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Abstract—The detection of small objects is of particular
interest in many real applications. In this paper, we propose
STDnet-ST, a novel approach to small object detection in video
using spatial information operating alongside temporal video
information. STDnet-ST is an end-to-end spatio-temporal con-
volutional neural network that detects small objects over time
and correlates pairs of the top-ranked regions with the highest
likelihood of containing small objects. This architecture links the
small objects across the time as tubelets, being able to dismiss
unprofitable object links in order to provide high-quality tubelets.
STDnet-ST achieves state-of-the-art results for small objects on
the publicly available USC-GRAD-STDdb and UAVDT video
datasets.

I. INTRODUCTION

Convolutional neural networks (ConvNets) have achieved
significant success for object detection [1], [2], [3]. Neverthe-
less, the performance drops as objects get smaller [4] and,
consequently, small object detection is progressively gaining
more interest in the scientific community [5], [6], [4]. Small
object detection is of particular interest in applications such
as sense and avoid on board of Unmanned Aerial Vehicles
(UAVs) or video surveillance tasks, where objects appear
usually small. Apart from being harder to detect, the scarcity
of small annotated objects plays a fundamental role. This
has recently been addressed with new specific small object
datasets, such as USC-GRAD-STDdb [5], or UAVDT [7],
where the number of small objects is quite significant. Small
objects are typically defined as objects with a size below 32
× 32 pixels in widely adopted image datasets as MS COCO
[8], or even smaller, below 16 × 16 pixels as in the case of
USC-GRAD-STDdb [5].

The rise of spatio-temporal detection approaches, due to
the release of ImageNet video object detection challenge
(VID) [9], has led to an improvement of the precision of the
detections. These networks exploit information from several
frames by linking the same objects across the video to form
sequences, or tubelets [10], [11], [12].

This paper addresses small object detection in video with
STDnet-ST, a novel spatio-temporal convolutional neural net-
work. STDnet-ST is built on STDnet [5] that provides the

This research was partially funded by the Spanish Ministry of Science, In-
novation and Universities under grants TIN2017-84796-C2-1-R and RTI2018-
097088-B-C32, and the Galician Ministry of Education, Culture and Universi-
ties under grants ED431C 2018/29, ED431C 2017/69 and accreditation 2016-
2019, ED431G/08. These grants are co-funded by the European Regional
Development Fund (ERDF/FEDER program).

most promising areas where to look for small objects while
dismissing the rest of the image. In this paper, we define small
objects as any object of less than 16 × 16 pixels without
definitive visual cues to assign them to a category, following
our previous work [5]. Still, STDnet-ST is able to detect larger
objects, like small objects as defined in MS COCO [8]. In
summary, the main contributions of this paper are:
• STDnet-ST, a spatio-temporal neural network built on

STDnet that operates with two input frames that are
integrated through a correlation module. The correlation
is performed in a natural way over the most promising
regions with a high likelihood of having objects.

• STDnet-ST ends up in a final tubelet linking procedure
based on the Viterbi algorithm. The tubelet linking has
three novelties: (i) it uses the correlations generated by
the ConvNet to link the objects of the tubelet; (ii) it
scores the associations between the objects taking into
account the confidence variability of the tubelet; and
(iii) the tubelet suppression algorithm avoids unprofitable
tubelets by inserting additional nodes to each frame in the
Viterbi algorithm based on the information coming from
promising areas without detections.

• STDnet-ST achieves state-of-the-art results for small ob-
ject detection on the publicly available datasets USC-
GRAD-STDdb and UAVDT, over the small object subset
S (≤ 1,024 px2), popularly reported in MS COCO [8]
metrics, as well as in the very small object subset XS (≤
256 px2), defined in [5].

II. RELATED WORK

During the last few years, two lines of research based on
deep learning have demonstrated their efficiency in object
detection: two-stages, or region proposal based detectors fol-
lowing [13], and one-stage, or one-shot detectors like SSD [1]
or YOLO [3]. Based on these architectures, a large number
of outstanding improvements has been made [14], [15], [16],
[5].

