the-art comparison

The remainder of the evaluation section assesses the performance of the DeclareAligner algorithm in

comparison to the state-of-the-art methods. The state-of-the-art techniques for aligning event logs with

declarative process models are DeclareReplayer (Leoni et al., 2012) and PlannerBA/PlannerFD (Giacomo

et al., 2017). Both methods rely on an initial transformation of the declare constraints into automata,

which are then utilized to guide the search algorithm. This sequential nature of automata execution leads

to a search space that is built by incrementally appending alignment moves from start to finish. A key

difference between the two approaches lies in their implementation. (Leoni et al., 2012) employs the A*

algorithm directly, whereas (Giacomo et al., 2017) transforms the generated automata into classical planning

problems, leveraging the capabilities of planning technology to solve the alignment problem. This distinction

gives (Giacomo et al., 2017) an edge in certain scenarios, as the planning-based approach can efficiently

handle complex search spaces. To provide a comprehensive understanding, this evaluation is supplemented

by additional baselines:

• All proper subsets of optimizations described in Section 4.5 are considered, enabling only the optimiza-

tions in each subset.

• A naive algorithm that explores all possible alignments to find the optimal one.

To gain a deeper understanding of the interplay between optimization techniques, the DeclareAligner

algorithm is evaluated under various configurations, each characterized by a unique combination of enabled

optimizations. These are:

• B-None: no optimizations from Section 4.5 are applied.

• B-EP: only Early Pruning (EP) is enabled.

• B-CP: only Constraint Preprocessing (CP) is enabled.

• B-GF: only Grouped Fixes (GF) is enabled.

• B-EP-GF: both Early Pruning (EP) and Grouped Fixes (GF) are enabled.
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• B-EP-CP: both Early Pruning (EP) and Constraint Preprocessing (CP) are enabled.

• B-CP-GF: both Constraint Preprocessing (CP) and Grouped Fixes (GF) are enabled.

Note that enabling all optimizations simultaneously results in the full algorithm, labeled as DeclareAligner.

By systematically exploring these different configurations, this evaluation aims to elucidate the contribution

of each optimization technique to the overall efficiency and effectiveness of the DeclareAligner algorithm,

while also showcasing its improvements in the context of state-of-the-art performance.

A naive algorithm was implemented as another baseline that solves the optimal alignment problem for

declare process models and event logs. It leverages the A* search algorithm, starting from an initial

state that represents an empty alignment, where no moves have been made. From this state, it generates

neighboring states by considering all possible moves:

• If there are remaining events in the trace, where act is the next activity:

– Generate a neighboring state by appending a synchronous move on act.

– Generate a neighboring state by appending a log move on act.

• For each activity act present in the model, generate a neighboring state by appending a model move

on act.

A state within this search space is considered a goal state if two conditions are met: there are no remaining

events in the trace, and the model accepts the given trace. This acceptance check relies on a simple Declare

model checker, which determines whether a trace perfectly conforms to the process model. The A* search

algorithm guides the selection and expansion of neighboring states, albeit without utilizing a heuristic (i.e.,

the heuristic function always returns 0). This procedure repeats until a goal state is reached, at which point

the optimal alignment is directly represented by this state. However, due to its simplicity, this naive approach

generates an excessively large search space, needing substantial resources for exploration and rendering it

impractical for realistic alignment problems.

Table 7 summarizes the results of the state-of-the-art approaches and DeclareAligner divided by each

of the used dataset sources, and the aggregated total for the complete dataset. The results unequivocally

demonstrate the superiority of DeclareAligner over existing state-of-the-art techniques, as it emerges

as the top performer across all evaluated metrics. Notably, DeclareAligner achieves a significant lead

in all categories, with the sole exception of the number of timeouts in the D2 dataset, where it narrowly

trails behind the leading algorithm. However, even in this instance, DeclareAligner delivers substantial

reductions in average execution time, underscoring its efficiency and scalability. Further analysis shows that

most of the cases where the execution time of DeclareAligner is close to the state of the art are the

simplest alignment problems in the dataset. This can be attributed to the initialization phase required by
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Table 7: Comparison of the average execution times and number of timeouts reached for each tested algorithm on the

evaluated dataset, presented split by data source and as an aggregated total.

