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Abstract5

Conformance checking techniques compare how a process is supposed to be executed according to a model

with how it is executed in reality according to an event log. Alignment-based approaches are the most

successful solutions for conformance checking. Optimal alignments are a way of finding the best match

between the real and the modeled behavior and identifying the differences. However, finding these optimal

alignments is a challenging task, especially for complex cases where the log and the model have many events

and paths. The difficulty lies in the computational complexity required to find these alignments. To address

this problem, we propose an efficient algorithm named reach based on the A* search algorithm. The core

components of the proposal are the use of a partial reachability graph for faster execution of process models

for alignment computation and a set of optimization techniques for reducing the number of states explored

by the A* algorithm. These improve performance by both reducing the required computation time per state

and the number of states to process respectively. To evaluate the performance and scalability, we conducted

tests using 227 pairs of logs and models, comparing the results obtained with those from 10 state-of-the-art

approaches. Results show that reach outperforms the other proposals in runtimes, and even aligns logs

and models that no other algorithm is able to align.
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1. Introduction

Companies need to automate and digitalize their processes to become more competitive, cut costs and

avoid delays in their operations. In this context, a process is a set of activities with coordination requirements

among them, which are executed by a set of resources to achieve an objective (Carmona et al., 2018). These10

processes are described by means of process models that clearly detail the activities to be performed as well

as when and which resources will execute them. However, in practice the execution of the processes differs

from the process models that were designed to automate the process, making it difficult to understand what

is happening in the process and to take decisions.
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Process mining is an emerging discipline whose aim is to get information about what is really happening15

in the execution of a process, giving an understanding of the real processes that take place in an organization

(van der Aalst et al., 2012). To achieve this, process mining techniques use an event log as input. An

event log is a set of traces, each containing a sequence of events. Each event has information about the

activity that has been executed, the timestamp of that activity, the trace identifier, the resource that has

performed the activity, and, optionally, contextual information about the event execution. With this in20

mind, three fundamental descriptive process mining techniques have emerged: (i) process discovery, which

aims to retrieve the underlying process model that represents the behavior recorded in an event log; (ii)

conformance checking, where a process model is compared with a log of the same process to analyze and

quantify the deviations between the modeled and the observed behavior, as recorded in the log; and (iii)

process enhancement, where a process model is modified and improved based on the information from the25

log. In this paper, we focus on conformance checking, particularly in the computation of the alignments

between the process model and the log traces.

Several conformance checking approaches have appeared in recent years. These approaches can be

classified in token replay-based (Berti and van der Aalst, 2021; Rozinat and Van der Aalst, 2008) and

alignment-based (Adriansyah, 2014; de Leoni et al., 2018; Lu et al., 2015; de Leoni and van der Aalst, 2013;30

Taymouri and Carmona, 2016; van Dongen, 2018; de Leoni and Marrella, 2017). The former approaches try to

execute all events on the model, registering all states of the process model and modifying the execution state

when it is needed for a proper event execution on the model —possibly reporting errors that would be false

positives. Alignment-based approaches are widely regarded as the most effective solutions for conformance

checking, as they return much more accurate results, pinpointing the optimal model deviations. These35

methods align each trace with the closest path allowed by the model, even if they do not match perfectly.

Some of these techniques (Adriansyah, 2014; de Leoni et al., 2018; Lu et al., 2015; de Leoni and van der

Aalst, 2013; Taymouri and Carmona, 2016; van Dongen, 2018) are based on the A* algorithm (Hart et al.,

1968), a graph search algorithm that uses a heuristic to guide the search while ensuring optimal results.

However, alignment-based approaches encounter challenges when dealing with intricate models and extensive40

logs, resulting in extended processing times and even not being able to compute some alignments. Several

approaches tackle this problem by relaxing restrictions and returning non-optimal alignments (Leemans

et al., 2018; Reißner et al., 2017; Reißner et al., 2020a; Reißner et al., 2020b), which might not be suitable for

applications where an exact description of the differences between the process model and the log is required.

In this paper, we introduce reach, an extension of the A* algorithm designed to compute optimal45

alignments efficiently. It incorporates a series of optimizations to enhance performance and scalability. They

significantly reduce the number of states that need to be explored to reach the optimal solution and the

processing time spent on each state. The main contributions of the proposal are:

• A new heuristic that quickly finds required activities —activities that must be executed to reach the
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end of the model— and compares them with the remaining trace in order to provide more accurate50

estimates and speed up the algorithm without losing its optimality.

• Techniques for reducing the number of states explored by the A* algorithm. These include optimizations

that check and force the execution of required moves by exploring the rest of the trace and the model.

Furthermore, a greedy algorithm that returns a sub-optimal alignment is used as an upper bound of cost

for the main algorithm. These optimizations filter states that will not lead to the optimal alignment, as55

another state will lead to an alignment of less cost. This also removes all neighbors generated by the

ignored states recursively, greatly reducing the computational cost.

• Efficient execution of process models for alignment computation using a partial and incremental

reachability graph. It works by saving information about how process models run for alignment

computation. It prevents performing repeated model operations at each step of the A* algorithm.60

The remainder of this article is organized as follows. Section 2 studies and compares previous work. Next,

Section 3 defines all the required concepts on which this work is based. The algorithm is described in detail

in Section 4. Section 5 describes the experiments and discusses the results, compared to the current state of

the art. Finally, the conclusions and the future work are presented in Section 6.

2. Related work65

Conformance checking is a very active field in process mining. One of its most popular approaches is

token-based replay over Petri nets (Berti and van der Aalst, 2021; Rozinat and Van der Aalst, 2008). It

involves executing each event of the Petri net as they appear in the trace. If an event cannot be executed, the

tokens required to execute it are inserted and counted. Once the full trace has been replayed, all the remaining

tokens that are not in a sink place are counted. The fitness metric, which is a measure of conformance between70

the log and the model, is computed based on these counts. Unfortunately, this technique is less accurate

than alignment-based approaches, as it assumes the model is always correct. Furthermore, the provided

diagnostics are hard to understand for the end-user, as they are tied to the Petri net model representation

and replay. In (van den Broucke et al., 2014) they propose a decomposition-based extension of token-based

replay that is more efficient, but it shares the aforementioned disadvantages.75

A recent development in this field is stochastic conformance checking (Leemans et al., 2021), which

involves comparing event logs and process models while recognizing that logs represent only a subset of

possible behaviors. The major disadvantage of the approach is that stochastic process model discovery is a

necessary prerequisite for applying this technique. It is a computationally expensive task that has much higher

memory requirements than traditional process discovery techniques. The algorithm depends on an input80

parameter (probability mass) that makes the returned metrics more stable when it is increased. However,

the runtime of the algorithm increases very quickly with respect to this parameter for most datasets. This is
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even worse if the model presents concurrency and looping behavior.

Alignment-based techniques (Adriansyah, 2014) can identify and explicitly list all discrepancies, enabling

the detection of optimal trace executions through the model. These techniques still rely internally on85

the execution of process models, but they can find the path through the model with the least number of

discrepancies possible. There are also techniques, like behavioral alignments (Garcia-Banuelos et al., 2018),

that provide textual summaries of conformance without actually computing alignments. These descriptions

might be easier for end-users, but they are not as useful as alignments. Alignments link event data to the

model, and can be used for post-processing tasks such as fitness calculation, performance analysis, model90

repair, or prediction tasks.

Alignments are considered the standard for conformance checking. In order to find the optimal alignments,

most approaches use a pathfinding algorithm like A* for aligning the trace and the model. A* requires

a heuristic, which defines the way to explore the state space of the problem. On the one hand, simple

heuristics lead to faster exploration but more explored states (Adriansyah, 2014; de Leoni et al., 2018; Lu95

et al., 2015), which makes computing alignments for medium or large models impractical without other

states reduction techniques. On the other hand, complex heuristics focus on reducing the number of states

at the cost of more processing time per state. An illustrative instance of a complex heuristic is rooted in

Integer Linear Programming (ILP), utilizing constraints extracted from the model, the remaining trace, and

an optimization cost function. Given a state (marking in the model and remaining trace events), the ILP100

solver is capable of determining the minimum cost that a solution may have, so it is suitable as a heuristic

for A* (de Leoni and van der Aalst, 2013; Taymouri and Carmona, 2016; van Dongen, 2018). However, a

drawback of complex heuristics is that the computational cost for each discovered state often surpasses the

efficiency gained through state reduction.

Leoni et al. (de Leoni and Marrella, 2017) convert the alignment problem to the Planning Domain105

Definition Language and use an external automated planner to compute the alignments. Their algorithm can

modify the planning framework for alignment computation. Nevertheless, their approach depends on the

blind A* heuristic, which guarantees optimality but significantly underestimates the remaining cost.

Considering the exponential complexity of optimal algorithms, researchers have introduced non-optimal

techniques for computing alignments. These methods were proposed as a compromise between the quality110

of the results and the computational cost. These techniques do not guarantee that the alignment with the

least cost will be found, but they provide approximations with a quality that depends on the model and

the log. One such technique is (Taymouri and Carmona, 2018), utilizing an evolutionary algorithm to offer

improved alignment approximations, albeit without the assurance of discovering all optimal alignments.

Another approach that uses local search to reduce processing time and memory usage is (Taymouri and115

Carmona, 2020), with the added limitation of only being able to return one of the alignments. It is worth

mentioning (van Dongen et al., 2017), which also performs an iterative search in order to find a possibly
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non-optimal alignment.

A prevalent method for non-optimal alignments involves decomposing models into smaller, more compu-

tationally efficient parts and aggregating partial results, even though this may not always result in optimal120

alignments (Munoz-Gama et al., 2014; van der Aalst, 2013; Sani et al., 2020). Alternatively, a recomposing

technique that is capable of obtaining optimal alignments from the partial pseudo-alignments was developed

in (Lee et al., 2018), but it was only executed with manual decompositions of models. Another decomposing

optimal technique is described in (Munoz-Gama et al., 2013), but it is limited to sound and safe workflow

nets.125

Finally, another type of non-optimal technique is based on building automata capable of aligning the log

and the model (Reißner et al., 2017; Leemans et al., 2018; Reißner et al., 2020a; Reißner et al., 2020b). These

approaches, while non-optimal, give good approximations of the optimal alignments for most cases. The

method in (Leemans et al., 2018) splits the activities into multiple subsets to handle very complex models

with many activities. Consequently, it increases performance on models with lots of activities at the expense130

of lower cost accuracy of the resulting alignments.

The state of the art still struggles when facing complex models and logs, leading to large runtimes, and

even not being able to compute some alignments. To address this issue, several proposals have relaxed

restrictions and returned non-optimal alignments. However, in this paper, we present an A*-based algorithm

that increases performance while still providing optimal alignments. This algorithm introduces several135

techniques for reducing the number of states of the search space to be explored: a new heuristics to better

guide the states to explore, a greedy algorithm to find an upper cost bound of the optimal alignment, and

two optimizations that check each state to force certain mandatory moves instead of generating all possible

neighboring states. Furthermore, our approach introduces an efficient way to execute process models that

relies on a partial and incremental reachability graph in order to speed up the computation required for each140

state. These techniques speed up computation and mitigate the scalability problem currently present in the

state-of-the-art proposals.