When it comes to the small object detection field, the
trend is to work with shallow feature maps, where small
objects still have distinctive features. In this line, the two-
stage Feature Pyramid Network (FPN) [15] has based its
success on merging feature maps at different scales with a
Region Proposal Network (RPN) per scale [13]. This design
not only works well for detecting small objects on its shallow



feature map (stride 4), but it is also the baseline of the leading
solutions in the global COCO object detection challenge1. In
contrast, architectures like Faster R-CNN present stride 16,
which might not suffice for a good accuracy in small object
detection. Following the architecture of FPN, RetinaNet [16]
removes the RPNs and adds a class subnet and a bounding box
subnet to detect objects in one-stage, including small ones.

Another approach to diminish the RPN stride was proposed
in [5], where STDnet looks for the top-ranked regions with
more likelihood of containing small objects from shallow
layers while dismisses the remaining part of the input image.
This allows STDnet to keep a low stride of 4 throughout
the network, improving the final accuracy while keeping a
reasonable computing time.

Concerning video object detection, several methods have
been re-adapted from successful architectures for action de-
tection [17], [18]. The two-streams ConvNets have achieved
remarkable results. For example, in [18], a Faster R-CNN with
two RPNs operates over two streams: a spatial RGB image
input and a motion input obtained by applying optical flow
over several frames. In [10], two input frames are correlated
to extract motion information of the objects across time.
The correlation operator computes the entire feature maps
at different scales and estimates local features similarity for
various offsets between the two frames. Finally, they link
the detected objects into tubelets and reweight the detections’
scores within them. The problem of using the whole feature
maps is that, as an object becomes smaller, its movement has
a considerably smaller influence in the correlation.

Differently, [19] tracks the detections in the current frame
through neighboring frames to modify the original detections
for higher accuracy. The linking among detections is based on
the mean optical flow vector within boxes. Similarly, in [11]
they link objects into long tubelets using a tracking algorithm,
and then adopt a classifier to aggregate the detection scores
in the tubelets. Finally, [12] proposes a modified RPN called
Cuboid Proposal Network (CPN) for detecting objects in
multiple input frames. The cuboid proposals are regressed and
classified to create short tubelets. Consecutive short tubelets
are merged into long tubelets by a linking algorithm that takes
the best detection for each overlapping frame between two
tubelets.

In this paper we propose STDnet-ST, a spatio-temporal
ConvNet for video object detection. STDnet-ST is based on
our previous network, STDnet [5], and takes as input two
consecutive frames. Through the underlying STDnet, STDnet-
ST computes a fixed number of the top-ranked regions with
more likelihood of containing small objects from each input,
which are correlated between them. The main difference with
previous correlation-based solutions like [10] is that STDnet-
ST runs the correlation operator not on the whole feature
maps, but in small areas with a high likelihood of having
objects inside. This is essential for small object detection, as
the correlation values calculated for the whole feature maps

1http://cocodataset.org/#detection-leaderboard (Accessed: 2020-03-18)

are mostly due to the background, while correlating specific
regions allows to obtain values influenced by the objects.

III. STDNET-ST ARCHITECTURE

STDnet-ST is a spatio-temporal convolutional neural net-
work for the detection of small objects in video composed of
two components: the spatio-temporal ConvNet and the tubelet
linking.

The spatio-temporal ConvNet takes as inputs the current (ft)
and previous (ft−1) frames, and returns the set of detections
(Dt) together with their confidences (Pt). For each paired
detections at t and t − 1, it also computes the correlations
(Ct, Sec. III-A) that will be used to associate the detections
from different time instants.