Dataset:

Algorithm

D1

Time (s) Timeouts

D2

Time (s) Timeouts

D3

Time (s) Timeouts

All

Time (s) Timeouts

Naive 56.0 345 281.9 3,556 273.9 3,073 260.0 6,974

PlannerFD 6.3 411 117.4 832 124.2 703 111.4 1,946

DeclareReplayer 0.2 0 102.1 804 55.0 384 72.8 1,188

PlannerBA 8.5 355 34.3 0 65.6 45 46.2 400

B-None 1.4 117 182.2 1,839 44.1 718 105.8 2,674

B-EP 0.1 0 131.9 1,403 15.0 286 68.9 1,689

B-CP 1.4 121 120.8 1,223 44.0 629 76.8 1,973

B-GF 0.2 6 104.4 876 11.0 288 54.2 1,170

B-EP-GF 0.1 2 73.9 566 3.3 138 36.4 706

B-EP-CP 0.1 37 102.9 1,011 15.0 300 55.2 1,348

B-CP-GF 0.2 6 26.2 196 11.0 157 17.3 359

DeclareAligner 0.1 0 13.0 88 3.3 25 7.6 113

some proposed optimizations, which can introduce a delay for trivial alignments but prove highly beneficial

for complex instances.

As anticipated, the performance of the naive algorithm is notably subpar, with execution times substantially

exceeding those of DeclareAligner and other state-of-the-art algorithms. Specifically, it reaches the

5-minute time limit for 6,974 trace-model pairs. In contrast, the ablated versions of DeclareAligner

manage even to surpass the state-of-the-art algorithms on some datasets and optimization combinations.

The results reveal that Early Pruning reduces average execution times from 105.8 to 68.9 seconds. This

optimization also leads to a reduction in timeouts from 2,674 to 1,689, showcasing the effectiveness in

reducing the search space that this optimization achieves. Constraint Preprocessing also yields significant

improvements by allowing the algorithm to start from a more advanced initial state: it reduces the execution

times from 105.8 to 76.8 seconds and the number of timeouts from 2,674 to 1,973. Lastly, Grouped Fixes

avoids unnecessary exploration of intermediate states and their neighbors, reducing the execution times from

105.8 to 54.2 seconds and the number of timeouts from 2,674 to 1,170. Enabling any two optimizations at

the same time contributes to improving the performance even further. Moreover, when all optimizations

are combined (DeclareAligner), the algorithm achieves performance that is superior to its ablated
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Table 8: Ranking and statistical tests comparing execution times over the complete dataset.

(a) Average ranking of each tested

algorithm.

Algorithm Rank

DeclareAligner 1.24

DeclareReplayer 2.73

PlannerBA 3.12

PlannerFD 3.55

Naive 4.37

(b) Results of the Friedman test and Holm post-hoc analysis, indicating

overall differences between algorithms and specific pairwise differences.

Statistical test p-value

DeclareAligner vs all < 10−6

DeclareAligner vs DeclareReplayer < 10−6

DeclareAligner vs PlannerBA < 10−6

DeclareAligner vs PlannerFD < 10−6

DeclareAligner vs Naive < 10−6

counterparts across all metrics, with an average time of just 7.6 seconds and the number of timeouts to just

113. This suggests that the synergistic effect of combining the proposed optimizations yields a more efficient

and effective alignment algorithm, capable of outperforming existing state-of-the-art solutions in various

scenarios.

To further substantiate the comparison, a ranking of all algorithms based on their execution times is computed.

For each sample, the algorithms are ranked, with ties being assigned the average rank. These ranks are then

averaged across all samples to obtain an overall ranking for each algorithm. To ensure that the results are

statistically significant, the Friedman test is performed to assess overall differences between the algorithms.