3. Preliminaries

To perform conformance checking a log and a process model are needed. Logs consist of events, organized

into traces, with each trace representing the execution of the associated process model. Every event must145

have the execution timestamp, the trace identifier that groups the events of the same process execution,

and the executed activity. Table 1 shows an example of a log with two traces from an e-learning platform,

where each row of the table is an event. For the sake of simplicity, we define traces as a sequence of executed

activities, sorted by the execution timestamps of each event or in the order of appearance in the log in case

of ties.150
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Table 1: Example of a log corresponding to an e-learning process. A gray font highlights the events of the trace Case234.

Timestamp Trace ID Activity
2021-09-01 22:16:29 Case234 Enroll
2021-09-03 16:12:24 Case675 Enroll
2021-10-04 08:09:56 Case234 Class
2021-10-19 00:00:13 Case234 Class
2021-11-01 04:10:07 Case675 Class
2021-11-15 02:09:48 Case234 Test
2021-11-29 13:53:30 Case675 Test
2021-12-13 07:24:41 Case675 Class
2022-01-17 23:03:31 Case675 Exam
2022-01-19 06:42:33 Case234 Exam

...

Definition 1 (Trace). A trace σ = 〈a1, . . . , an〉 is a sequence of activities ai extracted from events that share

the case identifier. Each trace or case contains activities belonging to the same process execution, which

are ordered by the execution timestamp of their event. Note that if two activities have the same execution

timestamp, they are sorted by the order in which they have been registered. The ++ operator concatenates

two sequences. Given a trace σ, the notation σ[i:] refers to the subsequence from position i (zero-indexed,155

inclusive) to the end of the sequence.

In Table 1, traces refer to the actions of a student in a virtual course. To track the actions of an

individual student, we can extract a trace by filtering the recorded events (log table rows) with the same

trace identifier. A student executed the activity in the column “Activity” at the moment indicated by the

column “Timestamp”. For instance, the trace identified as Case234 documents the sequence of activities160

executed by the student: 〈Enroll, Class, Class, Test, Exam〉.

Definition 2 (Log). An event log L = [σ1, . . . , σn] is a multiset of traces σi. Each trace corresponds to one

execution of the process.

A process model describes the allowed behavior by giving activities a structure with initial and final

states. In the realm of conformance checking, Petri nets are the dominant technique for representing process165

models.

Definition 3 (Petri net). A Petri net is a tuple PN = (P, T, F, λ) where

• P is the set of places.

• T is the set of transitions. These may contain silent transitions τ , which are related to the model

structure, and non-silent transitions, which are related to the execution of activities. Ts denotes the set170

of silent transitions and Tns = T \ Ts is the set of non-silent transitions.
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(a) Initial marking of the Petri net. (b) Marking after executing the transition Enroll.

Figure 1: Example of a Petri/workflow net that models a very simplified process of an e-learning course. Places are represented
as circles and transitions as rectangles —a silent transition is shown as a thin black rectangle. The filled circles inside some
places indicate the number of tokens they contain. The end place is shown with a circumference inside. Enabled transitions are
shown with green borders. In this process, students can enroll in the course and, once enrolled, they can attend any number of
classes and/or take tests, performing at least one of those activities. Lastly, a final exam is required to complete the course. In
this example, the Enroll transition is executed, leading the Petri net from its initial marking (a) to the next marking (b). Due
to the execution of Enroll, a token is consumed in the initial place, and one is produced in its output place, enabling the Class
and Test transitions. A complete process execution for this model would be 〈Enroll, Class, Exam〉.

• P ∩ T = ∅.

• F ∈ (P × T ) ∪ (T × P ) is the set of directed arcs that connect places to transitions and vice versa.

• λ : Tns −→ A maps every non-silent transition to a label —an activity that may appear in the log.

Multiple transitions can have the same label, as our algorithm supports handling duplicate activities175

in the process model. We also use λr to perform the reverse mapping —map an activity to the set of

non-silent transitions with the given label.

Petri nets are directed bipartite graphs where nodes are places and transitions. We denote •t as the input

places (•t = {p ∈ P | (p, t) ∈ F}) and t• as the output places (t• = {p ∈ P | (t, p) ∈ F}) of a transition t ∈ T .

These are the places directly linked by arcs to and from transition t, respectively. The same operator can180

be applied to places to retrieve the connected transitions. In order to execute Petri nets, it is necessary to

introduce the concepts of token and marking. A place p ∈ P can store any number of tokens in the marking

M , as given by the function tokens(M, p). Hence, we define a marking as a multiset of places that represents

the number of tokens in each place.

Definition 4 (Marking). Let PN = (P, T, F, λ) be a Petri net and let B be the power multiset function. A185

marking M ∈ B(P ) of that Petri net is a multiset of places. This multiset represents the places that contain

tokens and the number of tokens they contain. M0 ∈ B(P ) is the initial marking of the Petri net.

During the execution of Petri nets, tokens are added to and removed from places. Specifically, at the

start of the process, the Petri net is initialized with the tokens of the initial marking M0. A transition t ∈ T

is enabled at a marking M iff ∀p ∈ •t : tokens(M, p) > 0. This condition means that the transition is enabled190

when there is at least one token available for consumption in each place connected to the transition through

an input arc. To execute that transition t, all input places p ∈ •t consume one token; and all output places

p ∈ t• receive a token. When a marking including tokens in a place marked as final is reached, the process is

considered as finished. Figure 1(a) shows an example of a Petri net.

Workflow nets (van der Aalst, 1996) are a class of Petri nets focused on modeling processes: they have a195
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(a) Designed process model (b) Process model discovered from observed behavior

Figure 2: (a) The process model from our running example and (b) the real process model discovered from the event log.

single input place and a single output place, and all transitions are in a path from the start to the end places.

Definition 5 (Workflow net). Let PN = (P, T, F, λ) be a Petri net. It is a workflow net if and only if:

• There is a single input place pi ∈ P . •pi = ∅.

• There is a single output place po ∈ P . po• = ∅.

• Adding a transition t with •t = po and t• = pi, would cause the Petri net to become a strongly connected200

graph.

A workflow net has proper completion if for any reachable marking M by executing any sequence of enabled

transitions 〈t0, . . . , tn〉, tokens(M, po) > 0 =⇒ M = [po], i.e., any sequence of fired transitions that reach

the end will only have one token in the output place.

In practice, process executions frequently deviate from the intended process models. For instance, in the205

context of the virtual course from Figure 1(a), students are expected to attend classes before taking the final

exam. However, in reality, some students may choose to skip these lessons and still manage to complete

the course, even though this behavior is not accounted for in the designed process model. This is shown in

Figure 2. Alignments provide the necessary information to identify deviations of traces from the process

model. An alignment can be computed for each trace given a process model, as a trace is an execution of210

the model. An alignment defines a path that traverses both the trace and the process model from start

to end. It provides detailed conformance information useful for multiple tasks like model repair, auditing

and prediction, even if the trace and the model do not match perfectly. This is achieved by associating the

executed activities in the trace with the transitions in the model. Alignments are built from legal moves,

which consume an activity of the trace and execute a non-silent transition with a matching label in the215

process model, or perform an asynchronous move by only executing a transition on the model (model move)

or advancing on the trace (log move).

Definition 6 (Legal move). Let M be the current marking in the model, let σ be the trace to align, and let

i be the first index —zero-based— of the trace that still needs to be aligned so that σ[i] is the next activity

to align. Furthermore, let M [t⟩ denote that marking M enables transition t. A legal move is one of the220

following.
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Log: Enroll » Exam Test
Model: Enroll Class Exam »

Log: Enroll » Exam Test
Model: Enroll Test Exam »

Figure 3: Two optimal alignments using the default cost function for the trace Enroll, Exam, Test and the model in Figure 1.
Each column represents a move, indicating the activity of the trace in the first row and the executed transition of the model in
the second row. Moves are executed from left to right to take the trace and the model from the initial state to the end. » is
used for asynchronous moves indicating that no action is taken. A move in the model uses » in the trace row to show that only
the transition in the model is executed, and a move in the log uses » in the model row. These alignments show the user how
there was a skipped required activity that could have been either Class or Test, and the executed activity Test should not have
been executed after the final Exam was taken, according to the model. The cost for each of these alignments, assuming a cost
function that assigns a cost of 1 to asynchronous moves and 0 to synchronous moves, is 2 in both cases, and their fitness is
f = 1 − 2

3+3 = 0.Û6.

• A synchronous move (σ[i], t) is available iff M [t⟩ and λ(t) = σ[i]. This move will update i with the next

index of the trace. It will also update M by executing the transition t, i.e., M − •t + t•. Note that if

the end of the trace was reached (i = |σ|), no more synchronous moves can be made.

• A log move (σ[i],») is available iff i < |σ|. This will increase i by one, advancing on the trace.225

• A model move (», t) is available iff M [t⟩. As a result of this move, M is updated to M − •t + t•. If t is

a silent transition τ , the move is called a silent move.

Log and model moves are referred to as asynchronous moves.

Definition 7 (Alignment). An alignment γ = 〈γ1, . . . , γn〉 is a sequence of legal moves (Definition 6). A

complete alignment’s moves γ1, . . . , γn advance through the model and the trace. Alignments start from the230

initial marking of the model and the start of the trace and reach the end of the model and the end of the

trace.

Definition 8 (Cost function, Alignment cost, Optimal alignment). A cost function C : (A∪{»})×(T∪{»})→

(0,∞) assigns a cost to each possible legal move, where A is the set of activities in the log and T is the set

of transitions in the process model. Generally, the cost for synchronous moves is lower than the cost for235

asynchronous moves. Each valid alignment is assigned a cost cγ = cγ1 + · · ·+ cγn
which is the sum of all the

costs of its moves. Hence, the optimal alignment for a given trace and model is the one with the minimum

cost. There may be several different optimal alignments.

Figure 3 shows two alignments for the model depicted in Figure 1 alongside a trace. When conducting

conformance checking, it’s frequently beneficial to provide quality metrics. These metrics offer a concise240

summary of the results, condensing all calculated alignments into a single, easily interpretable value. One of

the most well-established metrics is fitness. It gives an idea of the similarity between the log and the model

based on the cost of the computed alignment. Fitness can be calculated for individual alignments or for

the entire log. All optimal alignments of a trace have the same fitness as it is derived from the cost of the

alignment.245

Definition 9 (Alignment fitness). Let γ be an alignment between the trace σ and the model M , with cost
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Figure 4: High-level diagram of reach algorithms and their interactions. Continuous arrows show the control flow of the
algorithm, while discontinuous ones show the usage of another algorithm, returning the control flow to the caller.

cγ (Definition 8). The fitness for that alignment is defined as:

fγ = 1− cγ

σc + Mc

where σc is the sum of costs for the asynchronous log moves for all of the trace activities and Mc is the sum

of costs of the asynchronous model moves required for the minimum cost path through the model or, in other

words, the cost of the optimal alignment of the empty trace and the model.

