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Abstract

In this paper a model for the represen-
tation and execution of fuzzy tempo-
ral rules is presented. The model here
described permits using temporal refer-
ences in the propositions either absolute
or relative to occurrence of events. A
complete formal description for the rep-
resentation model is proposed, together
with examples. For the reasoning model,
some expresions for common use situa-
tions are also presented.

Keywords: fuzzy temporal rule, tem-
poral reasoning

1 Introduction

The control environment is essentially an appli-
cation field in which variables are dynamic and
changeable. In spite of this, it is curious to note
that there has been a tendency, it would seem, to
opt for simple and basic fuzzy reasoning models,
without paying hardly any attention to the possi-
bility of representations of knowledge that explic-
itly manipulate time and reason on it. In our opin-
ion, this noticeably limits the possibilities for the
expansion of fuzzy reasoning to applications which
demand more expressive forms of dealing with ex-
pert knowledge. The greater complexity required
at an operational level by fuzzy temporal rules
(FTRs) may be, without doubt, one of the causes
of this. On the other hand, the fact that there are
still no well-defined models nor computer aid tools
for the design of FTR-based systems, means that
the use of this form of knowledge representation is
very limited, which, in turn, limits the interest of
the research and technical communities in FTRs.

In this work, our objective is to present an initial
approach to a formal FTR model, which may be
used for representation of and reasoning on fuzzy
temporal knowledge. We present an FTR model
that is endowed with substantial expressive capa-
bilities, and analyze the FTR execution process,
including some examples by way of illustration.

Vitek [13] was the first to attempt to formalize the
representation of fuzzy time by means of intervals
associated to fuzzy sets. Dubois and Prade for-
malize the concept of fuzzy time in [6], laying the
foundations for the representation of imprecision
and uncertainty in temporal knowledge with the
theory of possibility. They introduce the concepts
of date and fuzzy time interval, shaping the possi-
ble fuzzy relations between these temporal entities
through fuzzy relations on the real line.

With regard to models of fuzzy temporal reason-
ing (fuzzy reasoning that explicitly takes into ac-
count the presence of temporal references), these
fundamentally deal with constraint network mod-
els [2, 9] and fuzzy rules which, in one way or
another, explicitly introduce time as another de-
cision variable. In [10] Qian introduces a model
for what he calls fuzzy proposition reasoning and
temporal reasoning, defining a temporal descrip-
tor TD;(P;) as an operator describing the time
characteristics of a fuzzy proposition P;. The tem-
poral descriptor can describe three forms of tem-
poral relationship: absolute (“real clock” time de-
scription), relative (related to a temporal refer-
ence point), and before/after (particular case of
a relative time description). One of the main,
and most important, limitations of Qian’s model
is that it is incapable of handling persistence over
time of conditions of the value of the variables that
are handled. On the contrary, one very relevant
characteristic of this model is that it enables us to



deal with all basic temporal relations [1] amongst
temporal entities (time instants or intervals).

Another proposal for FTRs was given by Virant
and Zimic [12], where one of the most interesting
contributions is the introduction of the concept of
“time dependent fuzzy set” (A(¢)). Furthermore,
they introduce the concept of “fuzzy time opera-
tor” (D¥) and its application to fuzzy sets. Maeda
et al. [8] propose a reasoning method that incor-
porates a vague time delay into fuzzy if-then rules
(dynamical fuzzy reasoning method). This is a
similar proposal to that of Carse et al. [5], which
deals with establishing a validity time for the re-
sult inferred by a rule. Raha and Ray [11] put
forward a model for the representation and ma-
nipulation of vague time, following the scheme of
[6]. As an innovative aspect, they indicate that
on occasion, it is necessary to represent temporal
entities by using relational matrices.

2 Model of Fuzzy Temporal Rules

2.1 Time Ontology

For representing temporal entities, and following
[6, 7], we assume a discrete time axis 7, where
time point tg € 7 is assumed to be the time origin,
and Vk € Z (Z being the set of integer numbers),
0 =ty — tp_1 1s assumed to be a constant. The
following temporal entities [2] are also considered:
- Instant i. Represented as a normalized and
unimodal possibility distribution p;(tg): repre-
sents the possibility of ¢ being precisely time point
tp €T.