The STDnet-ST tubelet linking comprises the correlation-
based tubelet linking and the tubelet suppression procedure.
The correlation-based tubelet linking (Sec. III-B2) generates
the optimal tubelets along time for each of the objects
by linking the detections obtained at different time instants
(t = 1, . . . , τ ). The tubelets allow to modify the spatial
confidence of the detections at τ using the previous τ − 1
detections (Sec. III-B2). Also, the scores are updated taking
into account the confidence variability of the tubelet. An
essential step for the tubelet linking is the use of the correlation
provided by the spatio-temporal ConvNet, which evaluates
the likelihood of the association of two detections. Finally,
the tubelet suppression algorithm (Sec. III-B3) dismisses the
tubelets obtained by the correlation-based tubelet linking that
might contain incorrect data associations. This is achieved,
again, through the correlation operator.

A. Spatio-temporal ConvNet

STDnet-ST consists of two sibling branches together with
a correlation operation between them. Each of the branches
is based on the STDnet architecture [5], which is focused on
the detection of small objects in images. Figure 1 shows the
architecture of STDnet-ST.

STDnet performs well in detecting small objects by keeping
high resolution feature maps across the entire network. This
is possible because STDnet focuses its attention only on the
regions of the image that most likely contain small objects.
The main components of STDnet are the following —for a
more detailed description refer to [5]:
• Region Context Network (RCN) and RoI Collection

Layer (RCL). RCN is a novel detector of promising areas
applied at early stages of the computation to select those
regions that most likely contain small objects. Then, the
mt top-ranked regions Rt = {r1t , . . . , r

mt
t } are gathered

in a single feature map by the RCL. The RCN returns
regions of a fixed size that most likely contain an object
centered in it. From these regions, the RCL generates a
new synthetic feature map of disjoint feature map parts —
i.e., two neighboring pixels in the feature map that belong
to two different regions might not be neighboring pixels
in the original image.



Fig. 1. STDnet-ST architecture. The STDnet-ST ConvNet takes two consecutive frames fτ and fτ−1 as input and processes them through two branches that
perform RCN+RCL to obtain the most promising regions (RCN regions). An RPN and a classifier locate objects inside the RCN regions. Simultaneously, the
two sets of RCN regions feed a correlation module that associates the final detections. Finally, the STDnet-ST tubelet linking generates tubelets by binding
the objects in the last τ frames and removing those that are unprofitable.

• Early and late convolutions. These convolutions belong
to the selected backbone. Late convolutions have a high
resolution —the same resolution as the last early block—
due to the memory saved by ruling out non-promising
areas. The RCL output is a feature map with disjoint
areas, so late convolutions are designed to keep the
features of each region separated from each other through
padding.

• Region Proposal Network (RPN) and classifier. An RPN
is applied to seek small objects on the last late convolu-
tional block of promising areas. Finally, STDnet refines
the outputs of the RPN to assign each proposal to a
category, and by performing a category adapted bounding
box regression.

The inputs to the STDnet-ST are two consecutive video
frames, t and t − 1. Both images pass through two STDnet-
based branches that share the same weights throughout the
execution. Each of the branches generates a set of detections
(Dt) and their corresponding confidences (Pt). The correlation
placed between them assesses the degree of matching between
a pair of RCN regions at t and t − 1. Then, as each RCN
region specializes in detecting a single object centered in it,
the correlation value between two RCN regions at t and t− 1
is assigned to the final detections, contained in them, which
are generated by the RPN and the classifier.

The correlation module consists of the two synthetic feature
maps generated by RCL for each branch, a correlation opera-
tor, an average pooling and a final RoI linking operation. First,
the correlation operator evaluates each pair of RCN regions
< rit−1, r

j
t >, where rit−1 ∈ Rt−1, rjt ∈ Rt, i = 1, . . . ,mt−1,

and j = 1, . . . ,mt, and Rt is the set of regions generated
by the RCN at time t. The output is a feature map with
mt−1×mt regions, each representing the correlation between