Fitness indicates how much the trace matches the model, quantifying all differences. Thus, it compares

the cost of the given alignment with the cost of the alignment with only asynchronous moves: it first traverses250

the whole model via its shortest path adding the executed transitions as model moves, and then adds log

moves for the whole trace. A fitness of 1 (perfect fitness) shows that the trace was executed correctly for the

model (fitting trace), while lower fitness values indicate that discrepancies between the trace and the model

were found. To calculate fitness for an entire log, the fitness values of individual traces are averaged. This

gives an idea at a glance of how well the log conforms to the process model.255

Definition 10 (Log Fitness). Let γL = [γ1, . . ., γn] be a multiset of optimal alignments between each

trace of the log L = [σ1, . . . , σn] and the model M . The fitness of the log (f) is the average fitness of the

alignments: f = (
∑n

i=1 fγi
) /n, where fγi

is the fitness of the alignment γi (Definition 9).

4. Conformance checking based on alignments

The goal of the reach algorithm is to find the best alignment or all the best alignments for a model260

PN and each trace in a log L. Figure 4 shows an overview diagram containing the algorithms detailed in

this section and how they relate to each other. Alg. 1 receives the inputs and runs the preprocessing steps of

Algs. 8 and 9. Subsequently, the main search loop commences, iteratively invoking Alg. 2 to create neighbors

of previously discovered states. Algs. 3, 6 and 7 are optimizations applied each time a neighbor is generated.

Some algorithms depend on the partial reachability graph for the execution of operations on the model, as265

indicated by the discontinuous arrows of Figure 4.
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Prior to initiating the processing of each log trace, the algorithm performs some preprocessing tasks.

Firstly, once per model, it computes the shortest path through the model following the cost function (Alg. 1:3).

While this is not required to find the optimal alignments, it is done to properly compute the fitness metric.

Once each optimal alignment is computed, its fitness can be quickly calculated following Definition 9. Secondly,270

the log is simplified, detecting and counting duplicate traces, so that only one of those is processed. This task

is executed only once per log (Alg. 1:4). Lastly, an optimization for reducing the number of states generated

that will be explained in Alg. 8 is initialized.

A* is a complete and optimal search algorithm (Hart et al., 1968). This implies that, if the problem has a

solution, the algorithm will discover it —complete search algorithm—, and it will always discover the optimal275

solution if it exists. It stands out for its optimal efficiency with the main drawback being its exponential

space complexity. It requires an admissible and consistent heuristic function to select the best path to pursue

while guaranteeing optimality. This algorithm fits very well the alignment problem. A directed graph where

the nodes are partial alignments is defined, for which each available legal move (Definition 6) generates a new

connected neighbor. The start node is the empty partial alignment, which contains no moves. Within this280

state graph, the algorithm needs to find the minimum cost path between the start and goal nodes, where

a goal node is a complete alignment —an alignment that reaches the end of the model and the end of the

trace. This is the kind of problem that A* solves with optimal efficiency, meaning that no other optimal

algorithm would find the solution expanding fewer nodes if provided the same information.

The proposed conformance checking approach (Alg. 1) is grounded in the A* algorithm (Adriansyah,285

2014), a method for navigating the state space to identify the optimal alignment. Each state is a (partially)

built alignment, meaning an alignment whose sequence of legal moves begins with the initial marking and

the start of the trace. Concretely, states are defined as S = (M , i, γ, c, h), where:

• M represents the state of execution of the process model. For Petri nets, it is the current marking.

• i is the zero-based index of the trace from which the remaining activities are not yet aligned.290

• γ = 〈γ0, . . . , γi−1〉 is the partial or complete alignment, consisting of the sequence of legal moves taken.

• c is the current cost, which is the sum of the costs of the movements made.

• h is the heuristic value, i.e., an optimistic estimate of the remaining cost to complete the alignment.

Before executing the main algorithm, a greedy search is performed (Alg. 1:15-16). If it finds an alignment,

it is used as a maximum cost limit to avoid generating unnecessary states and speed up the algorithm. The295

greedy search will be discussed further in Section 4.2.2. The algorithm begins with the initial state (Alg.

1:17), which is an alignment without any move, at the initial marking of the model and at the first event of

the trace, with cost 0. States are kept in a priority queue that sorts states by increasing order of S.c + S.h

(Alg. 1:19), where S.c is the cost and S.h is the heuristic. S.c + S.h is used to guide the exploration of A*,

ensuring optimal results. The main loop (Alg. 1:21) explores each state in the order given by the priority300

queue while a solution is not found. The algorithm can also retrieve the set of all optimal alignments by
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Algorithm 1 reach core algorithm.
Input: The process model PN , the log L to align to PN , and a boolean opt that is true to return all

optimal alignments, otherwise one of them is given.
Output: Optimal alignments.

1: procedure Execute(PN , L, opt)
2: results← ∅
3: PN .leastCost← ShortestPath(PN ) ▷ Needed for computing fitness
4: L← SimplifyLog(L)
5: LessStatesModelInit(PN) ▷ Alg. 8
6: for all σ ∈ L do
7: alignments ←Align(PN , σ, opt) ▷ Align the trace
8: results← Aggregate(results, alignments) ▷ Aggregate the results
9: end for

10: return results

11: procedure ShortestPath(PN )
12: S ←Align(PN , EmptyTrace, false)[0] ▷ Align the empty trace, returning the final state
13: return S.c ▷ Return the cost c of the optimal alignment
14: procedure Align(PN , σ, opt)
15: greedyAlignment ←AlignGreedy(PN , σ) ▷ Alg. 9
16: maxCost← greedyAlignment.c ▷ The cost of the greedy alignment limits the optimal cost
17: S ←InitialState(PN , σ)
18: open← ∅ ▷ Priority queue that stores states
19: Add(open, S) ▷ Insert state, sorted by S.c + S.h
20: alignments← ∅ ▷ Found optimal alignments
21: while alignments = ∅ || (opt && S.c + S.h < min({S.c | S ∈ alignments} ∪ {+inf }) + min_c) do
22: S ← Poll(open) ▷ Extract the next best state
23: if ¬IsFinal(S) then
24: AddNeighbors(σ, S, open, maxCost) ▷ Alg. 2
25: else
26: alignments← alignments ∪ S ▷ Record the final state of the optimal alignment
27: end while
28: return alignments

iterating while S.c + S.h is lower than the cost of any found solution (min({S.c | S ∈ alignments} ∪ {+inf }))

plus the minimum cost of an asynchronous move (min_c) —as A* requires synchronous moves to have a

negligible cost strictly greater than 0. At each step, a state is removed from the priority queue (Alg. 1:22). If

the given state is not final, the algorithm creates the neighbors of that state by using all the feasible legal305

moves (Definition 6). For each neighbor, it is necessary to update the process model state, the trace progress,

the cost, and the heuristic. Otherwise, if the state is final, it is an optimal alignment and it is added to the

alignments set (Alg. 1:23-26).

The AddNeighbors function detailed in Alg. 2 adds all the children states from a parent based on

the available legal moves —called from Alg. 1:24. Given the set of enabled transitions of the parent state310

(Alg. 2:2), and the next trace activity of the parent state (Alg. 2:4), neighbors are created by executing all

available legal moves. Specifically, one neighboring state is generated for each move:
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Algorithm 2 Neighbor generation.
Input: A current or parent state S and a priority queue open for the new states to be inserted into.
Output: None, it adds neighbors to open.

1: procedure AddNeighbors(σ, S, open, maxCost)
2: etrs← EnabledTransitions(S.M) ▷ Alg. 4: enabled transitions from the current state
3: if S.i < |σ| then ▷ If the end of σ was not reached yet
4: activity ← σ[S.i] ▷ The next activity recorded in the trace
5: trs← λr(activity) ▷ An activity may map to multiple model transitions
6: for all tr ∈ trs ∩ etrs do
7: AddMove(σ, S, open, Sync, tr, maxCost) ▷ Generate synchronous movements
8: end for
9: if ¬LessStatesLog(σ, S) then ▷ Alg. 6

10: AddMove(σ, S, open, Log, activity, maxCost) ▷ Generate asynchronous log movements
11: if ¬LessStatesModel(σ, S) then ▷ Alg. 7
12: for all tr ∈ etrs do
13: AddMove(σ, S, open, Model, tr, maxCost) ▷ Generate asynchronous model movements
14: end for
15: procedure AddMove(σ, Sparent , open, type, tr, maxCost)
16: S ← NewState()
17: if type = Sync then ▷ Record the performed legal move in γ for the current state
18: S.γ ← Sparent .γ ++ (λ(tr), tr)
19: if type = Log then
20: S.γ ← Sparent .γ ++ (tr ,»)
21: if type = Model then
22: S.γ ← Sparent .γ ++ (», tr)
23: if type ̸= Model then ▷ Synchronous or log movements advance on the trace
24: S.i← Sparent.i + 1
25: if type ̸= Log then ▷ Synchronous or model movements advance on the model
26: S.M ← ExecuteTransition(Sparent.M, tr) ▷ Alg. 5
27: if type ̸= Sync then S.c← Sparent .c + 1 ▷ Update cost and heuristic for the new state
28: else S.c← Sparent .c + epsilon
29: S.h = Heuristic(σ, S) ▷ Alg. 3
30: if ShouldAdd(S, open, maxCost) then ▷ Add the state to the queue
31: Add(open, S)
32: return S

• A synchronous move for each enabled transition of the model that shares the label with the next activity

of the trace —note that model transitions can have duplicate labels— (Alg. 2:6-7).

• An asynchronous movement in the log if the end of the trace is not yet reached (Alg. 2:10).315

• As many asynchronous movements in the model as transitions are enabled from the current marking of

the model (Alg. 2:12-13).

The conditions at Alg. 2:9 and Alg. 2:11 are optimizations. These optimizations reduce the exploration of

unnecessary states by skipping certain asynchronous moves in the log and the model when specific conditions

are met (Section 4.2.2). For each move, a new neighboring state S must be created and S.γ must be updated,320

the sequence of legal moves (Alg. 2:15-22). Each call to AddMove defines the new state that can advance
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to the next activity on the trace, and/or execute a transition in the model, depending on the kind of move

(Alg. 2:23-26). The cost and heuristic values are then updated for the new state, just before inserting it

in the priority queue, where it will be sorted by the sum of both values (Alg. 2:27-31). The condition at

Alg. 2:30 avoids inserting in the open queue states that are not capable of reaching the optimal alignment, as325

they match a previously discovered state —equal S.M and S.i values— with a higher or equal S.c, or they

exceed the S.c + S.h threshold established by the greedy algorithm.