- Temporal distance (duration) D. Repre-
sents quantities of time. A fuzzy temporal dis-
tance is represented by a possibility distribution
wp over Z, the elements of Z representing units of
time 4.

- Interval I(ip,ie, D). Defined based on its begin-
ning 7, and ending ¢, instants, and its duration D.
In general, it is managed by means of a possibility
distribution pj over T comprising the time points
that are possibly after i, and before i,.

Furthermore, we consider the basic temporal re-
lationships (qualitative and quantitative) [2] be-
tween these entities, at the level of instants and
intervals (¢ —4, ¢ — I, I — I), and between tempo-
ral distances (D — D). We assume that all these

relationships can be reduced to relationships be-
tween time points and temporal distances, where
the function that defines this relationship can be
expressed as [6]:

Rt,t)=A(t—t)=A(kd),keZ (1)

Some examples of this kind of relationships are:
before, at the end of... We do not consider in any
case expressions that make reference to the future.

Using operator &, that represents the fuzzy addi-
tion operation, defined as:

Vt € 7, ppar(t) = Supi—p 4msmin (MD(m), MT(t’)) )
with ¢’ € 7,m € Z, we have

* Absolute time: T, which can always be ex-
pressed as D @ tg.

* Relative time: D@ T,.s, bearing in mind that
it always has to be prior (or equal) to tnp (the
current time point). T is in this case the entity
that is associated to the occurrence of the refer-
ence fact.

In this manner, we may have absolute and rela-
tive temporal entities. We should strictly consider
that the specification of time associated to a fact
in absolute terms is any one relative to a fixed
entity of time, whilst a specification of time asso-
ciated to a fact in relative terms will be the one
that depends on a temporal entity that is linked
to the occurrence of other facts.

2.2 Ontology of facts

We assume that we are operating with discrete
signals S, described by means of a function S(t),
which represents the history of crisp values.

We suppose that there are two types of signals:

- Observable: signals whose values are supplied
from outside the system, by means of sensors, file
readings, etc.

- Inferible: signals whose values are supplied by
the system itself, by means of inference processes
based on prior observations and/or inferences.

We also assume two basic types of facts that can
be referred to in the FTRs:

- Event: a fact associated to a temporal instant,
fuzzy or not (it may be a simple numeric or sym-
bolic value). It is a fact with a null duration (its



real duration is inferior to the temporal unit).

- Episodes: a fact associated to a temporal in-
terval, fuzzy or not, in which the conditions which
identify the fact itself persist. It is a temporal fact
with a non null duration.

All the facts (observed or inferred) are associated
to absolute times, precise or not. This allows the
establishment of a total order between the known
facts. On the other hand, it will be assumed that
the signal histories will conform sequentially in
time. We are therefore orientating our model to-
wards real time applications.

2.3 Model of Fuzzy Temporal Rules and
Propositions

FTRs will take the form:

IF P; and P, and ... and Py; THEN C7 and Cy
and ... and Cyn

where P,,, m = 1,..., M, are propositions of the
antecedent part of the rule, and C,,, n =1,..., N,
of the consequent part of the rule (conclusions),
which take the form C,, : (Sp, Va,Ty), S, being
an inferible signal, V,, the value (represented by
a non-temporal fuzzy set) inferred for this signal
and T, the time (fuzzy instant or interval) associ-
ated to the inferred value.

For the antecedent part, we contemplate a propo-
sition format with a great degree of expressive-
ness, which enables us to represent facts in which
information of a spatial or a temporal type that
is linked to them may be fuzzy, and be given in a
manner that is absolute or relative to other facts.

The most general form of the fuzzy temporal
proposition is the following one:

P:(S,Cy,Cr,TC,0,Cvo,Cro),

where S is a signal and the remaining elements,
different spatial or temporal constraints on it:

- Value Constraints: Cy is a spatial (non tem-
poral) value constraint on the signal. It may be
given in an absolute manner (Cy(u) = V(u),
e.g. ‘“high”, V representing the possibility dis-
tribution that defines linguistic value high), or
related to another spatial reference value V.r
(Cv(u) = (A& Vief)(u), e.g. “greater than 30°7).
In the latter case, it is supposed that any con-

straint based on a relation between spatial values
will take this form, A(u — u’) being the function
that defines the relationship between spatial val-
ues on the universe U and @, the operator of the
fuzzy addition.

