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Abstract

Object detection through convolutional neural networks is reaching unprece-

dented levels of precision. However, a detailed analysis of the results shows that

the accuracy in the detection of small objects is still far from being satisfactory.

A recent trend that will likely improve the overall object detection success is

to use the spatial information operating alongside temporal video information.

This paper introduces STDnet-ST, an end-to-end spatio-temporal convolutional

neural network for small object detection in video. We define small as those ob-

jects under 16 × 16 px, where the features become less distinctive. STDnet-ST

is an architecture that detects small objects over time and correlates pairs of the

top-ranked regions with the highest likelihood of containing those small objects.

This permits to link the small objects across the time as tubelets. Furthermore,

we propose a procedure to dismiss unprofitable object links in order to provide

high quality tubelets, increasing the accuracy. STDnet-ST is evaluated on the

publicly accessible USC-GRAD-STDdb, UAVDT and VisDrone2019-VID video

datasets, where it achieves state-of-the-art results for small objects.
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1. Introduction

Over the last years, the scope of object detection has witnessed significant

progress [1]. Most of the state-of-the-art methods share a similar two-stage

structure adopting the Faster R-CNN [2] approach, where a deep convolutional

neural network (ConvNet) backbone is firstly applied to generate a set of feature

maps over the whole input image followed by a detection-specific network [3, 4, 5]

that provides the detection results from the feature maps.

Small object detection, typically defined as objects with a size below 32 ×

32 pixels in widely adopted image datasets as MS COCO [6], is progressively

gaining more interest in the scientific community [7, 8, 9]. This permits to

tackle practical applications as sense and avoid on board of Unmanned Aerial

Vehicles (UAVs), or video surveillance tasks where early actions are required.

Small object detection accuracy lags behind that of larger objects [10], which

opens the way for more improvement. This is in part due to the lack of specific

architectures and datasets, with the exception of face detection, where objects

are usually of small size, which makes up a field of interest by itself [11, 9].

The lack of specific datasets with small objects has been partially addressed

with the rise of UAVs with built-in cameras to record wide areas in the wild with

small objects and decent quality. In particular, UAVDT [12], VisDrone2019-

VID [13] and, especially, USC-GRAD-STDdb [7] are video datasets with a large

percentage of small objects.

Video object detection has had a recent upturn with the advent of Ima-

geNet video object detection challenge (VID) [14], leading to spatio-temporal

ConvNets [15]. These networks have been tried to exploit the richer information

from several frames when compared to static images. Linking the same objects

across video to form sequences, or tubelets, to improve the classification score

has proved to be the most efficient technique [16, 17, 18] among the different

ways to tackle this issue [19, 20, 21, 22].

This paper addresses small object detection with STDnet-ST, a novel spatio-

temporal convolutional neural network aimed at video small object detection.
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Figure 1: STDnet-ST has two components: STDnet-ST ConvNet and STDnet-ST tubelet link-

ing. STDnet-ST ConvNet performs small object detection and correlation over two consecu-

tive frames. STDnet-ST tubelet linking creates tubelets in two stages: first, the correlation-

based tubelet linking creates tubelets (orange) across the last τ frames; then, tubelet suppres-

sion, generates additional nodes (�) to avoid unprofitable tubelets (red) while providing high

quality ones (green).

STDnet-ST is built on STDnet [7]. STDnet is a fully convolutional neural

network which provides the most likely areas of the image with small objects.

Once the most promising areas with objects are selected, the rest of the image

is dismissed, allowing to keep high level of detail in those selected areas without

affecting the computational performance. In this paper, we define small objects

as any potentially moving object of less than 16 × 16 pixels without definitive

visual cues to assign them to a category, following our previous work [7].

The main contributions of this work are (Figure 1):

• STDnet-ST, a spatio-temporal neural network built on STDnet for small

object detection that operates with two input frames simultaneously. Both

inputs are integrated together through a correlation module at shallower

layers and a final tubelet linking.

3



– The spatio-temporal ConvNet simultaneously generates the detec-

tions of the current frame, together with the correlations between

the current and previous frames. The correlation is performed in a

natural way over the most promising regions of the image, i.e., re-

gions provided by the shallowest layers of our network with a high

likelihood of having objects.

– The tubelet linking is based on the Viterbi algorithm, but we in-

clude three novelties. First, it uses the correlations generated by

the ConvNet to link the objects of the tubelet. Second, it scores

the associations between the objects, taking into account the confi-

dence variability of the tubelet, which is an indicator of the tubelet

confidence. Third, the tubelet suppression algorithm avoids unprof-

itable tubelets. This is achieved by inserting additional nodes to

each frame in the Viterbi algorithm based on the information com-

ing from promising areas without detections. All these contributions

allow STDnet-ST to increase the confidence of the detections most

likely to be true positives within high quality tubelets and decrease

the confidence of those most likely to be false positives within un-

profitable tubelets.

• STDnet-ST achieves state-of-the-art results for small object detection on

the publicly available datasets USC-GRAD-STDdb, UAVDT and VisDrone2019-

VID, over the very small object subset XS (≤ 256 px), defined in [7].

2. Related Work

The image object detection scope has followed two parallel trends: region

proposal based detectors (two-stages), according to the milestone set by Faster

R-CNN [2], and detectors that directly predict boxes from feature maps (one-

shot or one-stage), with SSD [23] and YOLO [24] as pioneers. A large number

of outstanding improvements have been derived from these architectures, being
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the two-stage Feature Pyramid Network (FPN) [25] noteworthy since it remains

as the baseline of the leading solutions in the COCO object detection challenge1.

The trend in small image object detection is to work on data from as fine a

feature map as possible, where small objects still have distinctive features. In

this line, FPN’s success in the small object subset of MS COCO is mainly based

on merging feature maps at different scales with a Region Proposal Network

(RPN) per scale [2]. Here, the coarsest RPN makes use of a shallow feature

map with stride 4, preserving fine details. In contrast, architectures like Faster

R-CNN present stride 16 as a starting point to seek for objects, which might

not suffice for a good accuracy in small object detection. Following the same

idea, RetinaNet [5] is an FPN-based architecture that removes RPNs and adds

two subnetworks —class subnet and bounding box subnet— to detect objects in

one-stage, including small objects. The main improvement is obtained through

a novel loss function (Focal Loss) to address the class imbalance in one-shot

detectors. Recently, [26] studies how to optimize the feature map multi-scale

integration by using gates to extract only useful semantic information, resulting

in a more effective feature map for object detection.