To achieve optimality, the A* algorithm employed in reach must meet three conditions. First, the

cost change when advancing to a neighbor must be strictly positive. To satisfy this requirement, the cost of

synchronous and silent moves is always a negligible value greater than 0 (epsilon). A standard cost of 1 is330

applied to all other asynchronous moves. Second, the heuristic must be admissible, meaning that it must

return an underestimate of the remaining cost to the closest goal node in terms of cost. In third place, the

heuristic must also be consistent —also called monotone— in order to provide optimal results. A consistent

heuristic returns an estimate for any node that is lower or equal to the least cost of advancing to a neighbor

plus its heuristic estimate, Sparent.h ≤ S.c− Sparent.c + S.h, where S is a state successor of Sparent. This is335

because using a consistent heuristic ensures that once a node is explored, it will not be reached again with a

lower cost. Note that a consistent heuristic is also admissible. The admissibility and monotonicity of the

proposed heuristic will be discussed in Section 4.1.

4.1. Heuristic

Heuristics substantially affect the performance of the A* algorithm and, as such, are the focus of many340

state-of-the-art papers. We propose a new heuristic, called Model Move Required (MMR) that balances the

time required to compute the heuristic —which would mean a higher processing time per state—, and the

accuracy of the estimates it provides —which enables reducing the number of states that need to be explored

to achieve optimality. It works by finding a subset of the required transitions —transitions that must be

executed to reach the end of the model— and by comparing their labels to the remaining trace activities.345

Alg. 3 presents the MMR heuristic, which calculates an optimistic approximation of the cost to complete

an alignment from a given state. The heuristic needs to identify a subset of the non-silent transitions that

are necessary to execute from the current marking to reach a final state (Alg. 3:2). The first step is to figure

out the required transitions for the state for which the heuristic will be computed (Alg. 3:8). Each token of

that state marking is added to the queue of places to visit (Alg. 3:12-14). Then, the main loop starts visiting350

each place of that queue until it is empty (Alg. 3:15). Each visited place is removed from the queue, and

already visited places are skipped or otherwise marked as visited (Alg. 3:16-19). Next, place• is retrieved,

i.e., the successor transitions of place. If the list only contains one transition, it is registered as a required

transition (Alg. 3:20-24). All the successor places of the transition are added to the queue of places to visit

(Alg. 3:25). Figure 5 presents an example that illustrates the behavior of the required transitions procedure.355
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Algorithm 3 Model Move Required heuristic
Input: An state S.
Output: The heuristic value.

1: procedure Heuristic(σ, S)
2: requiredTrs← RequiredTransitions(S.M) ▷ Subset of the required transitions (cached)
3: required← {λ(t) | t ∈ requiredTrs} ▷ Set of required unique activities of the model
4: remaining ← toSet(σ[S.i:]) ▷ Set of unique activities of the trace suffix starting at S.i
5: missing ← required ∖ remaining ▷ Set of required activities not found in the remaining trace
6: minCostMoves← remaining ∖missing ▷ Set of required extra moves, assumed synchronous
7: return |missing| + |minCostMoves| ∗ epsilon ▷ Heuristic, under the standard cost function
8: procedure RequiredTransitions(M)
9: requiredTransitions← ∅ ▷ The output of this function is the set of required transitions

10: places← ∅ ▷ Queue that stores places to visit
11: placesV isited← ∅ ▷ Queue that stores visited places
12: for all place ∈ TokenPlaces(M) do ▷ For each token place in the current marking
13: Add(places, place) ▷ Insert the initial place in the queue to visit it later
14: end for
15: while ¬Empty(places) do ▷ While there are more places to visit
16: place← Poll(places) ▷ Extract the next place to explore
17: if place ∈ placesV isited then
18: continue ▷ Skip the place if already visited
19: Add(placesV isited, place) ▷ Mark the place as visited
20: transitions← place• ▷ Get the successors of the place
21: if |transitions| ̸= 1 then
22: continue ▷ Skip the place if it has more than one output arc or no output arcs
23: if ¬IsSilent(transitions[0]) then ▷ If the transition is not silent
24: Add(requiredTransitions, transitions[0]) ▷ Register the transition as required
25: AddAll(places, transitions[0]•) ▷ Queue each output place for exploration
26: end while
27: return requiredTransitions
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Place State

requiredT ransitions: ∅
places: <p0>
placesV isited: ∅
place: p0
transitions: [Enroll]

requiredT ransitions: [Enroll]
places: <p1>
placesV isited: [p0]
place: p1
transitions: [Class, T est]

Figure 5: Iterations of RequiredTransitions (Alg. 3:8) for the initial state of the running example. For each iteration —row
of the table— of the main while loop (Alg. 3:15), the place being explored is highlighted on the left column and the state of
the defined variables is shown on the right column. The requiredT ransitions, places and placesV isited variables show the
values before the iteration, while the place and transitions variables show the values retrieved during the iteration. The initial
marking only has one token on p0, which is added to places. The place to visit in the first iteration (p0) is extracted from
places. This iteration checks that the successor of p0 is only one transition. As this is true (|transitions|= 1), it marks the
transition (Enroll) as required and adds all output places of the transition ([p1]) to places. The second iteration processes p1
as it is the first element of the places queue. It has two successors, so it does not add any more places to places. It does not
mark them as required as only one of them has to be executed so neither is mandatory. The places queue is empty, so the
algorithm stops. The only required transition found for this simple example is Enroll.

When the queue of places to visit is empty, the algorithm collected a subset of all the required transitions.

Following the collection of the required transitions, their unique labels are compared with the remaining

distinct activities in the trace to calculate the heuristic (Alg. 3:4). For each mandatory model activity that

does not appear in the remaining trace (Alg. 3:5), the cost of the asynchronous move is added to the heuristic.

These activities are required to be executed in order to reach the end of the model, so not having them360

in the remaining trace implies at least another move in the model in order to reach the end. For each of

the unmatched trace activities remaining (Alg. 3:6), the cost of a synchronous move is added, as another

move with a minimum cost of a synchronous move has to be made for each of them in order to complete the

alignment.

In order for this heuristic to be valid, there must be only one reachable final marking of the model: one365

token in the end place. This condition, known as proper completion, guarantees that all transitions identified

through the heuristic procedure will be necessary to reach the end of the model. Hence, this heuristic assumes

that the model is a workflow net with proper completion —without the soundness requirement. This is a

consistent heuristic that uses the standard cost function: assigns a positive value very close to 0 (epsilon) for

synchronous moves and a cost of 1 to asynchronous moves. The number of unmatched required activities can370

only decrease by a maximum of 1 between parent and child states (Sparent and S), and it may only decrease

by 1 when the cost increases by 1 by performing an asynchronous move (S.c− Sparent.c), so the consistency

condition (Sparent.h ≤ S.c− Sparent.c + S.h) is verified.
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Algorithm 4 Partial reachability graph: enabled transitions.
Input: The current marking M . The single partially built reachability graph p for the workflow net is

received as input even if the calling pseudocode does not specify it (p is initialized as an empty map).
Assumes that EnabledTransitions is called before ExecuteTransition for any marking.

Output: The set of enabled transitions of the marking M .
1: procedure EnabledTransitions(M , p)
2: if M ∈ p then ▷ If M had its enabled transitions listed previously
3: etrs← {t | (t, m) ∈ p[M ]} ▷ Retrieve the list of enabled transitions from p
4: else
5: etrs← {t |M [t⟩} ▷ Compute the enabled transitions from M
6: p[M ]← {(etr, null) | etr ∈ etrs} ▷ Record the enabled transitions, mapped to null
7: return etrs

Algorithm 5 Partial reachability graph: execute transition.
Input: The current marking M and the transition to execute t. The single partially built reachability

graph p for the workflow net is received as input even if the calling pseudocode does not specify it (p is
initialized as an empty map). EnabledTransitions assumes that EnabledTransitions is called
before ExecuteTransition for any marking.

Output: The new marking M ′ after executing t on the marking M .
1: procedure ExecuteTransition(M , t, p)
2: if p[M ][t] ̸= null then ▷ If t was previously executed from M
3: M ′ ← p[M ][t] ▷ Retrieve the next marking from the partial reachability graph
4: else
5: M ′ ←M − •t + t• ▷ Compute the new marking after executing the t transition
6: p[M ][t]←M ′ ▷ Record the transition execution in the partial reachability graph
7: return M ′

4.2. Optimizing the algorithm

This section focuses on our contributions to the core A*-based alignments algorithm: (i) partial reachability375

graph, and (ii) several states reduction optimizations.

4.2.1. Partial reachability graph

All state-of-the-art algorithms need to execute the workflow net to be able to compute optimal alignments.

Thus, all algorithms perform operations over the workflow net for creating an initial marking (Alg. 1:17),

listing all enabled transitions for a marking (Alg. 2:2), executing a transition (Alg. 2:26) and checking if a380

marking is final (Alg. 1:23). Those operations affect performance, as they are executed several times for each

iteration of A*. Our approach introduces a significant difference from the state of the art. We propose the

dynamic construction of a partial reachability graph (PRG) as new model markings are reached. This change

is aimed at leveraging information from prior model operations to enhance the speed of future iterations. To

make the execution of the workflow net faster, a directed graph is created that shows the different explored385

states of the system. This graph is stored in p, which is initially empty (Alg. 4). When explored, each marking
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Figure 6: Example of the partial reachability graph computed while executing the trace 〈Enroll, Class, Exam〉 on the running
example (Figure 1). Before executing each transition of the example trace, all enabled transitions of the marking are computed.
The nodes of the graph are markings. Known markings are circles and unexplored ones are diamonds. Final markings are
represented with a double circle. The node contents show a unique identifier if explored and a question mark otherwise. Each
arc between two nodes is labeled with the enabled transition whose execution generates the target marking from the source
marking.

is stored as an entry in p and represents a vertex in the graph (Alg. 4:5-6). When each marking M is explored,

each enabled transition from M is represented by an entry in the p[M ] mapping, which maps to the new

marking after executing the transition (Alg. 5:5-6), or null if it was never executed (Alg. 4:5-6). The enabled

transitions serve as arcs connecting states within the graph. This builds at runtime a data structure similar390

to a reachability graph (Davidrajuh, 2013). Nevertheless, only the explored states are generated. Hence, it

avoids building the full reachability graph which would be a computationally intensive task, especially for

models with lots of branching and concurrent transitions. Instead, it only stores information about states

that are needed in the algorithm’s exploration. Once repeated model operations start occurring, e.g. due to

loops in the model or to the beginning of the alignment computation over a new trace of the log, the partial395

reachability graph can quickly access enabled transitions and new markings (Alg. 4:2-3 and 5:2-3). This

information is kept while aligning all the traces of the log to the model, which is the main reason for the

speedup. Figure 6 shows the partial reachability graph for the running example and a simple trace.