two of the RCN regions. Then, an average pooling is applied
to summarize each of the regions of the correlated feature
map in a single value associated with each pair of RCN
regions, generating mt−1 ×mt correlation scores. The kernel
size employed by the average pooling has the same size
as the correlated regions which, at the same time, are the
same size as the input RCN regions. Finally, the correlation
scores of each pair of RCN regions are associated with the
final detections by the RoI linking operation. The RoI linking
operation takes as input the final detections (Dt) from each
STDnet-ST branch, as well as the correlation scores, and
outputs the correlation scores but associated with each pair
of final detections, generating the matrix Ct. Ct has a size of
nt−1 × nt, where nt−1 and nt are respectively the number
of detections at times t − 1 (Dt−1) and t (Dt). Even though
not all RCN regions have an associated final detection, these
correlation scores —not included in Ct— are saved, as they
are involved in the tubelet suppression algorithm (Sec. III-B3).

B. STDnet-ST tubelet linking

The object linking involves the association of an object
within a target frame with the same object in the previous τ
frames, generating the so-called tubelets. The final goal is to
increase the confidence of those detections in the target frame
that have assembled a tubelet, i.e., that have a high likelihood
of being true positives, or to reduce the confidence of those
detections within the target frame that have not produced a
tubelet, i.e., that have a low likelihood of being true positives.

1) Baseline tubelet linking: The baseline tubelet linking is
based on [20] but applied to object detection in video instead
of to action detection. First, the tubelet linking calculates
the set of scores between all possible pairs of detections
in two consecutive time instants, the score matrix St =
{s11t , . . . , s

nt−1nt

t }, where sijt is the score between two equal



category detections dit−1 and djt in two consecutive frames. So
that, sijt estimates the likelihood that the i-th detection at frame
t − 1 and the j-th detection at frame t are both true positive
detections and come from the same object. sijt is given by:

sijt = pit−1 + pjt + λ · IoU(dit−1, d
j
t ) (1)

where pjt is the confidence returned by the ConvNet for the j-
th detection at frame t, IoU is the overlap or intersection over
union between two detections, and λ balances the importance
between the confidences and the IoU.

Then, the Viterbi algorithm computes the most probable
sequences of detections, i.e., the tubelets, where each one
represents the same object at different time frames. Thus, it
maximizes the conditional probability of the possible tubelets
V given a set of detections D = {D1, . . . ,Dτ} and their
corresponding scores S = {S2, . . . ,Sτ} over time of the same
category:

v̂ = argmax
v∈V

τ∑
t=2

s
i(v)j(v)
t (2)

where i (v) and j (v) are the detections at times t − 1 and t
for a given tubelet v ∈ V . Then, after each optimal tubelet v̂
is found, those detections within v̂ are removed from D and
S, and the process (Eq. 2) is repeated iteratively to obtain the
set of optimal tubelets V̂ .

Finally, the confidences for the detections in the target frame
τ within one of the optimal tubelets v̂ are updated as the
average confidences of the detections within v̂:

pi(v̂)τ =
1

τ

τ∑
t=1

p
i(v̂)
t (3)

where pi(v̂)t is the confidence of the i-th detection at time t
belonging to tubelet v̂.

2) Correlation-based tubelet linking: There are several
cases where using IoU overlap might be a weak feature for
matching objects. To name a few: objects so small that they
barely overlap even if they move slowly, fast object and/or
camera motions, objects very close to each other, or low frame
rate videos. The proposed correlation-based tubelet linking
avoids IoU matching and the drawbacks that this entails
by introducing the correlation score as the feature for data
association.

To do this, correlation-based tubelet linking replaces the
overlap between detections IoU(dit−1, d

j
t ) in Eq. 1 with cijt ,

which is the correlation calculated by the STDnet-ST ConvNet
for the i-th detection at time t − 1 and the j-th detection at
time t:

sijt = pit−1 + pjt + λ · cijt (4)

As an added novelty, we propose the use of the confi-
dence variability within a tubelet to update the confidences,
understanding that when it is small, the last detection is more
likely to be a true positive. When this happens, the maximum
confidence of the tubelet will be assigned to the detection and,

otherwise, the average will be selected –as in the baseline
tubelet linking. Equation 3 will be reformulated as follows:

pi(v̂)τ =

{
maxτt=1 p

i(v̂)
t if σ({pi(v̂)t }τt=1) ≤ κ

1
τ

∑τ
t=1 p

i(v̂)
t otherwise

(5)

where σ is the standard deviation of the confidences of the
tubelet v̂, and κ is a threshold.