Similarly, our previous approach, STDnet [7], is a ConvNet for image object

detection able to keep a low stride of 4 from shallow layers. The key point

is the retrieval of the top-ranked regions with more likelihood of containing

small objects from shallow layers of the network. This allows to dismiss the

remaining part of the input image without affecting the final accuracy while

keeping a reasonable computing time.

As another approach, MDFN [27] is a recent one-shot ConvNet that proposes

only to exploit high-layers and, at the same time, improve the small and occluded

object detection. This is done by introducing inception modules with multi-scale

filters to enhance both the semantic and contextual information. Here, as in

STDnet, it is shown that context is quite relevant for detecting small objects.

Another promising research direction is based on boosting the scarce features

1http://cocodataset.org/#detection-leaderboard (Accessed: 2020-02-10)
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of small objects using super-resolution (SR) techniques. On the one hand, this

can be achieved by increasing the resolution of the whole input image [28], but it

affects the computing time considerably. On the other hand, this can be handled

by focusing only on the areas where there are small objects and applying there

SR techniques. As an example, Noh et al. [29] propose a SR feature generator

based on a GAN that learns to augment the features under the guidance of a

SR feature discriminator.

Concerning the refinement of the final bounding box, there are solutions built

on existing two-stage architectures that add additional headers to the existing

one. These additional headers can be composed of the last convolution blocks

[3, 7] or of fully-connected layers [2, 4, 25]. Finally, a classifier assigns a category

and a bounding-box regressor applies a final regression for each proposal. In

this line, various studies have attempted to improve the quality of the final

header. Gidaris and Komodakis [30] replicate the regressor stage to refine the

bounding-box iteratively. In [31], they combine various classifiers trained with

the integral loss. Similar ideas are exploited in [32] to build Cascade R-CNN,

improving two-stages detectors by applying consecutive headers trained with

different proposals so that each one is fed by the previous.

In [33], to also address the inaccurate localization, they propose a hierarchical

objectness network (HON) that refines the candidate proposals by what they call

stripe objectness, which computes the in-out objectness and border objectness,

instead of regressing the coordinates. With a similar purpose, Tao et al. [34]

introduce a Focused Attention (FA) mechanism along with a class aware RPN

(CARPN) which uses a new strategy for anchor generation that covers all scales

but with fewer anchors to considerably reduce false positive proposals.

Video object detection has been widely studied for the last few years [16,

17, 18]. Several methods have been re-adapted from successful architectures

in action detection [35, 36, 37]. Two-stream ConvNets are spatio-temporal

networks that have achieved remarkable results [35]. The two-stream method

has been studied by [37], where a Faster R-CNN has two RPNs operating over

two streams of spatial and motion information from stacking optical flow over
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several frames.

Concerning video object detection, the solution addressed in [16] builds on

R-FCN [4] with a correlation operator inserted between two input frames to

extract motion information of the objects across time. The correlation oper-

ates over the entire feature maps at different scales and estimates local feature

similarity for various offsets between the two frames. Then, they link the de-

tected objects into tubelets and reweight the detections’ scores within them.

Correlating whole feature maps implies that, as an object becomes smaller,

their movement represents a considerably smaller influence, even though the

correlation acts on several scales.

The approach in [19] performs video object detection in the current frame

and tracks the objects through neighboring frames in order to modify their

original detections for higher accuracy. The linking among detections in different

frames is based on the mean optical flow vector within boxes. Similarly, the

approach in [17] links objects into long tubelets using a tracking algorithm and

then adopts a classifier to aggregate the detection scores in the tubelets.

Another alternative for video object detection introduced in [18] proposes

a modified RPN called Cuboid Proposal Network (CPN) for detecting objects

in multiple input frames. The cuboid proposals are regressed and classified to

create short tubelets. Consecutive short tubelets are merged into long tubelets

by a linking algorithm that takes the best detection for each overlapping frame

between two tubelets.

In Flow-Guided Feature Aggregation (FGFA) [20], authors aggregate spatial

features over time based on feature correspondences computed by optical flow to

improve detections. Deng et al. present Relation Distillation Networks (RDN)

[21], which aggregate and propagate object relation using the region proposals

of current and neighboring frames to enhance the features of each object pro-

posal, and thus capturing the core features of a given object across a video. In

[22], authors introduce Memory Enhanced Global-local Aggregation (MEGA),

a spatio-temporal ConvNet that relies on a novel Long Range Memory (LRM)

module to efficiently aggregate global and local information from key frames.
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MEGA achieves state-of-the-art result (85.4% mAP) on ImageNet VID dataset

[14].

The spatio-temporal ConvNet for video object detection we present in this

paper, STDnet-ST, is built on our previous network, STDnet [7], which aimed

at image object detection. STDnet-ST works on two consecutive frames. The

retrieval of a fixed number of the top-ranked regions with more likelihood of

containing small objects by the underlying STDnet eases the spatio-temporal

procedure of STDnet-ST. In fact, as a difference with previous correlation-based

solutions like [16], which runs correlation on the whole feature maps, STDnet-

ST correlates pairs of regions with a high likelihood of having objects inside.

This is a key point for small object detection, as the influence of the objects in

the correlations calculated for the whole feature maps decreases with the size of

the objects themselves —correlation values are mostly due to the background.

Estimating the correlation for specific regions of the image allows to obtain

correlation values influenced by the objects. This, in turn, permits to process

only high quality tubelets by linking the objects inside such regions, which

increases accuracy.

3. STDnet-ST Architecture

STDnet-ST is a spatio-temporal convolutional neural network for the detec-

tion of small objects in video, i.e., objects smaller than 16 × 16 as defined in

this paper. STDnet-ST has two components:

• The spatio-temporal convolutional neural network, which takes as inputs

the current (ft) and previous (ft−1) frames, and returns the set of detec-

tions (Dt), their confidences (Pt), and the correlations (Sec. 3.1) among

the detections at t and t − 1 (Ct). These correlations will be used to

associate the detections of both time instants.