The advantages of this PRG become evident as the algorithm progresses and repeated model operations

become commonplace. For instance, when loops occur within the model or when aligning a new trace from400

the log, the PRG swiftly facilitates access to enabled transitions and the corresponding new markings.

4.2.2. State reduction-based optimizations

The primary challenge in computing conformance checking alignments using the A* algorithm is the

substantial number of generated states that must be stored and evaluated to ensure optimal results. To

mitigate this problem, we propose new optimizations focused on states reduction that will alleviate the405

state explosion that occurs for complex datasets: (i) States Reduction forcing asynchronous Model moves

(SRModel), (ii) States Reduction forcing asynchronous Log moves (SRLog), and (iii) an initial greedy search

that finds a cost limit.

The SRModel optimization is only applicable when seeking a single optimal alignment, and it effectively

reduces the number of generated neighbors by constraining allowed movements (Alg. 2:9, Alg. 6). Thus, if the410

current state has enabled transitions and their activities do not appear in the remaining trace (Alg. 6:5), this
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Algorithm 6 LessStatesLog (SRModel).
Input: The trace σ and an state S.
Output: A boolean indicating whether to skip

generating log move states from S.
1: procedure LessStatesLog(σ, S)
2: return
3: |EnabledTransitions(S.M)|> 0
4: and |EnabledTransitions(S.M)∩
5:

⋃
{λr(act) | act ∈ σ[S.i:]}|= 0

Algorithm 7 LessStatesModel (SRLog).
Input: The trace σ and an state S, for which

AliveActivities returns the alive activities from
that state (Alg. 8).

Output: A boolean indicating whether to skip
generating model move states from S.

1: procedure LessStatesModel(σ, S)
2: return
3: ¬LessStatesLog(σ, S) and i < |σ| and
4: σ[i] /∈ AliveActivities(S.M)

Log: Enroll
Model: Enroll

(a) State represented as a partial alignment. (b) The model marking of the state.

Figure 7: SRModel optimization example for the trace 〈Enroll, Exam〉 and the model from Figure 1. The explored state of (a)
would normally generate three asynchronous moves: one model move for each of the enabled model transitions, and one log
move on the Exam activity of the trace. However, the SRModel optimization checks whether the enabled model transitions
cannot be executed in the remaining trace. As this is true for the given state, it can force a model move by only generating two
of the three neighboring states.

optimization can be activated: the asynchronous move in the log can be avoided, as the optimal alignment

must have a model move on one of the enabled transitions. This optimization always provides an optimal

alignment because a synchronous or model move is required to reach the end of the model, but no synchronous

move is or will ever be available —the remaining trace activities do not match the labels of the currently415

executable transitions in the model— until a model move is performed. Forcing the model moves in this

situation reduces the number of states to explore without affecting the optimality of the algorithm. An

example of this optimization is shown on Figure 7.

Similarly to SRModel, the SRLog optimization reduces the number of states to explore by studying the

remaining trace and model. It identifies the alive transitions of the model, which are those that can be420

enabled from the current marking through valid transition execution sequences. Alive activities are the

unique labels of the alive transitions. SRLog checks if the next activity of the trace —which must have one or

more activities left— is not one of the alive activities of the current state. In this case, the algorithm forces

an asynchronous movement on the log (Alg. 2:11, Alg. 7) because that movement has to be made in order to

reach a complete alignment. This optimization always provides an optimal alignment because a synchronous425

or log move is required to reach the end of the trace, but no synchronous move is or will ever be available

—the alive activities of the model do not match the next activity in the trace— until a log move is performed.

By forcing the algorithm to make it as soon as possible, all states that would otherwise need to be generated

later are being avoided. In cases where both SRModel and SRLog are applicable to a particular state, we
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exclusively employ SRModel. The simultaneous application of both would result in the filtering out of all430

neighboring states. SRLog is applied to the generated neighbors if SRModel is not available for them. SRLog

requires an additional model pre-processing task in which all the alive activities of all states are stored. This

pre-processing task is only needed once per model, and it is performed in two phases as is shown in Alg. 8.

The initial phase of SRLog involves exploring the model and recording all the unique reachable markings

within the workflow net. Each of those markings is associated with a single state, which also includes435

information about the activities that are directly enabled, and the predecessor states (Alg. 8:2). This

exploration phase stops when a repeated marking or a marking without enabled transitions is reached.

In this phase, a list to store the discovered states that still need to be processed is used (Alg. 8:5). Each

iteration explores a new discovered state, and the loop stops when there are no more states in the queue

(Alg. 8:9-10). The first action for each discovered state is to check if its marking was previously explored,440

registering it otherwise. This is performed by PutIfAbs, which also returns the previously stored state

for that marking if it exists (Alg. 8:11). This previously stored state will later be used to merge already

discovered predecessor states and enabled activities into the single state associated with that shared marking

(Alg. 8:25-27). To further explore new states, it is necessary to iterate over each enabled transition of the

current state which might lead to a new child state (Alg. 8:13-15). It is checked if the current child marking445

is new by comparing to previously explored markings. In either case, the label of the transition is registered

as an alive activity of the parent state and the predecessors of the child state are updated (Alg. 8:16-22).In

the event that the child state is indeed new, it is added to the state queue to be explored later (Alg. 8:23).

The final state is also recorded, which will be the starting point for phase 2 of this algorithm (Alg. 8:29).

During the second phase of SRLog, the algorithm calculates all alive activities associated with each450

marking. These are activities that might be executed at any point in the future, even if they are not enabled

at this point and require executing other activities first. This is done by recursively inheriting all the alive

activities from states to their predecessors, starting from the recorded final state. The states list is initialized

to the final state (Alg. 8:32). The main loop starts, taking the last state from the states list as long as it is

not empty (Alg. 8:33). For each explored state, Sprev is not null if and only if S.M was previously explored,455

and S.M is marked as explored (Alg. 8:35). Then, all predecessor states of S inherit the alive tasks from S

(Alg. 8:38). The predecessors are appended to the end of the states list if they were not previously explored

or if new enabled tasks were found (Alg. 8:40). Figure 8 shows step-by-step the execution of the initialization

of SRLog over the running example. In addition, Figure 9 shows the execution of the SRLog algorithm, using

the same model and an example trace.460

Note that both SRModel and SRLog have no relation to the log-move-first and model-move-first op-

timizations defined in (Carmona et al., 2018). The optimizations we introduce involve an analysis of the

remaining trace and/or model, identifying essential moves and actively enforcing them. This stands in

contrast to (Carmona et al., 2018) in which only the last alignment move is examined to dictate the sequence
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Algorithm 8 Initialization for LessStatesModel (SRLog).
Input: A process model PN .
Output: The map from each reachable marking to the set of alive activities in the model.

1: procedure LessStatesModelInit(PN )
2: S ← { M : InitialMarking(PN ),
3: alive : ∅, ▷ Alive activities from S
4: pred : ∅ } ▷ Predecessor states
5: states ← list() ▷ Unexplored state list
6: explored ← map() ▷ Marking to state mapping
7: finalState ← null
8: Add(states, S)
9: while |states|> 0 do ▷ Phase 1: discovery

10: S ← PollLast(states) ▷ Retrieve and remove the last element of the states list.
11: Sprev ← PutIfAbs(explored, S.M, S) ▷ Check if the state already exists and save it otherwise
12: etrs ← EnabledTransitions(S.M) ▷ Alg. 4
13: for all etr ∈ etrs do ▷ Explore all enabled transitions
14: Sc ← NewState(S)
15: S.M ← ExecuteTransition(Sparent.M, tr) ▷ Alg. 5
16: Sback ← Get(explored, Sc.M) ▷ Find out if this is a previously explored marking
17: if Sback ̸= null then ▷ Handle discovered loops to previous states without recursion
18: if etr ∈ Tns then S.alive ← S.alive ∪ {λ(etr)}
19: Sback .pred ← Sback .pred ∪ {S}
20: else ▷ Handle new states by also updating alive and pred, and adding them to states
21: if etr ∈ Tns then S.alive ← S.alive ∪ {λ(etr)}
22: Sc.pred ← Sc.pred ∪ {S}
23: AddLast(states, Sc) ▷ Queue for exploration by adding them at the end of states
24: end for
25: if Sprev ̸= null then ▷ Merge collected data if returning to a previously explored state
26: Sprev.alive ← Sprev.alive ∪ S.alive
27: Sprev.pred ← Sprev.pred ∪ S.pred
28: else if IsFinal(S.M) then ▷ Remember the final state
29: finalState ← S
30: end while
31: explored ← map() ▷ Marking to state mapping
32: Add(states, finalState)
33: while |states|> 0 do ▷ Phase 2: alive activities
34: S ← PollLast(states)
35: Sprev ← PutIfAbs(explored, S.M, S) ▷ Check if the state already exists and save it otherwise
36: for all Sc ∈ S.pred do ▷ Explore predecessor states
37: prevAlive ← Sc.alive ▷ Remember previously alive activities
38: Sc.alive ← Sc.alive ∪ S.alive ▷ Inherit previously alive activities from successor
39: if Sprev = null or Sc.alive ̸= prevAlive then ▷ Check stop condition
40: AddLast(states, Sc) ▷ Mark for exploration
41: end for
42: end while
43: return explored
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Marking State

Phase 1:
State ID: 0S
Predecessors: ∅
Enabled: {0A}

Phase 2:
Alive: {0A, 1A, 2A, 3A, 4A}

Phase 1:
State ID: 1S
Predecessors: {0S , 2S}
Enabled: {1A, 2A}

Phase 2:
Alive: {1A, 2A, 3A, 4A}

Phase 1:
State ID: 2S
Predecessors: {1S}
Enabled: {3A, 4A}

Phase 2:
Alive: {1A, 2A, 3A, 4A}

Phase 1:
State ID: 3S
Predecessors: {2S}
Enabled: ∅

Phase 2:
Alive: ∅

where activity IDs are {Enroll: 0A, Class: 1A, Test: 2A, τ : 3A, Exam: 4A}

Figure 8: Execution steps of Alg. 8 (initialization for SRLog) for the model of the running example. During the first phase, the
following information for each state is obtained: its ID, the IDs of its predecessor states, and the directly enabled activities. The
second phase completes the full set of alive activities by inheriting enabled activities from successors. The S and A subscripts
help to distinguish between state and activity IDs respectively.

Log: Enroll
Model: Enroll

(a) State represented as a partial alignment. (b) The model marking of the state.

Figure 9: SRLog optimization example for the running example from Figure 1 and the trace 〈Enroll, Enroll, Class, Exam〉. The
alive transitions computed using Alg. 8 (Figure 8) for the current state are Class, Test, the silent one, and Exam. The explored
state of (a) would normally generate three moves: one model move for each of the enabled model transitions, and one log move
on the Enroll event of the trace. However, the SRLog optimization checks whether the Enroll event is not alive in the model. As
this is true for the given state, it can force a log move by only generating one of the three neighboring states.

of log and model moves. Both SRModel and SRLog can be enabled at the same time during the execution465

of the algorithm for improved performance, whereas only one of log-move-first or model-move-first can be

applied on each execution. Note that neither log-move-first nor model-move-first are compatible with the

SRModel or SRLog optimizations.