Subsequently, the Holm post-hoc test to identify specific pairwise differences. Notably, to avoid skewing the

results, the variants of the proposed algorithm were excluded from the rankings and statistical tests. This

ensures the focus remains on the main algorithm and prevents artificially high ranks that could misrepresent

comparative performance.

The ranking and statistical tests are presented in Table 8. Prior to conducting these tests, it was verified

that the necessary assumptions for their validity were met. Specifically, the ranking data consists of matched

samples, as each algorithm’s performance is evaluated on the same set of logs and models. Additionally, the

samples are independent of one another, meaning that the performance of one algorithm on a given sample

does not influence its performance on another sample.

We also note that the Friedman test does not require normality of the data, which is beneficial in this case

since execution times may not follow a normal distribution. Furthermore, the Friedman test does not assume

variance homogeneity, making it suitable for these experiments even if the variances of the execution times

differ across algorithms.

As expected, the ranks show the clear advantage in execution times of DeclareAligner. The p-values
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Figure 12: Number of trace-model pairs successfully aligned by each algorithm. Best viewed in color.

indicate that the differences in performance among the algorithms are statistically significant, demonstrating

that the proposed approach outperforms others in terms of computational efficiency. To quantify the

magnitude of this effect, Kendall’s W was calculated, a measure of the degree of agreement between the

different execution times. The resulting effect size is 0.014. This is very low, which indicates that the

performances of the algorithms do not agree with each other, suggesting that there are substantial differences

between them. In fact, this lack of agreement is confirmed by the post-hoc test, which reveals significant

pairwise differences between the performances of DeclareAligner and the state of the art.

To illustrate the efficiency and scalability of DeclareAligner compared to state-of-the-art algorithms,

Figure 12 shows the number of trace-model pairs (y-axis) that can be solved within a given execution time

(x-axis). Each algorithm is depicted as a distinct line, allowing for easy comparison of their performance

across different time thresholds and number of logs solved.

Figure 12 reveals that DeclareAligner significantly outperforms the state-of-the-art algorithms in terms

of execution time. DeclareReplayer is also really fast to align the simplest trace-model pairs, even being

capable of outperforming DeclareAligner for some of the most straightforward alignments. However,

its performance quickly degrades with complexity of the input problem, showing the superior scalability of

DeclareAligner. At around 17 seconds, PlannerBA overtakes DeclareReplayer in terms of the number of

trace-model pairs solved, taking second place. This occurs because both planner-based techniques require
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some initial time to convert the alignment task into a classic planning problem and the planner also needs

to perform some preprocessing optimizations in order to solve harder problems faster. The sequential

construction of the search space, inherent to both state-of-the-art approaches due to their reliance on

automata, can lead to inefficiencies in exploring the vast possible search space of alignments. In contrast, the

more direct approach to generating repair actions chosen by DeclareAligner yields improved performance,

as illustrated in this figure.

The inclusion of ablated variants and the naive algorithm in the plots provides additional insights into the

performance characteristics of DeclareAligner. Notably, the ablated variants exhibit reduced efficiency

and scalability compared to DeclareAligner, highlighting the importance of the proposed optimizations.

The naive algorithm, on the other hand, demonstrates poor performance across all datasets, aligning only

1,080 pairs when all datasets are considered, with no significant improvement over time. In contrast,

DeclareAligner maintains its superior performance over all the alternatives, effectively leveraging its

optimizations to achieve efficient alignments even in complex scenarios. These results underscore the value of

the carefully designed optimizations in achieving scalable and efficient optimal alignments.

A notable achievement of DeclareAligner is its ability to align 90% of the tested trace-model pairs in 3.5

seconds or less per alignment, outperforming the next best state-of-the-art algorithm (PlannerBA) which

requires up to 100 seconds per problem to reach the same number of solutions. Furthermore, the proposed

optimizations enable DeclareAligner to successfully compute alignments for 231 trace-model pairs that

remain unsolved by all other algorithms within a 5-minute time limit.