• The STDnet-ST tubelet linking, which is based on the Viterbi algorithm,

and includes the correlation-based tubelet linking and the tubelet sup-

pression procedure.
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Figure 2: STDnet-ST ConvNet architecture. Each branch performs RCN+RCL to obtain the

most promising regions (RCN regions) that are further refined into detections by the RPN

and a classifier. Simultaneously, the two sets of RCN regions feed a correlation module that

associates the correlation values to the final detections.

– The correlation-based tubelet linking (Sec. 3.2.2), that links the de-

tections obtained at different time instants (t = 1, . . . , τ), generating

the optimal tubelets along time for each of the objects. The final goal

of tubelet linking is to update the scores of the detections at time τ

using the previous τ − 1 detections, according to the confidence of

the whole tubelet (Sec. 3.2.2). A key element of the tubelet linking

is the correlation provided by the spatio-temporal ConvNet, which

evaluates the likelihood of the association of two detections. Also,

the scores are updated taking into account the confidence variability

of the tubelet, which indicates the confidence of the whole tubelet.

– The tubelet suppression algorithm, that filters the tubelets obtained

by the correlation-based tubelet linking, eliminating those that con-

tain incorrect data associations (Sec. 3.2.3).

3.1. Spatio-temporal ConvNet

Figure 2 shows the architecture of STDnet-ST, which consists of two sibling

branches together with a correlation operation among selected regions. Each of

9



the branches is based on the STDnet architecture [7], which is focused on the

detection of small objects in images, i.e., it does not take into account temporal

information.

The ability of STDnet to detect small objects is due to the high resolution

of the deeper feature maps of the ConvNet. This high resolution of the last

feature maps is possible because STDnet provides the most promising regions

of the image in the early stages, thus focusing only on those regions that most

likely contain small objects. The main components of STDnet are the following

—for a more detailed description refer to [7]:

• Early convolutions. In the shallower convolutional layers, STDnet learns

simple features from the objects of interest.

• Region Context Network (RCN). Just after the shallower convolutions,

STDnet applies a novel detector of promising areas over the last feature

map to select those regions that most likely contain small objects. Then,

the mt top scored regions Rt = {r1t , . . . , r
mt
t } are gathered in a single

feature map by the RoI Collection Layer (RCL). There are two main

differences between RCN+RCL and a typical RPN (Region Proposal Net-

work): (i) RCN returns always regions of a fixed size that contain at least

an object centering in it, while RPN returns bounding boxes of objects;

(ii) RCL generates a new synthetic feature map, meaning that two neigh-

boring pixels in the feature map that belong to two different regions are

not neighboring pixels in the original image.

• In the late convolutions stage, the feature maps have a high resolution

due to the memory saved by ruling out non promising areas. As the

output of the RCL is a feature map with disjoint areas, all convolutions

are designed to keep the features of each region separated from each other

through padding.

• STDnet has a single RPN that takes as input the fourth convolutional

block (conv4 ), which contains the most promising areas provided by the
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RCN but with richer semantic information.

• The last stage of STDnet refines the outputs of the RPN, generating the

final bounding boxes and classifications of the objects.

STDnet-ST works with two consecutive video frames, t and t − 1. Both

branches —based on STDnet— share the same weights throughout the execu-

tion. Each of the branches generates a set of detections (Dt) and their corre-

sponding confidences (Pt). As seen in Figure 2, the two branches are connected

through the correlation module. The correlation assesses the degree of matching

between a pair of RCN regions at t and t−1, in order to link the final detections

provided by the RPN thereafter. The hypothesis on which it relies is that each

RCN region specializes in detecting a single object centered in it, allowing a

straightforward extension over two detections. The correlation module consists

of the two region composed feature maps generated by RCL for each branch, a

correlation operator, an average pooling and a final RoI linking operation. The

operation of the correlation module is as follows:

1. First, it calculates the correlation for each pair of RCN regions< rit−1, r
j
t >,

where rit−1 ∈ Rt−1, rjt ∈ Rt, i = 1, . . . ,mt−1, and j = 1, . . . ,mt. The out-

put is a correlated feature map with the same width and height as the

input regions, and where each pixel is obtained as the dot product of the

pixels placed at that position in both regions —the depth of the correlated

feature map is a single channel, due to the dot product. The correlation

operator will produce a feature map with mt−1 × mt regions, each one

representing the correlation between two of the RCN regions.

2. Then, an average pooling is applied to summarize each of the regions of

the correlated feature map in a single value associated to each pair of RCN

regions, generating mt−1 ×mt correlation scores.

3. Finally, the correlation scores of each pair of RCN regions are associated

to the final detections by the RoI linking operation. The RoI linking

operation takes as input the final detections (Dt) —generated by the RPN
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and further refined by the classifier— for each STDnet-ST branch, as well

as the correlation scores, and outputs the correlation scores but associated

to each pair of final detections, generating the matrix Ct. Ct has a size of

nt−1×nt, where nt−1 and nt are respectively the number of detections at

times t − 1 (Dt−1) and t (Dt). Those correlation scores not included in

Ct —not all RCN regions have an associated final detection— are kept as

they are involved in the tubelet suppression algorithm (Sec. 3.2.3).

3.2. STDnet-ST tubelet linking

The object linking across a sequence of frames to build tubelets is a popular

approach to combine the temporal information. The final goal of this stage

is to increase the confidence of those detections that have a high likelihood of

being true positives and to reduce the confidence of those detections with a low

likelihood of being true positives.

First, we describe a baseline tubelet linking approach based on the spatial

overlap between boxes in neighboring frames without considering the motion

information. Then, we present the STDnet-ST tubelet linking with its two

components: (i) the correlation-based tubelet linking (Sec. 3.2.2), which is

based on the correlation scores generated by the ConvNet (Sec. 3.1); and (ii) the

tubelet suppression procedure (Sec. 3.2.3) that removes those unlikely tubelets

retrieved from the correlation-based tubelet linking.