- Temporal Constraints: Cr is an absolute or
relative temporal constraint. Examples of this
type of constraint are “throughout the last half an
hour”, “before the mazimum value of temperature”.

- Temporal Context: T'C is the temporal con-
text of signal evaluation, which establishes a tem-
poral window (interval) within which the propo-
sition will be evaluated.

- Operators: O represents an operator belonging
to one of the following types:

* Quantification operators: all, the majority,
between 3 and 5, approximately half,... In some
cases it may be of interest to quantify the fuzzy
temporal propositions, as in “the temperature has
been high during the majority of the last half an
hour”.

* Specification operators: first, last, maxi-
mum, minimum,... These select one candidate
from amongst various, according to a specific cri-
terion (spatial and/or temporal).

* Reduction operators: mean value, accumu-
lated value,... In this case the constraint operates
on the spatial values that are observed or inferred
for the proposition, in order to return a new one,
calculated on the basis of the former ones.

- Second order value constraints: Cyo is a
spatial value constraint, which acts on the resul-
tant of applying an operator O (“greater than the
mean value”...).

- Second order temporal constraints: Crp is
a temporal constraint, acting on the resultant of
an operator O (“a little after maximum value”...).

The following examples show representations of
different propositions in accordance with the
model we propose:

Example 1: “The majority of the temperature
values throughout the last few seconds have been
high”, is represented by:

P : (S=temperature, Cy=high, Cr=the last few
seconds, Og=the majority).



Example 2: “The mean value for the temperature
over the last 48 hours was moderate”.

P : (S=temperature, Cp=last 48 hours,
Ogr=mean value, Cyo =moderate).

3 Execution of Fuzzy Temporal Rules

In principle, for each one of the constraints present
in a proposition we can obtain an associated de-
gree of fulfillment (DOF), which indicates the de-
gree in which this constraint is verified accord-
ing to the evaluation instance, EI, understood as
the set of data (spatial and temporal values and,
where appropriate, associated DOFs) considered
in order to be compared with the proposition at
the instant of the evaluation of the rule. The eval-
uation time for a rule will be the current time
point 0w, which may be used as a reference time
in the propositions in the antecedent part of the
rule. On the other hand, it will represent the ref-
erence instant for the consequent part of the rule,
in the case of the rule being executed. Further-
more, it should be borne in mind that during the
evaluation of propositions in real time, the evalu-
ation scenario will alter as time advances. In the
case of there being a temporal context T'C' defined
explicitly for the proposition, different evaluation
instances may be obtained from it, so that the
remaining constraints will be evaluated on each
one of them. In the absence of other explicit cri-
teria, it will be considered that the result of the
evaluation of a proposition in a given temporal
context is the one that is obtained on the basis
of the best of the possible evaluation instances.
All these partial DOFs contribute to obtaining a
DOF,, for each proposition P,,. The execution of
a rule involves the evaluation of each one of the
propositions P,,,, m = 1,..., M, which make up
its antecedent part, and the calculation of a global
DOF for the entire antecedent part, by means of
the usual conjunction process in fuzzy control.

3.1 Execution of independent
propositions

A proposition P,, is defined as independent if all
its associated constraints are absolute, i.e. can be
evaluated independently from any other temporal
fact or proposition.

The DOFs of the spatial and temporal parts of
the proposition participate in the calculation of
DOF,,, in the form shown in [3, 4]. The struc-
ture of the expressions for this calculation is a
function of the existence or not of quantifiers in
the proposition, and of their type. In general,
DOF,, = foo(Vin, Tn), where V;;, represents the
degree of fulfillment of the value constraints, and
T, the temporal distribution induced by the tem-
poral constraints. Og is the particular quantifica-
tion operator (in the case of it existing).