Before the primary alignments algorithm, the greedy search optimization (Alg. 9) is employed to quickly

establish an upper cost bound for the optimal alignment. The algorithm starts from the same initial state as470

the reach algorithm (Alg. 9:2-5). It records a tuple of the visited marking and trace progress to quickly

advance avoiding infinite loops (Alg. 9:6). It generates the neighbors of the initial state also following the
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Algorithm 9 Greedy alignments algorithm.
Input: The process model PN and a trace σ.
Output: The final state of the greedy alignment, or null if no greedy alignment is found.

1: procedure AlignGreedy(PN , σ)
2: S ←InitialState(PN , σ)
3: visited ← ∅
4: alignment ← null
5: while alignment = null and S ̸= null do ▷ Explore states until stop condition is matched
6: Add(visited, (S.M, S.i)) ▷ Mark the tuple of the marking and the trace index as visited
7: if ¬IsFinal(S) then
8: open ← ∅ ▷ Reset the open queue on each iteration, disabling backtracking
9: AddNeighbors(S, open) ▷ Alg. 2: consider all neighbors as usual

10: while S ̸= null do
11: S ← Poll(open) ▷ Extract them by priority
12: if ¬Contains(visited, (S.M, S.i)) then ▷ Ignore already visited neighbors
13: break
14: end while
15: else
16: alignment ← S ▷ Use it as the result if final
17: end while
18: return alignment

Log: Enroll
Model: Enroll

(a) State represented as a partial alignment. (b) The model marking of the state.

Figure 10: Greedy alignment optimization example for the running example from Figure 1 and the trace <Enroll, Class, Exam>.
The greedy alignment computed using Alg. 9 is made of three synchronous moves. The explored state of (a) would normally
generate four moves: one synchronous move, one model move for each of the enabled model transitions, and one log move on
the Class event of the trace. However, the greedy alignments optimization checks whether the cost of each generated neighbor is
greater than the cost of the greedy alignment. As this is true for all of the asynchronous moves of the given state, it can force a
synchronous move by only generating one of the four neighboring states.

reach algorithm (Alg. 2), and adds them to the newly created open queue (Alg. 9:8-9). Considering only

the neighbors generated on that iteration, the one of minimum S.c + S.h is chosen (Alg. 9:11), i.e., the greedy

algorithm performs a Best First Search guided by the heuristic. If it was already visited (Alg. 9:12), it goes475

back to Alg. 9:10 to process the next best state. If the chosen state was not visited before, the algorithm

moves to that state and continues the exploration from there. It does so until a complete alignment is

achieved or until there are no more unvisited states left to explore (Alg. 9:5). The cost of this suboptimal

greedy alignment is used as the upper bound of S.c + S.h for the optimal alignment retrieved by the reach

algorithm, filtering states that will not lead to the optimal solution. Figure 10 shows an example of how this480

filtering is made.
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5. Evaluation

We have extensively evaluated our approach and compared it against other state-of-the-art algorithms.

We provide reach as a web service, as a binary executable and as the original source code1 to allow the

replication of results. In this section, we describe the datasets and the experiments, discussing the results.485

5.1. Setup

To ensure consistency, we developed and tested reach in Java 8, aligning it with the Java-based

implementations of the state-of-the-art algorithms. All the algorithms have been executed in an Oracle Java

8 Virtual Machine in a computer equipped with an Intel Core i5-9600K, 32 GB RAM, 1024 GB SSD, and

Ethernet 1Gb BaseT. For the execution of each algorithm, a maximum of 24 GB RAM was reserved.490

5.2. Logs and process models

The algorithm takes two inputs: a log and a model, referred to as a log-model pair for the sake of

simplicity. We used logs and models from the following published papers:

• (Reißner et al., 2020b) includes 17 logs extracted from different years of the Business Process Intelligence

Challenge (BPIC) and from 4TU.ResearchData2. They are taken from different domains such as495

healthcare, government, finance and IT service management, with different levels of complexity to

create a fair test environment for conformance checking algorithms.

The process models were discovered with the Inductive Miner infrequent algorithm (Leemans et al.,

2014). Discovering models that perfectly fit the log would be too easy to solve as the optimal alignment

would only require synchronous moves. To increase the difficulty and test the performance limits of the500

state of the art, we discover models with various fitness levels. These models differ in the extent to

which they describe the log behavior, with lower percentages indicating lower fitness levels. Achieving

optimal alignments generally becomes more challenging as the fitness decreases. Thus, for each log, 10

models will be discovered, ranging from 10% to 100% of behavior3. For the log BPIC18, the discovery

algorithm could not obtain a model for percentages over 30%, so only 3 models were discovered. The505

total of log-model pairs extracted from this source is 163.

• (van Dongen, 2018) includes logs and models, so no model discovery algorithm was required. The main

advantage of including these log-model pairs is that they include models discovered with different

algorithms and even large artificial models. From this source, we expanded our dataset with an additional

64 log-model pairs.510

1https://tec.citius.usc.es/reach
2https://data.4tu.nl/
3In this paper, when we mention the percentage of considered behavior, we are referring to the complement of the threshold

parameter of the Inductive Miner infrequent algorithm.
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Table 2: Logs information. The columns are: number of activities (A), number of traces (T), total number of events (E),
minimum number of events per trace (N), and maximum number of events per trace (X). Note that the S subindex indicates
that redundant traces are ignored.

Name A T E TS ES N X
BPIC12 24 13,087 262,200 4,366 182,467 3 175
BPIC13CP 4 1,487 6,660 183 1,810 1 35
BPIC13INC 4 7,554 65,533 1,511 29,010 1 123
BPIC14F 9 41,353 369,485 14,948 232,067 3 167
BPIC15F1 70 902 21,656 295 10,367 5 50
BPIC15F2 82 681 24,678 420 17,820 4 63
BPIC15F3 62 1,369 43,786 826 28,553 4 54
BPIC15F4 65 860 29,403 451 16,502 5 54
BPIC15F5 74 975 30,030 446 18,789 4 61
BPIC17F 18 21,861 714,198 8,767 333,965 11 113
BPIC18 41 43,809 2,514,266 28,457 1,819,830 24 2,973
BPIC19_1 11 1,044 5,898 148 1,619 2 21
BPIC19_2 38 15,182 319,233 4,228 255,982 1 990
BPIC19_3 39 221,010 1,234,708 7,832 82,611 1 179
BPIC19_4 15 14,498 36,084 281 1,614 1 17
RTFMP 11 150,370 561,470 231 1,891 2 20
SEPSIS 16 1,050 15,214 846 13,775 3 185
sepsis (Mannhardt, 2016) 16 1,050 15,214 846 13,775 3 185
Fitting logs (Maruster et al., 2006) 42 4,000 83,402 2,935 76,482 5 102
Noisy logs (Maruster et al., 2006) 42 16,000 322,670 12,051 298,281 2 102
Fitting logs (Munoz-Gama, 2013) 317 1,200 49,792 1,126 48,573 14 59
Noisy logs (Munoz-Gama, 2013) 363 5,300 638,555 5,149 633,965 15 245
Fitting logs (Munoz-Gama, 2014) 110 34,000 1,062,208 22,649 906,695 12 167
Noisy logs (Munoz-Gama, 2014) 68 32,000 1,035,889 22,747 910,515 12 147
bpi12 (van Dongen, 2012) 24 13,087 262,200 4,366 182,467 3 175
road_fines (de Leoni and Mannhardt, 2015) 11 150,370 561,470 231 1,891 2 20

Adding the log-model pairs obtained from (Reißner et al., 2020b) and (van Dongen, 2018) results in a

total of 227 log-model pairs. The complete set of logs used in our evaluation, along with relevant statistics

showcasing their diversity, is presented in Table 2.

5.3. Impact of the optimizations in reach

In this section, we analyze the effect of the proposed optimizations on the performance of the A* algorithm515

by selectively enabling and disabling the optimizations. Note that we always check the optimality of the

algorithm for each experiment by comparing the returned alignment costs against other versions of the

algorithm or against the state of the art.

We tested the proposed optimizations of Sections 4.2.1 and 4.2.2. For each combination of optimizations,
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Table 3: Impact of the states reduction optimizations and the partial reachability graph optimization (PRG) on the performance
of the reach algorithm for the complete dataset. Performance has been evaluated in terms of the average execution time in
milliseconds (time) and the average number of states discovered (states). To better display the performance increase, both
measurements are divided into simple and complex log-model pairs as indicated by the subscript. Simple log-model pairs are
those that take less than 10 seconds to solve without optimizations. In addition, both metrics are taken as absolute values (a, b)
and percentages of improvement with respect to the execution with no optimizations applied (c).

PRG
SRModel ✓ ✓

SRLog ✓ ✓

statessimple 1.73 · 106 1.58 · 106 1.47 · 106 1.31 · 106

statescomplex 2.96 · 107 2.47 · 107 2.64 · 107 2.00 · 107

timesimple 3.02 · 103 2.96 · 103 2.65 · 103 2.66 · 103

timecomplex 2.90 · 104 2.51 · 104 1.97 · 104 1.73 · 104

a Absolute metrics with different optimizations enabled.

PRG ✓ ✓ ✓ ✓

SRModel ✓ ✓

SRLog ✓ ✓

statessimple 1.73 · 106 1.58 · 106 1.47 · 106 1.31 · 106

statescomplex 2.96 · 107 2.47 · 107 2.64 · 107 2.00 · 107

timesimple 3.02 · 103 2.97 · 103 2.66 · 103 2.66 · 103

timecomplex 2.78 · 104 2.46 · 104 2.00 · 104 1.74 · 104

b Absolute metrics with different optimizations enabled.

PRG ✓ ✓ ✓

SRModel ✓ ✓

SRLog ✓ ✓

statessimple 8.6 15.1 24.0
statescomplex 16.4 10.5 32.4
timesimple 1.7 12.2 11.9
timecomplex 15.3 31.2 40.1

c Relative improvement (%).

we verified that the algorithm produced alignments of consistent cost and evaluated the enhancements in520

terms of: (i) the number of states generated before reaching an optimal solution; and (ii) the processing

time. Table 3 shows some statistics for the complete dataset. If the execution for a single log-model pair

takes longer than 5 minutes for any combination of optimizations, we do not consider it to keep the test

times reasonable and the statistics fair.

The partial reachability graph (PRG) optimization is aimed at reducing the computation time required for525

the workflow net execution. Hence, it does not change the total number of states that need to be processed

when enabled. It improves execution times by reducing the number of operations when interacting with the

process model. The PRG optimization demonstrates its maximum effectiveness when no other optimizations

are enabled, particularly when aligning complex log-model pairs, resulting in an average execution time

reduction from 29.0 to 27.8 seconds. This improvement is reduced when other optimizations are enabled but,530

even then, the PRG optimization does not have a negative effect on the average execution time. It is affected

by other optimizations as they lower the number of model operations by reducing the number of discovered

states.