3.2.1. Baseline tubelet linking

The baseline tubelet linking is based on [37], although they apply it to action

detection in video, while we use it for spatio-temporal object detection. Given

a set of τ frames, first, the tubelet linking calculates the set of scores between

pairs of detections in two consecutive time instants (St). Then, it applies the

Viterbi algorithm [36] to find the most likely sequences, i.e., tubelets (V), for all

detections in the τ frames. Finally, it recalculates the score of each detection in

τ (P̂τ ) given the tubelet it belongs to.
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The first step of tubelet linking calculates the score matrix St = {s11t , . . . , s
nt−1nt

t },

where sijt is the score between two equal category detections dit−1 and djt in two

consecutive frames, and is given by:

sijt = pit−1 + pjt + λ · IoU(dit−1, d
j
t ) (1)

where pjt is the confidence returned by STDnet-ST for the j-th detection at

frame t, IoU is the overlap —measured as the intersection over union— between

two detections, and λ is a parameter that balances the importance between

the confidences returned by the ConvNet and the IoU. Thus, sijt estimates the

likelihood that the i-th detection at frame t− 1 and the j-th detection at frame

t are both true positive detections and come from the same object.

Next, the Viterbi algorithm is applied to obtain the most probable se-

quences of detections. This algorithm maximizes the conditional probability

of the tubelets —each one represents an object seen at different time instants—

given a set of detections D = {D1, . . . ,Dτ} and their corresponding scores

S = {S2, . . . ,Sτ} over time of the same category. Given the whole set of possible

tubelets V, the tubelet with the highest likelihood is:

v̂ = arg max
v∈V

τ∑
t=2

s
i(v)j(v)
t (2)

where i (v) and j (v) are the detections at times t− 1 and t for a given tubelet

v ∈ V.

Once the optimal tubelet v̂ is found, those detections within v̂ are removed

from D and S, and the process (Eq. 2) is repeated iteratively to obtain the set

of optimal tubelets V̂. Finally, the new confidences for the detections of the last

frame τ within each tubelet v̂ are updated as:

pi(v̂)τ =
1

τ

τ∑
t=1

p
i(v̂)
t (3)

where p
i(v̂)
t is the confidence of the detection at time t belonging to tubelet v̂.

Thus, the confidence of the detections at the last frame are updated with the

average confidences of their corresponding tubelets. In this way, tubelet linking
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increases the confidences of those detections with a low confidence in the last

frame, but with a strong track record in previous time instants, which indicates

that the detection is a true positive. This process also helps to reduce the

confidence of the detections that belong to a tubelet with a weak track record,

as this is often supposed to be a false positive. The tubelet linking algorithm is

repeated for each category of the dataset.

3.2.2. Correlation-based tubelet linking

Associating the detections in two consecutive frames through IoU might

work fine in some scenarios but, in general, it is a very weak feature for object

linking. Some scenarios where IoU might generate wrong associations are: small

objects that barely overlap between consecutive frames, fast motions of the

object and/or the camera, many objects with partial overlaps among them, and

videos with a low frame rate or skipping frames.

The proposed correlation-based tubelet linking addresses the preceding points

by introducing the correlation score as the feature for data association. In this

way, STDnet-ST can associate small objects regardless of their mutual distance

in consecutive frames. Also, it is possible to avoid the association of objects with

very different features, but placed in the same position in consecutive frames.

Correlation-based tubelet linking modifies Equation 1 by replacing the spa-

tial overlap (IoU) with the correlation score to compute the score matrix St.

Each element of St is calculated as:

sijt = pit−1 + pjt + λ · cijt (4)

where cijt is the correlation obtained by the STDnet-ST ConvNet for the i-th

detection at time t− 1 and the j-th detection at time t, defined as:

cijt = ρ(r
k(i)
t−1 , r

l(j)
t ) (5)

where ρ represents the correlation module function, and r
k(i)
t−1 and r

l(j)
t are the

RCN regions at t − 1 and t associated to detections dit−1 and djt . So that, l(j)

and k(i) are the RoI linking outputs that associate each RCN region rkt−1 and

rlt with their corresponding detections dit−1 and djt .
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The second novelty is the modification of Equation 3 as follows:

pi(v̂)τ =

maxτt=1 p
i(v̂)
t if σ({pi(v̂)t }τt=1) ≤ κ

1
τ

∑τ
t=1 p

i(v̂)
t otherwise

(6)

where σ is the standard deviation of the confidences of the tubelet v̂, and κ

is a threshold. Our hypothesis is that when the confidence variability in a

tubelet is small, the last detection might be a true positive and the confidence

of that detection can be updated to the maximum confidence of the tubelet.

On the other hand, when the variability is high, the confidence is updated with

the average confidence, like in the baseline tubelet linking, as the likelihood of

being a true positive is lower.

3.2.3. Tubelet suppression procedure

The main downside of the original Viterbi algorithm is that it generates all

possible tubelets V̂, even though they are unlikely given their scores. A typical

example is a tubelet created with false and true positive detections, only because

there is no other possible data association. This causes a decrease in the global

accuracy, as discussed in Section 4. STDnet-ST tubelet linking manages this

situation by defining a tubelet suppression algorithm based on adding dummy

detection nodes. Thus, the Viterbi algorithm might build a tubelet using one

or more dummy nodes, and these tubelets will be later deleted.

These dummy nodes can be generated owing to the two-level detection —i.e.,

RCN regions and final detections—, which provides a higher level of abstraction

from the RCN regions that do not generate a final detection, but whose correla-

tion score is useful. The tubelet suppression algorithm generates dummy nodes

so that: (i) false positives at t are associated to a dummy node rather than to a

true positive at t− 1 or, (ii) true positives at t are associated to a dummy node

rather than to a false positive at t−1. The first case happens when the dummy

node has a high correlation with a false positive, e.g., both RCN regions have

a similar background. The second case happens when the dummy node has a

high correlation with a true positive, e.g., when the RCN region includes an
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Figure 3: An example of the optimal solution provided by the Viterbi algorithm with the

tubelet suppression procedure. Nodes with a green border correspond to true positive detec-

tions, and those in red with false positive detections. The solution produces a valid tubelet

for d1τ and d2τ (orange and blue) and a non-valid tubelet for d3τ (purple).

object that was not finally detected. Hence, the gain in the first case is given

by the fact that the false positive at t is not associated to true positives and,

thus the false positive confidence is not increased. The gain in the second case

is given by the fact that the true positive at t is not associated to false positives

that decrease its confidence.