To offer a clearer and more detailed interpretation of the results, Figure 13 presents four supplementary

subfigures that enhance the analysis provided in Figure 12. These plots focus specifically on a shorter time

limit of 20 seconds, making performance differences between the tested algorithms more apparent. Each

subfigure isolates a specific dataset source, as introduced earlier in this section. Figure 13(a) displays the

aggregated results across all datasets, effectively serving as a zoomed-in version of Figure 12 and clearly

highlighting the efficiency gains achieved by DeclareAligner.

The remaining supplementary figures facilitate a detailed examination of performance differences within

each dataset category. Figure 13(b) highlights DeclareAligner’s efficiency in handling real-life data,

demonstrating its strong capability to align process models effectively in practical scenarios. While the

differences between DeclareAligner and DeclareReplayer are relatively small in this case, the planning-

based techniques exhibit noticeable delays, primarily due to the overhead introduced during the problem

translation phase. Figure 13(c) showcases DeclareAligner’s performance on synthetic data previously

employed in state-of-the-art evaluations, providing a controlled setting to assess the algorithm’s scalability

and robustness. Figure 13(d) complements this by illustrating DeclareAligner’s behavior on the extended
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Figure 13: Number of trace-model pairs successfully aligned by each algorithm in less than 20 seconds, also subdivided by

dataset. Best viewed in color.

synthetic dataset, which incorporates a wider variety of process model complexities through the use of

additional constraint templates. In both cases, DeclareAligner demonstrates a clear advantage, successfully

aligning nearly all trace-model pairs within the time limit of 20 seconds. In contrast, other state-of-the-art

algorithms plateau significantly lower, typically aligning only about half of the available trace-model pairs,

underscoring DeclareAligner’s superior efficiency and reliability in more demanding scenarios.

6. Conclusions

This work introduces DeclareAligner, an A*-based algorithm for efficiently computing optimal alignments

of declarative process models. The contributions of this research are twofold. Firstly, a novel algorithmic

approach has been proposed to leverage the inherent flexibility of declarative processes in calculating optimal
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alignments. Secondly, additional search optimizations and techniques have been developed and integrated to

effectively handle complex scenarios.

The evaluation, conducted on 8,054 trace-model pairs from real-world and synthetic processes, demonstrates

the substantial performance improvements of the proposed method over the state of the art. Notably,

DeclareAligner successfully aligns 7,941 pairs within the 5 minutes time limit, outperforming PlannerBA

(7,654), DeclareReplayer (6,866), and PlannerFD (6,108). Moreover, the proposed optimizations enable

DeclareAligner to compute alignments for 231 pairs that are unsolvable by other algorithms within the

same time frame. The results show that DeclareAligner achieves faster alignment times than any other

algorithm for 7,000 of the evaluated trace-model pairs. The significance of this research lies in its ability

to facilitate efficient conformance checking while preserving the accuracy of optimal alignments, ultimately

leading to improved process quality and reduced costs through effective detection and diagnosis of log-related

issues.

While the proposed algorithm has demonstrated its effectiveness, it still has some limitations, particularly

with regards to scalability for large-scale models comprising hundreds of constraints, where the explosion of

intermediate states resulting from numerous possible paths to optimal alignments poses a significant challenge.

To fully realize the algorithm’s potential, additional research is necessary to investigate its performance

on complex models and develop more strategies to enhance its efficiency. Furthermore, when applying the

algorithm to real-world logs, it is essential to consider the ethical implications, particularly with regard to

sensitive data, and ensure that privacy and security are maintained through measures such as anonymizing

log data or aggregating it to obscure sensitive information, thereby prioritizing data protection and upholding

the highest standards of ethical responsibility.

In future research, the focus will shift towards adapting the proposed algorithm to accommodate data-aware

declarative process models, ensuring retention of its high performance. Through extension to manage intricate

data attributes and relationships, the goal is to offer a scalable conformance checking solution suitable for

real-world applications demanding both precision and efficiency.
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