The States Reduction forcing asynchronous Model moves (SRModel) optimization achieves a reduction in

the number of states discovered at the cost of increasing the processing time per state. For simple log-model535

pairs, which are those solved in under 10 seconds without any optimizations, SRModel reduces the average

number of states by 8.6%. For complex problems, the reduction is even more substantial, amounting to 16.4%

fewer states. For simple log-model pairs, the reduction of states is on par with the increased time per state,
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Table 4: Slowest initialization times in milliseconds for the SRLog optimization, out of all 163 log-model pairs from (Reißner
et al., 2020b). The model column indicates what percentage of behavior the model supports.

Log Model Time (ms)
BPIC19_2 100% 89,502
BPIC15F5 60% 18,951
BPIC15F5 70% 18,746
BPIC15F5 50% 18,334
BPIC15F5 100% 13,441
BPIC15F5 80% 12,675
BPIC15F5 90% 12,394
BPIC15F5 40% 11,389
BPIC15F5 30% 10,845
BPIC15F5 20% 8,641

SEPSIS 90% 166

leading to approximately the same mean total time (1.7% decrease in execution time). Nevertheless, it should

be noted that this states reduction has a much greater effect on the complex log-model pairs, resulting in a540

reduction of the average time of 15.3%. Note that these percentages are measured with the PRG optimization

enabled, as reach will also enable all optimizations. The improvements in states discovered and execution

time remain consistent with the PRG optimization disabled. This means that the SRModel optimization

helps reach to solve harder problems, without losing average performance on simple models. The SRModel

optimization has a greater impact for bigger models, especially when the alignment between the model and545

the trace is very poor, which happens when the fitness is lower, i.e., for models that do not support much

behavior of the log.

The States Reduction forcing asynchronous Log moves (SRLog) optimization reduces the number of

discovered states by 15.1% for simple models and 10.5% for complex models. It outperforms SRModel in state

reduction for simple models, while SRModel achieves better state reduction for complex models. Nevertheless,550

SRLog stands out for its performance improvements for more complex models, reaching an average reduction

of 31.2% of the execution time. SRLog is more effective in models with many branches since forcing an

asynchronous move in the log will remove all the states generated by each enabled activity on the model. As

SRModel, this optimization has a great impact on models with low fitness since the probability that the

activities of the remaining trace do not appear in the model is much higher. Its performance improvement is555

also evident in simple models, with an average execution time reduction of 12.2%. This is due to the fact

that a significant portion of the computational cost of SRLog can be executed during an initialization phase,

thereby reducing the time spent on each state.

The SRLog optimization requires an initialization phase whose execution time is generally very low for

most of the log-model pairs. This initialization has been taken into account in the times reported on Table 3.560

To further investigate this initialization time, Table 4 shows in descending order the 11 highest execution

times for the initialization of the SRLog optimization for the models from (Reißner et al., 2020b). For all
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other log-model pairs, the execution times of this initialization are less than 100 milliseconds. Therefore, the

SRLog optimization incurs negligible penalties in terms of execution time. Moreover, it is worth mentioning

that in almost all cases in which the initialization takes more than 200 milliseconds —8 out of 10—, the565

algorithm would still take more than 5 minutes to finish if the optimization was disabled, so SRLog is

improving the algorithm’s performance. In the other 2 log-model pairs —BPIC15F5 with models with 100%

and 90% behavior supported—, the initialization takes less than 15 seconds while the algorithm takes around

28 seconds.

SRModel and SRLog can be combined to complement each other and avoid redundant tasks. Enabling570

both optimizations results in an even better reduction in the number of discovered states —24.0% for simple

models and 32.4% for complex models— and total execution time —11.9% for simple log-model pairs and

40.1% for complex ones.

In conclusion, the proposed optimizations for reducing the number of discovered states improve very

significantly the efficiency of reach over the test dataset, being the cause of its high performance when575

compared to the state-of-the-art proposals.

5.4. State of the art comparison

We compare reach with several publicly available algorithms of the state of the art. We have included

techniques that obtain the optimal alignments —ProMNoILP (Adriansyah, 2014) (ProM, PNetReplayer

v6.11.191), ProMILP (de Leoni and van der Aalst, 2013) (ProM, PNetReplayer v6.11.191), ProMLP (Car-580

mona et al., 2018) (ProM, PNetReplayer v6.11.191), eMEQ (van Dongen, 2018) (incremental version,

ProM, Alignment v6.10.122), RecomposingReplay (Lee et al., 2018) (ProM, DecomposedReplayer v6.9.97),

PartialReplayer (Lu et al., 2015) (ProM, PartialOrderReplayer v6.9.177), AutoConf (Reißner et al., 2017) (Au-

tomataConformance v1.2 (Reißner et al., 2020b))—, and techniques that do not necessarily return the optimal

alignments —AutoSComp (Reißner et al., 2020a) (AutomataConformance v1.2), AutoTRSComp (Reißner585

et al., 2020b) (AutomataConformance v1.2) and AutoHybrid (Reißner et al., 2020b) (AutomataConformance

v1.2).

In the experiments, each algorithm is provided with a log in XES format, and one of its discovered models,

in PNML format, and it returns one alignment per trace. All algorithms are configured in multi-thread mode

to get the speedup of parallel processing. Furthermore, for each log-model pair, we measure the execution590

time from the moment the algorithm receives the inputs until it obtains the alignment for each trace of

the log. Hence, we also account for the time needed for parsing the inputs (log and model) and writing

the alignments. This is because some algorithms may involve pre/post-processing steps that should not be

excluded from the total execution time as it would be unfair to other algorithms. Finally, once the alignments

are obtained, for each trace we check whether its alignment is valid and, if applicable, whether its cost is the595

same as the alignments for that trace returned by the other optimal algorithms. Note that the alignments
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Figure 11: Solved problems of each algorithm with a time limit of 10 seconds.

returned by non-optimal algorithms are considered a solution, regardless of whether their cost for each trace

is optimal or not. Although performing the comparison in this way is unfair for optimal algorithms like

reach, the aim is to show whether they obtain better results even with this disadvantage.

For practical reasons, we set a time limit for the computation times of the log-model pairs. We have600

considered two time limits —10 and 300 seconds—, and for each of them we analyze the performance using

several visualizations. The first one is a graph that shows the number of log-model pairs that have been

successfully computed —the algorithm returns the best alignment it has found— over time. Note that if an

algorithm is not able to compute a log-model pair, e.g., it gets stuck processing a trace or cannot align some

structures and throws an error, it is considered as if the time limit was reached. The second visualization is a605

ranking that compares the time taken by each of the algorithms to align each log-model pair. Furthermore,

we also provide tables that show how the fitness and precision of input log-model pairs can affect the number

of problems solved by each algorithm, highlighting the algorithm that solves the highest number of pairs

within the given fitness or precision range.

5.4.1. Results with a time limit of 10 seconds610

Figure 11 shows the results of the algorithms for a time limit of 10 seconds. It can be seen that all the

algorithms compute the simplest alignments in less than 1 second. However, after that point, the curve

representing reach sharply rises above those of the other algorithms. This indicates that reach is able to

process a significantly larger number of log-model pairs in less time. In just 1.5 seconds, reach successfully

processes 117 pairs. Meanwhile, the second-best algorithm —eMEQ—, which is also optimal, computes615
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Table 5: Number of solved problems of the tested algorithms with a time limit of 10 seconds, splitting log-model pairs by fitness
and precision.

Fitness Precision
Algorithm 0.0-0.25 0.25-0.5 0.5-0.75 0.75-1.0 0.0-0.5 0.5-0.75 0.75-1.0
REACH 0 22 64 121 1 32 62

ProMNoILP 0 16 45 102 1 21 55
ProMILP 0 15 44 99 1 26 52
ProMLP 0 16 42 100 1 24 53
AutoHybrid 0 4 35 85 1 16 40
AutoTRSComp 0 2 31 76 1 16 31
AutoSComp 0 15 42 82 1 19 49
AutoConf 0 9 42 100 1 28 53
eMEQ 0 16 43 105 1 27 60
PartialReplayer 0 14 19 51 1 10 36
RecomposingReplay 0 15 9 62 1 16 35
Number of problems 3 28 66 130 1 33 62

85 pairs, closely followed by the optimal algorithm AutoConf and the non-optimal algorithm AutoSComp,

both of which compute 84 pairs in that time. This faster behavior of reach is even greater for log-model

pairs that require more computation time, showing the scalability of our approach. Thus, in 9 seconds

reach is able to successfully complete 204 pairs, while the second-best algorithm —eMEQ— computes 152.

Upon reaching the 10-second time limit, reach has processed 207 out of 227 log-model pairs, whereas the620

second-best algorithm, eMEQ, is only able to complete 164 pairs. Note that the next best optimal algorithm

—ProMNoILP— achieves a solution for 163 log-model pairs. Therefore, with a limit of 10 seconds, reach

has a performance that is 26% better than the best state-of-the-art algorithm.

Table 5 displays the solved log-model pairs per algorithm in a timeout of 10 seconds, categorizing problems

by fitness and precision levels. It should be noted that the algorithm used to compute precision is Alignment625

Based Precision Checking with one optimal alignment (Adriansyah et al., 2013), and that this algorithm is

not able to compute some log-model pairs due to the high execution time and memory requirements —this is

totally independent of the alignment algorithm. This analysis allows us to examine how fitness and precision

can affect the performance of each alignment algorithm. Regarding fitness, reach consistently outperforms

the state of the art. There is no clear effect on the number of solved problems depending on the fitness value.630

However, no algorithm can solve log-model pairs fitnesses lower than 0.25 in 10 seconds or less. This outcome

is expected because these represent the most challenging problems: a lower fitness means a higher cost of the

optimal alignment, and alignments of higher cost —with more misalignments to repair— are much more

difficult to compute. In terms of precision, reach also solves more problems than the state of the art, with

the exception of precision values lower than 0.5, where there is only one example solved by all algorithms.635
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Table 6: Performance ranking of the tested algorithms.
a With a time limit of 10 seconds.

rank
REACH 3.405
ProMNoILP 5.084
AutoSComp 5.132
AutoConf 5.460
eMEQ 5.518
AutoHybrid 5.597
ProMLP 5.888
ProMILP 6.081
AutoTRSComp 6.319
RecomposingReplay 8.566
PartialReplayer 8.949

b With a time limit of 300 seconds.

rank
REACH 3.242
ProMNoILP 4.641
eMEQ 4.998
ProMLP 5.390
AutoSComp 5.399
AutoConf 5.678
ProMILP 5.797
AutoHybrid 5.945
AutoTRSComp 6.888
RecomposingReplay 8.980
PartialReplayer 9.042

Similarly to fitness, the precision level of input log-model pairs does not affect on the number of problems

solved by reach.