3.1.1 Fulfillment of the value constraints

For independent propositions, the degree of “spa-
tial fulfillment” (V},,) is calculated considering the
different value constraints on the signal:

Vi(t) = f (DOFCVm (), Om(t), DOFey,,, (t))

Different cases may come about, depending on the
type of constraints present in the proposition:

(i) The value constraint Cy;, is an absolute value:
Cy,, (u) =V (u) (e.g. V =“high”):

DOFgy, (t) = \/ TV (t,u) AV (u)
uelU

where IV represents observed or inferred values
for the signal, and U the corresponding universe
of discourse. This case includes those constraints
that are “relative” to an absolute reference value:
Cv,,(u) = (A & Vyer)(u), where A represents the
spatial relationship R with respect to a reference
value Vier (R(u,u’) = A(u — u'), for example,
“The temperature is much greater than 30°C").

(ii) If a reduction or a specification operator O ex-
ists, a second order constraint Cyo,, will operate
in the form:

Vin(t) = \/ Ovesvp,) IV (¥, w), T ()] AV (u)
uelU

V' being the value associated to the value con-
straint (Cyo,,(u) = V(u)), and T},,(t) the tempo-
ral reference induced by the temporal constraints
present in the proposition; the operator O acts on
the value instance of the signal IV and the tem-
poral entity T, and selects or obtains a new value
instance, on which the corresponding constraint
Cvo,, is applied. This can be seen in the follow-
ing example:



Example 3: “ The mazimum value of temperature
in the last few minutes has been high’.

P : (S =temperature, Cr=the last few minutes,
Ogs=maximum, Cyo=high).

The value constraint “high” is applied on the value
instance I'V*, obtained after applying operator Og
to the reference T'(t) defined by the temporal con-
straint “the last few minutes” and the value in-
stance IV of observed temperature values.

3.1.2 Fulfillment of the temporal
constraints

The evaluation of the degree of fulfillment or mem-
bership to the temporal part of the proposition
implies obtaining a distribution 75, (t), associated
to the set of time points on which the rest of the
constraints have to be evaluated. Hence, the most
general case will be a proposition with temporal
constraints, context and operators:

Ton(t) = Cr,, (£) ATCo(t) A DOFp, (t) A Cro, (t)

Nevertheless, it is worthwhile describing some of
the more simple situations in a more detailed way:
(i) Only temporal constraints Cr,, and context
TCr,, both absolute temporal references: T, (t)
will be determined by the possibility distributions
associated to these references (either temporal in-
stants or intervals, fuzzy or not),

Tn(t) = Cr,, (1) ATCin(t)

(ii) If the temporal constraint Cr,, is relative to
another absolute temporal reference T (instant
or interval) we have (sect. 2.1) Cp, = D & T*,
D representing the relationship between temporal
entities, and thus,

Tn(t) = (D& T)(t) NTCn(t)

which, as can be seen, is reduced to the previous
case, as happened with spatial constraints.

(iii) When operators O,, which act on the tempo-
ral part of the proposition exist (e.g. “last”):

Tyn(t) = DOFo () A Cr. (£) A TComl(t)

If in example 3 the specification operator is
changed to “last”. “The last value of temperature

in the last few minutes has been high”, we have:

V(t) = \/ Ovesvpr) (IV(¥,u), Cr(t)) AV (u)
uelU
Tn(t) = DOFo(t) A Cr(t)

where S=“temperature”, Cpr="the last few min-
utes”, O="last” and Cy o=V ="high”. We see that
when O is applied on the value instance IV of
the signal, within the temporal reference given by
Cr, a spatial value is obtained (on which the con-
straint Cy o will be applied), as well as a DOFp
(degree of fulfillment of the characteristics defin-
ing the operator).

Example 4: “Temperature was high at some
point during the last 30 minutes”, is described as:
P : (S=Temperature, Cy=high, Cr=the last 30
minutes, Og=3).

We assume that the membership function in

Cv=high C.= the last 30 minutes

Temp (°C) X
30 40 50 60 tnow'ao min  thow T

60

Figure 1: Calculation of DOF for proposition
“Temperature was high at some point during the
last 30 minutes”.