3) Tubelet suppression procedure: The original Viterbi al-
gorithm generates all possible tubelets V̂ regardless of the fact
that the detections that make them up might be false positives.
For example, there might be a tubelet created with false and
true positive detections, only because there is no other possible
data association. STDnet-ST tubelet linking defines the tubelet
suppression algorithm to identify this pattern. This algorithm
adds dummy detection nodes that the Viterbi algorithm might
use to build a tubelet, and these tubelets will be later deleted.

The complete STDnet-ST tubelet linking process includes
both, the correlation-based tubelet linking and the tubelet
suppression procedure. This process has three inputs: the set
of detections D from time t = 1 to t = τ , the confidences P
for each detection, and the set of score matrices S. Each sijt
is the element ij of matrix St computed following Eq. 4 with
the i-th detection at time t−1 and the j-th detection at time t.
The output of the algorithm is the set of updated confidences
P̂τ associated to each detection at time τ .

The first step is to initialize P̂τ with the confidences
generated by the ConvNet. Next, for each t, we add a dummy
node in Dt and its corresponding scores to St —a new column
and a new row. In the case of the new column, these new scores
are the result of Eq. 4 using the maximum correlation between
each detection at t−1 and all RCN regions at time t that have
been discarded by the ConvNet as objects. For the rows it is
analogous, but by correlating the regions with detection in t
with the regions without detection in t− 1.

Then, the Viterbi algorithm is applied to D and S to find op-
timal tubelets. For every generated tubelet, the corresponding
not dummy detections are deleted from the set of detections D
as well as the corresponding row and column from the score
matrices S. Finally, if the tubelet does not contain dummy
nodes, it is a valid one, so the confidence of the detection at
time τ in the tubelet is updated following Eq. 5. The Viterbi
algorithm is repeated iteratively as long as Dt, from t = 1
to t = τ , still has detections provided by the STDnet-ST
ConvNet.

IV. EXPERIMENTS

A. Evaluation metrics and datasets

The evaluation metrics reported are those of MS COCO
[8]: Average Precision when IoU is at least 50% (AP@.5) and
Average Precision when the IoU goes from 50% to 95% in 5%
steps (AP@[.5,.95]). In the default COCO metrics, the results are
shown for three different subsets: small (APs), objects smaller
than 1,024 pixels area; medium (APm), objects between 1,024
and 9,216 pixels area, and large (APl), objects larger than
9,216 pixels area. In USC-GRAD-STDdb, almost all objects



have a size smaller than 16 × 16 pixels [5], so we define a
new scale subset, very small (APxs), to include small targets
as defined in this paper, i.e., smaller than 256 pixels area. The
XS subset is defined in order to evaluate the performance for
very small objects. We do not modify the definition of the S
subset to preserve the MS COCO standards.

We conduct extensive experiments on two publicly available
datasets: USC-GRAD-STDdb [5] and UAVDT [7]. USC-
GRAD-STDdb comprises 115 video segments with more than
25,000 annotated frames. The resolution of the video is HD
720p (1,280 × 720). The test subset holds 11,337 objects,
where almost 90% of them (10,136 objects) correspond to
the very small subset, which leads us to only evaluate that
subset, since any other subset does not contain enough data.
UAVDT contains 23,829 frames of training data and 16,580
images of test data of ≈ 1,024 × 540 resolution. The ground
truth targets are vehicles labeled as car, bus and truck, but
evaluated as a single category. UAVDT comprises a total of
375,884 test objects, where 76,215 are considered within the
very small subset (20.3%) and 281,532 within the small subset
(74.9%) —with the very small subset included into the small
subset.