Figure 3 shows an example of how the Viterbi algorithm works with tubelet

suppression. Each node represents a detection dit or a dummy node (⊗). Detec-

tions of the same frame are in the same column. Those nodes at different time

instants filled with the same color represent the generated tubelets. Solid lines

represent the correlation scores (cijt ) between pairs of detections (Eq. 5), and

dashed lines represent conections between detections and dummy nodes. The

tubelet suppression procedure will remove the optimal tubelet V̂3 as it links the

false positive d3τ−1 with the dummy node in fτ−2 due to the existence of an

RCN region riτ−2 with a higher correlation score than any other detection in

τ − 2. Ideally, this indicates that there is a false positive that is detected by

the ConvNet at some frames (τ − 1 and τ), and filtered out in others (τ − 2).

If the tubelet linking process does not consider tubelet suppression, the Viterbi

algorithm would generate a tubelet including d2τ−2, d3τ−1 and d3τ and, therefore,

would probably increase the confidence of d3τ , which is a false positive.
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Algorithm 1 shows the STDnet-ST tubelet linking algorithm, including the

correlation-based tubelet linking and the tubelet suppression procedure. Given

the set of detections (D) from time t = 1 to t = τ , their confidences (P), and the

set of score matrices (S) —sijt (Eq. 4) is the ij element of matrix St, calculated

from the i-th detection at time t − 1 and the j-th detection at time t—, the

algorithm returns the updated confidences (P̂τ ) associated to the detections at

time τ . First, we initialize P̂τ with the confidences generated by the ConvNet

(line 1). Then, we add a dummy node (line 3) to the detection set at time t

—with original size nt— as well as one column (line 5) and one row (line 6) to

the score matrix at time t —with original size nt−1 × nt. In the added column

we store the scores between a dummy node and all detections at t− 1, while in

the added row are the scores between a dummy node and the detections at t.

The scores associated with dummy nodes are based on Eq. 4 and Eq. 5, but

where one of the two RCN regions involved in Eq. 5 is a free RCN region —RCN

region without detection— (lines 8 and 11). The free RCN regions are those

that have been discarded by the ConvNet because the likelihood of containing

an object is low. In particular, for each of the detections at t − 1, the free

RCN region from t that will be selected to compute the correlation score is the

one with the maximum correlation score. The same for the detections at t and

the free RCN regions from t − 1. So that, the correlation (line 8) for a given

detection dit−1 within an RCN region r
j(i)
t−1 is the maximum correlation between

r
j(i)
t−1 and the whole set of free RCN regions at t (rkt ). Then, new scores (lines 9

and 12) are calculated as in Eq. 4, where pit−1 and pjt both come from the real

detection dit−1, i.e, pit−1 = pjt .

Next, the Viterbi algorithm is applied with the set of detections and the

new set of score matrices (line 14), while every Dt, from t = 1 to t = τ ,

still has detections provided by the STDnet-ST ConvNet —not just dummy

nodes— (line 13). Then, for each generated tubelet by the Viterbi algorithm,

the corresponding detections are deleted from the set of detections (line 18),

and the corresponding row and column is also deleted from the score matrices

(lines 20 and 22). A detection at time t contributes to the score matrices St and
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Algorithm 1: STDnet-ST tubelet linking

Input : D = {Dt = {d1t , . . . , d
nt
t } | t = 1, . . . , τ}

Input : P = {Pt = {p1t , . . . , p
nt
t } | t = 1, . . . , τ}

Input : S = {St = {s11t , . . . , s
nt−1nt

t } | t = 1, . . . , τ}

Output: P̂τ
1 P̂τ ← Pτ
2 for t = 1, . . . , τ do

3 Dt ← Dt ∪ d∅t
4 if t > 1 then

5 St ← St : d∅?t−1

6 St ← St : d?∅t

7 for i = 1, . . . , nt−1 do

8 ci,nt+1
t = maxk ρ(r

j(i)
t−1, r

k
t ) | rkt 6→ dlt ∀ l = 1, . . . , nt

9 si,nt+1
t = pit−1 + pit−1 + λ · ci,nt+1

t

10 for i = 1, . . . , nt do

11 c
nt−1+1,i
t = maxk ρ(rkt−1, r

j(i)
t ) | rkt−1 6→ dlt−1 ∀ l = 1, . . . , nt−1

12 s
nt−1+1,i
t = pit + pit + λ · cnt+1,i

t

13 while {d1t 6= d∅t ∀ t = 1, . . . , τ} do

14 v̂ ← Viterbi(D,S)

15 isvalid← True

16 for t = 1, . . . , τ do

17 if d
i(v̂)
t 6= d∅t then

18 Dt ← Dt \ di(v̂)t

19 if t > 1 then

20 St ← deleteColumn(St, i (v̂))

21 if t < τ then

22 St+1 ← deleteRow(St+1, i (v̂))

23 else

24 isvalid← False

25 if isvalid then

26 p̂
i(v̂)
τ = updateConfidence(P, v̂) [Eq. 6]

27 done
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Figure 4: Structure of a ResNet block for STDnet: (a) using the original 0-padding imple-

mentation and (b) with the 0-padding implementation proposed in this paper.

St+1 —Figure 3. Finally, if the tubelet is valid, i.e., it does not contain dummy

nodes, the confidences of the detections at time τ that are in the set of tubelets

are updated following Eq. 6 (line 26).

3.3. Spatial STDnet enhancement

This section describes the improvements made over the original version of

STDnet [7]: a new 0-padding operation between regions, and the replacement

of the classical header with a cascaded header.

3.3.1. Rethinking the 0-padding operation

The first improvement concerns the structure of the convolution blocks after

obtaining the promising regions by the Region Context Network (RCN) and

the RoI Collection Layer (RCL). In the original STDnet, the RCL encompasses

the different regions proposed by the RCN and adds a 0-padding between them

so that the convolution kernels larger than 1×1 do not share information from

adjacent regions.

Figure 4(a) shows how the 0-padding was restored before and after each con-

volution. However, although the convolution operations were not affected with
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Figure 5: Performance of the cascaded header over a rough proposal towards a true positive

detection.

this structure, 0-padding restoration did have an effect on batch normalization

and harmed training. For instance, if there are 50 RCN regions with a size of

8×8 and 1px 0-padding between every pair, the overall size of each channel will

be 449×8 = 3592px2, where 49×8 = 392px are 0’s. Thus, all those 0’s —which

are more than the 10% of the pixels in the feature map— were influencing the

learning of the network. In addition, 1×1 convolution operations had to perform

unnecessary operations on that 0-padding.