Fig. 1(a) represents the value constraint “high”,
time membership function in (b), the time interval
“the last 30 minutes” (temporal constraint), and
the recent history of temperature observed values
(S(t)) is the one described in (c). To obtain the
DOF of the proposition, we must combine the ful-
fillment of the spatial part V(¢) (in (d)) with the
temporal constraints, as shown in (e).

3.2 Execution of dependent propositions

When in a “natural language” proposition P, con-
straints that are function of relative values appear,



P,, is decomposed into a conjunction of several
related propositions (dependent propositions),
making all possible value or temporal dependences
explicit: P,, = PL A P2 A ... A PK. Thus, in or-
der to obtain the DOF for P, each one of the
constraints in P*, k = 1,..., K, has to be evalu-
ated. Dependencies in the propositions can be ei-
ther spatial (of value) or temporal. Depending on
the type of constraint which produces the depen-
dency, this evaluation provides the corresponding
value and time instances, and associated DOFs.

3.2.1 Value Constraints

In dependent propositions, the reference value
makes reference to the value instance IV* ob-
tained after another proposition P* has been
evaluated.

(i) In the case of relative value constraints, C¥ =
A®IVK TV being the value instance obtained
after evaluating the proposition P¥ being referred
to (I V¥ can be provided by the evaluation of a
value constraint C’{i—l , of a selection operator...):

VR = \/

(u,u")eUXU

IVEEu) A (A @ IV (W)

Example 5: “Temperature in heater 1 has been
greater than temperature in heater 2 during the
last few minutes”. According to our model, this
proposition is represented as Ps=P! A P2

P! : (S'=temperature in heater 1, C‘l,:greater
than IVZ2, CL=IT?) AND

P? : (S?=temperature in heater 2, TC?=the last
few minutes).

Evaluation of P? provides the value instance IV?
(temperature values in heater 2) and IT? (time
points associated to each of the values). In this
way, we can obtain IV! (temperature values in
heater 1, at each one of the time points in IT?).
On this IV, the value constraint C{, (“greater
than I'V?”) will be applied. Here, k = 1,k' = 2.

(ii) If a reduction or specification operator O ex-
ists, we have:

VES =\ OfcoupamIVFE,w), THE)) A

(u,u")eUXU

A (A @ IVF (4, u'))

The degree of spatial fulfillment V* corresponds
to the compatibility between the resultant of ap-
plying operator O to the corresponding value in-
stance of proposition P* over the temporal refer-
ence (T%), and the value constraint applied on the
value instance of the dependent proposition P*'.

Example 6: “Throughout a minute the mean
value of temperature in heater 1 is greater than
the mean wvalue of temperature in heater 27.
According to the proposed model of propositions,
Ps = P A P2

P! . (S'=temperature in heater 1, CL=IT?,
O}, =mean value, C{,,=greater than IV?) AND
p? : (S?=temperature in  heater 2,
C2=I(ib, ie, D=1 minute), O%=mean value).

The evaluation of both propositions is linked
through the references in the specification of P!
with respect to P?. Therefore, P? must initially
be evaluated: over the temporal context (in the
case of it existing) or over all the history of val-
ues, temporal instances will be taken (intervals in
this case, 1 minute long). In each one of these
instances, the operator O% will be evaluated, pro-
viding the mean value, in that minute, of all the
temperature values of heater 2. In order to eval-
uate proposition P!, we will obtain from P? the
set of temporal instances (intervals of 1 minute)
and the associated value instances (for each inter-
val 1 minute long, the mean value of temperature
in heater 2). This set will be the reference set
for the possible evaluation instances for P'. From
each element the temporal part will be used to
select values of temperature 1, in order to subse-
quently obtain the mean value (constraint OF),
and the constraint C},, (mean value of 1 greater
than mean value of 2) will be evaluated. In this
way, we obtain a set of values DOFC‘I/ o for each

evaluation instance of P'. The DOF for P! will be
obtained from the best of the possible instances:
the one that verifies all the constraints to the high-
est degree.

3.2.2 Temporal Constraints

We say that a dependent proposition through tem-
poral constraints exists when in a proposition P*
a reference is made to the temporal instance that
has been calculated for another proposition P*'.