B. Implementation Details

We implemented STDnet-ST based on STDnet [5] updated
to Caffe2. The input size is determined by the resolution of
the dataset under study. The RCN region size for USC-GRAD-
STDdb is 32 × 32, as most of the objects belong to the XS
size. The training of STDnet-ST is done for 40k iterations
with two step decay. For UAVDT, with objects with more
varying sizes, including those larger than the S category, the
training process requires pre-training. Thus, first, we run a
pre-training phase with Faster R-CNN during 20k iterations
followed by a fine-tuning with STDnet-ST for other 20k
iterations with two step decay. In order to retrieve all objects
within the S category, we set the RCN region size to 48 ×
48 pixels. Also, as reported in [5], for both datasets, RCN
between conv3 and conv4 and the initialization of anchors
by k-means lead to the best performance metrics. We set
the base learning rate to 0.0025, a momentum of 0.9, and a
decay parameter of 0.0001 on weights and biases. The spatio-
temporal hyperparameters τ and κ are set to 4 and 0.02,
respectively, derived by experimental studies over a validation
subset from the USC-GRAD-STDdb training set. We also
apply a box-voting scheme after non-maximum suppression
[21]. The Faster R-CNN [13] with Feature Pyramid Network
(FPN) [15] is adopted as the baseline detection network.

C. Results on USC-GRAD-STDdb

Table I studies the influence of the different components
defined in this paper to exploit the temporal information from
a video dataset. Baseline linking refers to the baseline method
to generate tubelets defined in Section III-B1; Confidence
variability refers to the modification of the confidences of
the detections based on the confidences of the tubelets due
to their variability, as addressed in Eq. 5; Correlation linking

TABLE I
ABLATION STUDY ON USC-GRAD-STDDB FOR THE DIFFERENT TUBELET

LINKING COMPONENTS OF STDNET-ST.

Baseline
linking

Confidence
variability

Correlation
linking

Tubelet
suppression AP@[.5,.95]

xs AP@.5
xs

— 18.3 57.8
X 19.2 59.9
X X 19.3 60.3

X 19.3 60.1
X X 19.5 60.5

X X 19.8 61.4
X X X 20.1 62.1

TABLE II
EVALUATION METRICS ON THE USC-GRAD-STDDB DATABASE.

Method AP@[.5,.95]
xs AP@.5

xs

FPN [15] 17.3 54.5
FPN [15] ++ 18.7 57.2
STDnet [5] 18.3 57.8
STDnet-ST 20.1 62.1

means the correlation-based tubelet linking as addressed in
Section III-B2; and Tubelet suppression concerns the tubelet
suppression procedure presented in Section III-B3. Results
without correlation features are implemented directly over one
branch of STDnet-ST —i.e., the first three rows—, and those
that use them represent the different versions of STDnet-ST
—i.e., the last four rows. The first row refers to STDnet as it
is defined in [5].

As it can be observed, STDnet-ST outperforms STDnet
from 18.3% to 20.1% for AP@[.5,.95]

xs and from 57.8% to 62.1%
for AP@.5

xs . The correlation-based linking, together with the
confidence variability contribute to increase 0.3% AP@[.5,.95]

xs

and 0.6% AP@.5
xs —Table I, rows 2 and 5. Also, the tubelet

suppression procedure adds a gain of 0.6% AP@[.5,.95]
xs and

1.6% AP@.5
xs over the previous result —Table I, rows 5 and

7. Two conclusions can be drawn from Table I. First, the
importance of the correlation obtained by the ConvNet of
STDnet-ST, as it contributes to both the correlation-based
linking and the tubelet suppression. Second, the importance
of the confidence variability when combined with the tubelet
suppression procedure, as some of the tubelets that were
composed by false negatives are discarded and, therefore, the
confidence variability is more reliable.