We have also compared the execution times that each algorithm needs to solve each of the 227 log-model

pairs. To establish whether there are statistically significant differences between reach and the other tested

algorithms, we performed a non-parametric test using the execution times. First, a Friedman’s Aligned Ranks640

test with a significance level of 0.05 has been applied. The ranking is calculated by ordering the execution

times of all the algorithms for each log-model pair —the best algorithm obtains a rank of 1—, and then

averaging the ranking of each algorithm in all the log-model pairs. The results of this test are summarized in

Table 6a. The table clearly shows that reach achieves the top ranking. In the second position, we find a

non-optimal algorithm, AutoSComp, followed by the second-best optimal algorithm, PromNoILP.645

As the p-value of the Friedman test is lower than 10−5, there are significant differences in performances

among the algorithms. Thus, we applied Holm’s post hoc test to perform a pairwise comparison between

reach and the tested algorithms. The results of this test confirm that there are statistically significant

differences between reach and the other algorithms, with p-values consistently lower than 10−5. Therefore,

we can conclude that reach is, on average, the fastest algorithm in our experiments over 227 diverse650

log-model pairs.

5.4.2. Results with a time limit of 300 seconds

Figure 12 depicts the results of the algorithms for a time limit of 300 seconds. reach computes 216

log-model pairs in less than 45 seconds, reaching the time limit in only 11 of them. Conversely, other

fast algorithms require more time to compute alignments, delivering results progressively and nearing the655

5-minute time limit —and cannot return optimal alignments for some log-model pairs for which our approach

is successful. Concretely, after 45 seconds of execution, the second-best optimal algorithms —eMEQ and
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Figure 12: Solved problems of each algorithm with a time limit of 300 seconds.

ProMNoILP— align 195 log-model pairs, and the next best optimal algorithm —ProMILP— solves 194

pairs, while reach aligns 9% more log-model pairs. When the time limit of 5 minutes is reached, the fastest

algorithms after reach are eMEQ, ProMLP and ProMNoILP, with 214, 212, and 210 solved log-model pairs660

respectively —in the best case, they solve 2 log-model pairs less than reach solves in less than 45 seconds.

For the 227 tested log-model pairs, reach is the fastest optimal algorithm in 125 pairs. In the remaining

pairs, the computation time of reach is, at most, 3 seconds slower than the fastest algorithm for each

pair, except for 3 log-model pairs from Noisy logs (Munoz-Gama, 2013), for which only eMEQ is capable

of finishing within the given timeout. These models are synthetic with extensive parallelism, leading to an665

excessive number of states that most algorithms cannot efficiently explore. As stated in (van Dongen, 2018),

the logs for those models were built with vast amounts of swapped activities towards the end of the traces,

which is a known weakness of A*-based methods. The ILP-based heuristic proposed in (van Dongen, 2018)

is very effective in detecting swapped activities. However, this method spends more time computing the

heuristic on each state, which makes it slower on average in the complete test dataset.670

Our algorithm is the only one capable of computing alignments for the most complex models of the

BPIC15 log. The primary contributor to the success of these log-model pairs is the SRLog optimization,

which can prevent timeouts on its own. These examples have a large number of transitions (around 130), of

which a considerable amount are silent transitions (around 60), leading to the generation of a large number

of model moves needed from each state explored by the A* algorithm. The proposed optimization benefits675

from this situation, as it reduces the number of states when possible by forcing an asynchronous move in the

log and avoiding all those unnecessary model moves.

32



Table 7: Number of solved problems of the tested algorithms with a time limit of 300 seconds, splitting log-model pairs by
fitness and precision.

Fitness Precision
Algorithm 0.0-0.25 0.25-0.5 0.5-0.75 0.75-1.0 0.0-0.5 0.5-0.75 0.75-1.0
REACH 3 22 65 126 1 33 62

ProMNoILP 3 22 64 119 1 30 60
ProMILP 2 22 64 122 1 33 61
ProMLP 3 23 63 123 1 32 61
AutoHybrid 0 4 37 101 1 25 43
AutoTRSComp 0 2 31 94 1 22 38
AutoSComp 0 19 45 101 1 27 55
AutoConf 3 9 45 105 1 29 55
eMEQ 3 22 62 127 1 33 62

PartialReplayer 0 21 60 119 1 32 61
RecomposingReplay 0 17 39 97 1 29 50
Number of problems 3 28 66 130 1 33 62

Table 7 displays the solved log-model pairs per algorithm within a timeout of 300 seconds, categorizing

problems by fitness and precision levels. Focusing on fitness, eMEQ and ProMLP solve one more problem

than reachin ranges 0.75-1.00 and 0.25-0.50, respectively, but overall, reach consistently matches the680

performance of the best state-of-the-art algorithms. We have observed no correlation between the fitness

range of the input problem and the number of problems solved by reach. In terms of precision, reach

is matched by eMEQ, while algorithms like ProMILP, PromLP or PartialReplayer exhibit very similar

performance solving one or two less log-model pairs than reach. Again, we have observed no correlation

between the precision range of the input problem and the number of solved problems of reach. As shown685

in Figure 12 even though reach solves almost the same number of problems as some algorithms, it does so

much faster than the state of the art.

In the rankings (Table 6b), reach holds a position with a score of 3.242, surpassing the next best

algorithm from the state of the art (ProMNoILP) with a ranking of 4.641. This reinforces the confidence that

reach is much faster, as this rank compares the time to compute alignments for each log-model pair. To690

confirm again that there are statistically significant differences between reach and the other algorithms for

a time limit of 300 seconds, we have repeated the Friedman’s and Holm’s tests —based on the ranking from

Table 6b. Regarding Friedman’s test, reach has the best ranking with a p-value lower than 10−5, indicating

again that there are statistically significant differences in the performances of the algorithms. Furthermore,

Holm’s test allows the rejection of the null hypothesis in all the pairwise comparisons between reach and695

the other algorithms, since the p-values are lower than 10−5 in all cases.
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5.5. Limitations

Although reach achieves superior performance compared to state-of-the-art algorithms, it still presents

certain limitations. reach does not succeed in solving 11 of the 227 tested log-model pairs due to the nature

of the A* search: the number of states to explore explodes based on the complexity of the models and logs,700

as well as the cost of the optimal alignment. There are several factors that affect the performance of the

algorithm in those cases, among which we highlight:

• The parallelism allowed by the process model, i.e., the average number of enabled activities for each

reachable marking. Each of those activities must generate a new neighboring state by performing a

model move when that marking is reached. Each state added to the search space when exploring the705

neighbors of a state exponentially increases the time complexity, as each generated state is recursively

explored if the search algorithm requests it. This is aggravated by the presence of silent transitions,

which allow reaching different markings of the process model without increasing the cost, effectively

raising the number of neighboring states. Loops also contribute to this by removing the length limit of

paths through the model.710

• The length of each trace directly affects the number of moves required in the optimal alignment. As

alignments are constructed from start to end, adding a move at each state transition, the depth of the

solution in the search space increases with the addition of an event to the trace. Increasing the depth

of the explored search space exponentially raises the time complexity of the algorithm.

• The cost of the optimal alignment, i.e., the minimum number of errors that must be repaired for the715

trace to follow a valid path through the model, forces the A* search to explore more states. This

is because the solution will include more asynchronous movements of cost 1, compelling the search

algorithm to ensure that there are no complete alignments of lower cost than the optimal one.

Among the 227 tested log-model pairs, reach was not the fastest optimal algorithm in 100 instances.

Notably, these cases primarily correspond to the simplest problems in the experiment. This observation720

is visually supported by Figure 11, where it can be seen that reach takes slightly longer to solve most

of the problems that take less than one second. The median delay of reach with respect to the fastest

optimal algorithm for each of these pairs is 204ms, and the fastest algorithm is not always the same, varying

among ProMNoILP, ProMILP, ProMLP, AutoConf, eMEQ and RecomposingReplay. The delay observed in

simple log-model pairs for reach is primarily attributed to the extended initialization time required by the725

proposed optimizations. These optimizations have been designed with the aim of enhancing performance in

the context of complex log-model pairs.

Even with all optimizations applied, reach was unable to complete the alignments computation for 11

of the tested log-model pairs within less than five minutes. The only optimal algorithm capable of solving

three of these pairs is eMEQ (van Dongen, 2018). This algorithm uses a complex heuristic based on Integer730
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Linear Programming (ILP), which proves more effective than reach at detecting misalignments toward

the end of the trace. For each state, the ILP solver can estimate the minimum cost of a solution without

overestimating it, thus suiting A* heuristics. Although this estimation is computationally expensive, it is

more accurate than reach , making eMEQ capable of solving three log-model pairs that reach cannot

finish within the given time limit.735

6. Conclusions and future work

We have presented reach, an A*-based algorithm that computes in a very efficient way optimal alignments.

The main contributions of our proposal include techniques designed to minimize the number of states explored

by the A* algorithm and the utilization of a partial reachability graph for faster execution of process models

during alignment computation. We have tested our proposal with 227 log-model pairs from different domains740

and discovered using different algorithms. We verified the performance of each contribution of our algorithm

by partially enabling the proposed optimizations, and we have compared the performance of our proposal

with 10 state-of-the-art conformance-checking algorithms. Results show that reach aligns 95% of the

tested log-model pairs in less than 45 seconds. Remarkably, our proposed optimizations empower reach to

complete alignments in just 45 seconds for two log-model pairs that no other algorithm can solve within a745

5-minute time frame. Moreover, for a 10-second time limit, it also aligns 26% more pairs than all the other

optimal state-of-the-art algorithms. reach exhibits exceptional speed, outperforming all state-of-the-art

approaches by aligning 55% of the log-model pairs more rapidly than any other algorithm. Our performance

improvements enable the efficient computation of optimal alignments, allowing users to perform more precise

conformance checking. By eliminating the need to rely on fast but less accurate methods, our approach750

opens up new possibilities for the application of conformance checking in real-world scenarios.

However, reach still presents some limitations that should be addressed in future work. It currently

proposes a balanced heuristic between accuracy and computing time, but this may not return the fastest

solution for some log-model pairs: (i) for some high-complexity pairs, Integer Linear Programming (ILP) can

be used to define more accurate heuristics (although slower) than our heuristic, or (ii) very easy to compute755

optimal alignments, that could be solved faster by algorithms that compute simple heuristics very quickly,

albeit inaccurately. The SRLog optimization also slightly increases the computation time for the simplest

problems due to the relatively slow initialization phase. Therefore, as future work, we plan to develop a more

advanced heuristic based on ILP, focusing on reducing the time spent on each state. Nevertheless, simpler

problems are solved faster when using simpler heuristics and disabling the SRLog optimization. Hence, we760

will propose a new classification technique that, based on the characteristics of the input log and model,

selects the heuristic and optimizations that best tackle the given problem.
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