(i) The reference value is given by the time of oc-
currence of a fact. In this case, the reference to
proposition P¥ describing the occurrence of the
considered fact must initially be solved. Evalu-
ating P*¥ we obtain IV¥ (spatial values verify-
ing the fact), DOFC‘,C// (degree of fulfillment of

this fact), IT* (time points verifying the con-
straint with a non-null value), and T* (degree of
fulfillment, for the points in IT*, of the tempo-
ral constraint). Therefore, we have that T*(t) =
(D& T*)(t), for t € IT*

Example 7: “Pressure was high a little before
temperature was low at some point during the last
half an hour”. P; = P' A\ P2:

P! . (S'=pressure, C} =high, Cl=a little
before(IT?), Og=3) AND

P? . (S?=temperature, C‘Q/:low, TC?=the last
half an hour).

The DOF of proposition P! depends on the eval-
uation instance of proposition P2?. Figure 2(a)
shows the history of recent temperature values
S%(t), assuming § = bmin. These values are
matched with the value constraint “low” in or-
der to obtain DOFC‘Q/ , shown as Temp. low in
Fig. 2(b), where the representation of the tempo-
ral context “the last half an hour” is also given.
IT? represents the temporal instance obtained af-
ter the evaluation of P?. Tt is the result of consid-
ering both the membership to the temporal con-
text “the last half an hour” and the value con-
straint “low”. Furthermore, IT? provides the tem-
poral reference for the evaluation of P!. Within
the temporal context TC? we have different tem-
poral instances in which the value constraint has
to be evaluated, thus we obtain a DOF: for each
one: how low the temperature is.

The process of calculating the fulfillment of the
temporal constraint C% is shown graphically in
Fig. 3. The temporal relationship “a little before”
is assumed to be defined as the possibility distri-
bution shown in Fig. 3 (a). The temporal refer-
ence lew is obtained as the fuzzy addition between
this possibility distribution and the temporal in-
stance IT?, which is shown in Fig. 3 (b).

(ii) If there are also temporal selection operators
in the dependent proposition, the DOF of the tem-
poral selection will have to be aggregated to the
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Figure 2: Calculation of the temporal instance for
proposition P? in example 7. In the time axis, we
are assuming tn, as the time origin (¢ = 0), in
order to make the representation more simple.
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Figure 3: Calculation of the temporal reference for
proposition P! in Ex. 7: “q little before (IT?)".

corresponding degree of temporal fulfillment.
T*(t) = T* (t) ATC*(t) A DOF o (t)

(iii) Finally, we can also have temporal constraints
on any operator:

Tk (t) = Cko(t) A TCH(t) A DOFqi(t)

In the following example we can see both cases
(selection operator and temporal constraint on the
selected value):

Example 8: “Between 6 and 8, pressure was high
a little after the last time temperature was high”.
Py = P A P%

Pl . (Sl=pressure, Cl=high, Cl=a little
after(I1T%)) AND

P? . (§%=temperature, C2=high, TC?=between
6 and 8, O%=last).

P? will be the first to be evaluated, providing
IV3(t), DOFz (t), DOFps(t) and TC?(t), with
t € IT? (set of time points in T'C? verifying
DOFC‘z/(t) # 0). Thus, T will be obtained
as: THt) = Cpo(t) A TC?*(t) A DOFp(t) =
(D @ IT?)(t) ATC?(t) A DOFps (t).



4 Discussion

The generalization of fuzzy rules to F'TRs, which
allows an explicit representation and handling of
time, can, no doubt, contribute to extending the
application domain of fuzzy logic, or at least, to
making the design of solutions for problems as-
sociated to dynamic systems and processes easier.
In this sense, the control environment is a paradig-
matic one, although, paradoxically, FTRs are not
yet being used in it as we think they should.

In this work we introduce a model of FTRs that,
although it is incomplete, attempts to represent
the semantic expressiveness of expert knowledge.
The expressive capacity of the model and how it
directly deals with imprecision and uncertainty
linked to information and knowledge, make it, in
our opinion, very promising for application in en-
vironments such as process control or monitoring,.

Regarding our current and future work, our aim is
to completely formalize the model, in such a way
that all possible interesting cases in fuzzy tempo-
ral reasoning systems are considered.
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