To solve this problem, a built-in operator has been implemented that inserts

and removes the 0-padding before and after each convolution greater than 1×1.

The new structure is represented in Figure 4(b).

3.3.2. Cascaded header

The original STDnet header [7] (classifier + bounding box regression) has

been replaced by three consecutive headers that interatively improve small ob-

2449×8 is the shape of a feature map channel composed of 50 regions arranged horizontally

with 1px padding between each pair: width = (50×8) + (1×49); height = 8;
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jects detection. This implementation is based on the research carried out by

[32], where several twin headers are trained with progressively more restrictive

overlap thresholds.

The idea is to improve in successive headers object detections that have a

minimum overlap with the true object until reaching the threshold defined to be

considered true positive. Therefore, this will improve not only the final accuracy,

but also the final recall (Figure 5). A common problem in small object detection

are double detections: for large objects, non maximum suppression eliminates

those double detections but, for small objects, the overlap is very small. The

cascaded header will help to eliminate these false positives, as bounding boxes

will be more accurate.

Differently from the implementation in [32], where the cascade is applied

directly on the feature map prior to RPN, the additional headers that make

up the cascade approach in STDnet-ST take the information from the same

feature map, but with disjoint regions. The cascaded headers have to compute

the target bounding box using the predecessor header, and have to retrieve the

spatial information of the regions relative to the input image from the Region

Context Network (RCN).

4. Experiments

4.1. Evaluation metrics

We assess the performance of our approach and previous work with the

metrics reported in MS COCO [6]. Such metrics are the Average Precision

(AP@.5), which gives the average precision of those objects detected with at

least 50% IoU between the detected and the ground-truth bounding boxes, and

AP@[.5,.95], which is the average AP when the IoU goes from 50% to 95% in 5%

steps. In the default COCO metrics, the results are shown for three different

subsets: small (APs), objects smaller than 1,024 pixels area; medium (APm),

objects between 1,024 and 9,216 pixels area, and large (APl), objects larger than

9,216 pixels area. In this paper we define a new scale subset following COCO
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style, very small (APxs), to include small targets as defined in this paper, i.e.,

those enclosed in bounding boxes with less or equal than 256 pixels area. The

XS subset is defined in order to evaluate the performance for very small objects.

4.2. Datasets

We conduct extensive experiments on three publicly accessible datasets:

USC-GRAD-STDdb [7], UAVDT [12] and VisDrone2019-VID [13].

• USC-GRAD-STDdb [7]. It comprises 115 video segments with more

than 25,000 annotated frames. The resolution of the video is HD 720p

(1,280 × 720). There are more than 56,000 objects, with most of them

ranging from 16 (≈ 4 × 4) up to 256 (≈ 16 × 16) as pixel area, i.e.,

small objects as defined in this paper. The videos in USC-GRAD-STDdb

comprise three main landscapes —air, sea and land— with five object

categories, namely: air (drone, bird), 57 videos with 12,139 frames; sea

(boat), 28 videos with 7,099 frames; and land (vehicle, person), 30 videos

with 6,619 frames. Nevertheless, the evaluation will be carried out as a

single category. The test subset holds 11,337 objects, where almost 90%

of them (10,136 objects) correspond to the very small subset.

• UAVDT [12]. It contains 23,829 frames of training data and 16,580 im-

ages of test data of ≈ 1,024 × 540 resolution. The videos are recorded

with an UAV platform over different urban areas. The ground truth tar-

gets are vehicles labeled as car, bus and truck, but evaluated as a single

category. UAVDT comprises a total of 375,884 test objects, where 76,215

are considered within the very small subset (20.3%).

• VisDrone2019-VID [13]. The VisDrone2019-VID challenge provides a

total of 96 HD/Full HD video sequences, including 56 sequences for train-

ing (24,201 frames in total), 7 sequences for validation (2,819 frames in

total) and 17 sequences for development testing (test-dev) (6,635 frames

in total). There is also a blind test (test-challenge) subset that comprises

16 videos, but the evaluation system does not report the metrics for the
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extra small subset, so these data will be dismissed and the results will be

reported only for the test-dev subset. The dataset is mainly focused on

people and vehicles, where ten diffent categories of interest are labeled:

pedestrian, person, car, van, bus, truck, motor, bicycle, awning-tricycle,

and tricycle. The 17 sequences for testing hold 310,228 test objects, where

27,027 (8.7%) are considered extra small.

4.3. Implementation Details

We implemented STDnet-ST based on STDnet [7]. Faster R-CNN [2] with

Feature Pyramid Network (FPN) [25] is adopted as the baseline detection net-

work for small object detection. We have also compared our proposal with the

state-of-the-art spatio-temporal approaches: FGFA [20], RDN [21] and MEGA

[22]3, with the anchors’ size best suited for small objects as defined in [7]. These

three approaches achieve state-of-the-art results in ImageNet VID dataset [14].

Training phase. The input size of STDnet-ST is determined by the res-

olution of the video under study, namely, 1,280 × 720 pixels in USC-GRAD-

STDdb, 1,024 × 540 in UAVDT and 1,920 × 1,080 in VisDrone2019-VID. For

USC-GRAD-STDdb, as most of the objects belong to the XS size, i.e., below

256 pixels area, RCN regions of size 32 × 32 suffice to enclose all objects. In

these cases the STDnet-ST training phase is continuous during 40k iterations

with two step decay. For UAVDT and VisDrone2019-VID, with objects with

more varying sizes, including those larger than the XS category, i.e., below 256

pixels area, the training process requires pre-training. Thus, first, we run a pre-

training phase with Faster R-CNN during 20k iterations to address all object

sizes followed by a fine-tuning with STDnet-ST for other 20k iterations with

two step decay. In order to retrieve all objects with more diverse aspect ratios,

we set the RCN region size to 48 × 48 pixels. Also, as reported in [7], for both

datasets, RCN between conv3 and conv4 and the initialization of anchors by k-

means lead to the best performance metrics. Finally, when training the model,

3https://github.com/Scalsol/mega.pytorch
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Table 1: Ablation study on USC-GRAD-STDdb for the different tubelet linking components

of STDnet-ST++. Results without correlation features are implemented directly over one

branch of STDnet-ST++ —i.e., the first three rows—, and those that use them represent the

different versions of STDnet-ST++ —i.e., the last four rows. The first row refers to STDnet

as it is defined in [7] with the enhancements proposed in Section 3.3, i.e., STDnet++.