Table II provides a comparison in terms of accuracy between
the state-of-the-art FPN and our STDnet-ST, which outper-
forms FPN by 2.8% AP@[.5,.95]

xs and 7.6% AP@.5
xs . Since the

baseline tubelet linking and the confidence variability methods
are independent of the architecture —they only consider detec-
tions by frame—, Table II also compares the performance of
FPN with these components —referred as FPN++—, i.e., FPN
with spatio-temporal information, which improves its baseline
results by 1.4% AP@[.5,.95]

xs and 2.7% AP@.5
xs . Even so, the

results of the spatio-temporal FPN remain below STDnet-ST
by 1.4% AP@[.5,.95]

xs and 4.9% AP@.5
xs .



TABLE III
EVALUATION METRICS ON THE very small AND small SUBSETS OF THE

UAVDT DATABASE.

Method AP@[.5,.95]
xs AP@[.5,.95]

s AP@.5
xs AP@.5

s

Faster R-CNN [7] 6.6 16.1 26.0 49.9
R-FCN [7] 9.2 20.7 32.5 53.4
RON [7] 3.7 15.1 19.7 49.0
SSD [7] 6.0 20.1 23.5 54.3
FPN [15] 11.8 24.8 29.7 49.2
FPN [15] ++ 12.0 25.1 30.3 49.7
STDnet [5] 12.5 27.0 35.1 53.7
STDnet-ST 13.1 27.2 36.0 54.0

D. Results on UAVDT

The experimental results on the UAVDT dataset [7] are
shown in Table III, which compares the performance between
our approach, its baseline STDnet, Faster R-CNN, R-FCN,
RON, SSD, FPN and FPN++. The first four rows are computed
using the bounding box results provided in [7], and directly
adapted to the MS COCO results format [8].

First of all, the results confirm that the spatial STDnet
performs better than the rest of the state-of-the-art spatial
approaches, not only for very small objects, but also for
the small subset. The detections provided by STDnet fit
better to the ground truth, yielding 0.7% AP@[.5,.95]

xs and
2.2% AP@[.5,.95]

s higher than any other spatial approach. This
metric is considered the primary challenge metric by MS
COCO [8] because it encompasses AP adding information
on how it behaves as the IoU reaches perfection. It is also
noteworthy that STDnet outperforms FPN++, which exploits
spatio-temporal information.

As expected, our spatio-temporal proposal, STDnet-ST, ac-
complishes better performance with respect to its spatial ver-
sion, achieving state-of-the-art results in the UAVDT dataset
for the very small and small subsets. STDnet-ST overcomes
spatio-temporal FPN (FPN++) by 1.1% AP@[.5,.95]

xs and 2.1%
AP@[.5,.95]

s , and also R-FCN by 3.5% AP@.5
xs .

V. CONCLUSION

We have introduced STDnet-ST, a spatio-temporal ConvNet
to detect small targets in video. STDnet-ST is composed of
two ConvNet branches, and it binds the detections of two input
frames by a correlation module to create spatio-temporal small
object tubelets. Those tubelets are refined at the tubelet linking
stage, which applies the Viterbi algorithm to the detections
based on correlation linking, and implements a tubelet suppres-
sion procedure that allows STDnet-ST to dismiss unprofitable
tubelets while preserving only high-quality ones.

We have conducted experiments over two publicly acces-
sible datasets with a large number of small objects: USC-
GRAD-STDdb [5] and UAVDT [7]. STDnet-ST achieves state-
of-the-art results in both datasets for very small objects,
clearly outperforming its counterparts by 1.4% AP@[.5,.95]

xs on
USC-GRAD-STDdb, and by 1.1% AP@[.5,.95]

xs on UAVDT. In
addition, STDnet-ST obtains the best result on the UAVDT

small subset, that encompasses the 67.5% of its test objects,
reaching a precision of 27.2% AP@[.5,.95]

s , which is an increase
of 2.1% over any other method.
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