Baseline

linking

Confidence

variability

Correlation

linking

Tubelet

suppression
AP

@[.5,.95]
xs AP@.5

xs

— 18.9 59.1
X 20.1 61.4
X X 20.3 61.8

X 20.4 61.6
X X 20.6 62.0

X X 20.9 62.6
X X X 21.4 63.4

we set the base learning rate to 0.0025, a momentum of 0.9, and parameter

decay of 0.0001 on weights and biases.

Test phase. The input size and the RCN region size are the same as those

of the training phase. The maximum number of RCN regions is set to 100.

The spatio-temporal hyperparameters τ , κ and λ are set to 4, 0.02 and 1.0,

respectively, derived by experimental studies over a validation subset from the

USC-GRAD-STDdb training set. We also apply a box-voting scheme after non-

maximum suppression [30].

In addition, there are some differences between the original STDnet [7] and

the STDnet used as base of STDnet-ST for this paper: (1) STDnet-ST has been

implemented in Caffe2; (2) the RoI pooling dimension is reduced from 7×7 to

4×4 when the cascaded header is applied to keep constant the computational

cost; (3) the last ResNet convolutional block (conv5 ) is replicated to fine-tune

each header during the training phase; and (4) all possible positive RCN regions

are passed through the network instead of limiting their number, in order to

perform well in datasets with many objects of interest per image.
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4.4. Results on USC-GRAD-STDdb

Table 1 and Table 2 show experimental results on USC-GRAD-STDdb [7].

Our approach is compared to the state-of-the-art FPN [25], as it proved to be

the most competitive method for the present dataset [7], and FPN with cascaded

header (Cascade-FPN [32]), for fair comparisons. From here on, the names of the

different versions of STDnet are as follows: STDnet refers to the original Con-

vNet; STDnet++, refers to STDnet with the enhancements detailed in Section

3.3; STDnet-ST and STDnet-ST++ refer to the spatio-temporal architectures

defined in Section 3.1 and Section 3.2 adopting STDnet and STDnet++ as base

network, respectively. Finally, as the baseline tubelet linking and the confidence

variability methods are independent of the architecture, we have also tested the

performance of FPN and Cascade-FPN with these components —referred as

FPN-t and Cascade-FPN-t.

Table 1 studies the influence of the different components defined in this pa-

per to exploit the temporal information from a video dataset. Baseline linking

refers to the baseline method to generate tubelets defined in Section 3.2.1; Con-

fidence variability refers to the modification of the confidences of the detections

based on the confidences of the tubelets due to their variability, as addressed

in Equation 6; Correlation linking means the correlation-based tubelet link-

ing as addressed in Section 3.2.2; and Tubelet suppression concerns the tubelet

suppression procedure presented in Section 3.2.3.

As it can be observed, the use of temporal information leads to higher per-

formance. STDnet-ST++ outperforms STDnet++ from 18.9% to 21.4% for

AP
@[.5,.95]
xs and from 59.1% to 63.4% for AP@.5

xs . In this ablation study, it is also

possible to determine the contribution of each of the components to the perfor-

mance of STDnet. The correlation-based linking, together with the confidence

variability contribute to increase 0.5% AP
@[.5,.95]
xs and 0.6% AP@.5

xs —Table 1,

rows 2 and 5. Also, the tubelet suppression procedure adds a gain of 0.8%

AP
@[.5,.95]
xs and 1.4% AP@.5

xs over the previous result —Table 1, rows 5 and 7.

Two conclusions can be drawn from Table 1. First, the importance of the cor-

relation obtained by the ConvNet of STDnet-ST. The correlation-based tubelet
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Table 2: Evaluation metrics for different methods on USC-GRAD-STDdb database. -t indi-

cates the use of baseline tubelet linking and confidence variability to compute the final score

of each tubelet.

Method AP
@[.5,.95]
xs AP@.5

xs

FGFA [20] 11.7 37.5
RDN [21] 15.5 48.6
MEGA [22] 17.4 53.1
FPN [25] 17.3 54.5
Cascade-FPN [32] 17.4 55.9
FPN-t 18.7 57.2
Cascade-FPN-t 19.1 58.9
STDnet [7] 18.3 57.8
STDnet++ 18.9 59.1
STDnet-ST 20.1 62.1
STDnet-ST++ 21.4 63.4

linking is capable of improving the IoU-based baseline tubelet linking by com-

paring the early features of the objects and their context; and more importantly,

it allows to build the tubelet suppression procedure with a higher level of ab-

straction that cannot be found by associating detections by spatial overlap.

Second, the importance of the confidence variability when combined with the

tubelet suppression procedure, as some of the tubelets that were composed by

false negatives are discarded and, therefore, the confidence variability is more

reliable.

Table 2 provides a comparison in terms of accuracy between the state-of-the-

art FGFA, RDN, MEGA, FPN, Cascade-FPN, and our architectures STDnet-

ST and STDnet-ST++. STDnet-ST++ outperforms FPN by 4.1% AP
@[.5,.95]
xs

and 8.9% AP@.5
xs and Cascade-FPN by 4.0% AP

@[.5,.95]
xs and 7.5% AP@.5

xs . FPN

with spatio-temporal information improves its baseline by 1.4% AP
@[.5,.95]
xs and

2.7% AP@.5
xs . Even so, the results of the spatio-temporal FPN and Cascade-

FPN remain below STDnet-ST and STDnet-ST++. When compared to the

spatio-temporal approaches FGFA, RDN and MEGA, STDnet-ST++ outper-

forms them by at least 4.0% AP
@[.5,.95]
xs and 10.3% AP@.5

xs . This is mainly due to

the fact that both the RPN placed in deep layers and the association methods
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Figure 6: Precision-Recall curves and AP@.5
xs of the most relevant approaches in Table 2 for

USC-GRAD-STDdb (left), and Table 3 for UAVDT (right).

used in these approaches have a high performance on large objects but a lower

impact when dealing with extremely small objects. With respect to the original

version of STDnet, STDnet-ST++ improves the result by a 3.1% AP
@[.5,.95]
xs

and a 5.6% AP@.5
xs . The most relevant results are shown in Figure 6(left) using

Precision-Recall curves.

4.5. Results on UAVDT

The experimental results on the UAVDT dataset [12] are shown in Table 3.

The first four rows are computed using the bounding box results provided in

[12], and directly adapted to the MS COCO results format [6].

Results confirm that the spatial STDnet performs better than the rest of

the state-of-the-art spatial approaches. Moreover, it can be seen how the en-

hancements introduced for STDnet (STDnet++) improve AP
@[.5,.95]
xs by 0.6%

and AP@.5
xs by 2.9% higher than any other spatial approach. AP@[.5,.95] is con-

sidered the primary challenge metric by MS COCO [6], because it encompasses

AP adding information on how it behaves as the IoU reaches perfection. It is

also noteworthy that STDnet outperforms FPN-t and Cascade-FPN-t, which

exploit spatio-temporal information.

As expected, our spatio-temporal proposal, STDnet-ST++, accomplishes

better performance with respect to its spatial version, achieving state-of-the-
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Table 3: Evaluation metrics on the very small subset of UAVDT dataset, i.e., objects under

16 × 16 pixels.

Method AP
@[.5,.95]
xs AP@.5

xs

Faster R-CNN [12] 6.6 26.0
R-FCN [12] 9.2 32.5
RON [12] 3.7 19.7
SSD [12] 6.0 23.5
FGFA [20] 6.3 20.7
RDN [21] 9.3 27.9
MEGA [22] 9.2 26.6
FPN [25] 11.8 29.7
FPN-t 12.0 30.3
Cascade-FPN [32] 12.0 30.5
Cascade-FPN-t 12.3 31.2
STDnet [7] 12.5 35.1
STDnet++ 12.6 35.4
STDnet-ST 13.1 36.0
STDnet-ST++ 13.3 36.4

art results in the UAVDT dataset for the very small subset. STDnet-ST++

overcomes spatio-temporal Cascade-FPN (Cascade-FPN-t) by 1.0% AP
@[.5,.95]
xs

and 5.2% AP@.5
xs , and also R-FCN by 4.1% AP

@[.5,.95]
xs and 3.9% AP@.5

xs . Figure

6(right) shows the Precision-Recall curves.

4.6. Results on VisDrone2019-VID

The experimental results on the Visdrone2019-VID dataset [13] are shown

in Table 4. In first place, it is confirmed that the STDnet based approaches

outperform their counterparts. In second place, STDnet++ improves STDnet

by 0.1% AP
@[.5,.95]
xs and by 0.6% AP@.5

xs . Finally, regarding the spatio-temporal

approaches, STDnet-ST++ boosts 0.2% AP
@[.5,.95]
xs and 0.4% AP@.5

xs its base-

line, while improving 1.2% AP
@[.5,.95]
xs and 2.0% AP@.5

xs compared to the best

FPN-based approach. Examples of detections with STDnet-ST++ on the three

datasets reported in this paper are shown in Figure 7.
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Figure 7: Some object detection results of STDnet-ST++ for USC-GRAD-STDdb (top),

UAVDT (middle) and VisDrone2019-VID (bottom) test sets. A confidence threshold of 0.6

was used to display these images. For each image, green boxes are true positives, red boxes

false positives and blue boxes false negatives. The yellow rectangles are ignored regions. Only

objects that belong to the XS size are displayed.
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Table 4: Evaluation metrics on the very small subset of VisDrone2019-VID dataset, i.e.,

objects under 16 × 16 pixels.

Method AP
@[.5,.95]
xs AP@.5

xs

FGFA [20] 3.8 16.8
RDN [21] 4.7 20.7
MEGA [22] 4.8 21.0
FPN [25] 6.2 19.9
Cascade-FPN [32] 6.1 20.2
FPN-t 6.3 20.2
Cascade-FPN-t 6.2 20.4
STDnet [7] 7.2 21.4
STDnet++ 7.3 22.0
STDnet-ST 7.5 21.9
STDnet-ST++ 7.5 22.4

5. Conclusion and future work

We have introduced STDnet-ST, a spatio-temporal ConvNet to detect small

targets in video. STDnet-ST is composed of two branches, and it binds the de-

tections of two input frames by a correlation module to create spatio-temporal

small object tubelets. Those tubelets are refined at the tubelet linking stage,

which applies the Viterbi algorithm to the detections based on correlation link-

ing, and implements a tubelet suppression procedure that allows STDnet-ST to

dismiss unprofitable tubelets while preserving only high quality ones.

Furthermore, certain components of the STDnet structure [7] have been

reformulated, leading to the definition of STDnet++ and STDnet-ST++. En-

hancements have been made to 0-padding operation, for improving the network

learning, and a cascaded header, to obtain better performance by turning false

positives with low overlap into true positives.

In order to validate the proposed architecture, we have conducted exper-

iments over three publicly available datasets with a large number of small

objects: USC-GRAD-STDdb [7], UAVDT [12] and VisDrone2019-VID [13].

STDnet-ST++ achieves state-of-the-art results in all these datasets for very

small objects, clearly outperforming its counterparts by 2.3% AP
@[.5,.95]
xs on
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USC-GRAD-STDdb, by 1.0% AP
@[.5,.95]
xs on UAVDT and by 1.2% AP

@[.5,.95]
xs

on VisDrone2019-VID.

Results show how the three main characteristics of STDnet-ST are key to

achieve small object detection: (i) the use of high resolution feature maps

throughout the architecture allows to locate the objects and adjust their bound-

ing boxes; (ii) performing correlation over RCN regions allows to correctly as-

sociate objects in two consecutive frames, therefore, improving the detection

precision; (iii) the correlation-based tubelet linking together with tubelet sup-

pression procedure provide high quality tubelets to increase the final accuracy.

The tubelet suppression procedure is possible due to the RCN regions, that

provide a limited number of areas without objects where to look for possible

correlations with false positive detections, therefore avoiding their linking with

true positive detections.

As future work, we plan to address the limited number of small objects

present in current datasets. Considering that manual object annotation is ex-

tremely time-consuming and that tracking-based annotation is far from being

perfect, we will work on the definition of a pipeline to generate synthetic small

objects from larger ones. Specifically, the recent advances in Generative Adver-

sarial Networks (GANs) seem to be a promising route both for the generation of

synthetic objects close to real ones and for suitable placement in different con-

texts. Super-resolution GANs are attractive in the former task, and inpainting

and blending GANs for the latter one.
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