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Abstract. Tracking by detection is an effective approach to address-
ing the multiple object tracking problem. Detections are extracted and
matched across the different frames of a video. However, detection er-
rors persist, leading to false negatives that degrade tracker performance.
In this work, we propose an architecture to overcome detection failures.
Instead of using bounding boxes, which lack precision in crowded situ-
ations, we propose obtaining and tracking segmentation masks for each
object. Results on the MOT20 crowded dataset demonstrate our ability
to improve the performance of state-of-the-art methods.

Keywords: multiple object tracking · segmentation

1 Introduction

Multiple Object Tracking (MOT) consists of assigning a unique identity to every
object and preserving it over time [4]. This problem is commonly solved with
Deep Learning techniques such as Convolutional Neural Networks (CNNs) [21]
or transformers [23]. The most usual paradigm for solving MOT is Tracking by
Detection (TbD). These approaches are based on a detector and an association
mechanism that match detections with previously tracked objects.

The tracking process is stopped when no detection can be associated with
the corresponding track. This can happen when the object disappears from the
scene or when the detector fails to identify it. The latter situation is one of the
biggest challenges that MOT faces nowadays [22] as the track could have been
maintained alive given an appropriate detection. In this work, we want to solve
this problem and preserve those tracks.

Relying on bounding boxes to recover missing tracks is infeasible in crowded
datasets, where there are overlapping situations. Figure 1 shows an example of a
crowded scene, detailing a situation in which two people overlap. We can see how
object B is partially occluded by object A. Bounding boxes contain information
from both objects; therefore, an identity switch may be produced, resulting in the
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Fig. 1. Exemplar frame from a crowded dataset in MOT20 [4] and detailed occlusion
situation. Bounding boxes contain mixed information. Masks are more accurate.

loss of one of the objects from the tracking process. A more precise alternative is
to work with segmentation masks that better determine the boundaries of each
object, having more specific visual properties.

In order to overcome detection failure situations, we propose an architecture
based on the tracking of segmentation masks. When the detector fails and, con-
sequently, a track is not associated, it is sent to a novel Lost Tracks Recovery
(LTR) architecture. LTR includes a combination of an off-the-shelf mask gener-
ation network that provides several masks guided by a bottom approach and a
transformer to ensure that a mask corresponds to a certain track. The correct
mask is subsequently tracked using a segmentation-based tracker.

Our main contributions can be summarized in the following.

– We propose a new architecture, LTR, to overcome detector failures in MOT.
It is based on segmentation masks for identifying and tracking each of the
objects, and additional modules for deciding when to stop tracking process.

– We introduce a mask selection network based on a transformer [23] to decide
if a mask corresponds to a certain track. This transformer has input features
extracted from the segmentation masks and bounding boxes.

– We test the LTR model integrated with a state-of-the-art MOT system and
demonstrate how results are improved in a complex dataset such as MOT20
[4], reducing the number of false negatives due to missed detections.

2 Related work

2.1 Multiple Object Tracking

During the years, different strategies have been followed to solve MOT problem.
Tracking by Detection (TbD) is one of the most common. It is divided into two
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subtasks: object detection and association. The detector identifies all the objects
present in each frame and, with data association, identities are preserved through
time.

We can find different approaches for solving MOT with the TbD paradigm.
There are methods based on transformer architectures such as [20], which takes
the features of the previous frame as the query for the predictions in the current
frame. Center-based methods attempt to predict object center heat-maps to
generate the bounding box [26] [33]. SORT-based methods boost original SORT
[1] tracker performance with stronger detection and association steps [3] [6].

ByteTrack is another example of a TbD solution, taking advantage of the
YOLOX detector [7], along with a two-stage association method using the Kalman
filter [10] and an IoU-based matching with the Hungarian Algorithm [12]. How-
ever, a tracker like ByteTrack still fails to track objects when detection misses
appear. Taking this into account, we propose a new module that overcomes these
failures using a strategy based on segmentation masks.

2.2 Segmentation and segmentation-based tracking

The emergence of Segment Anything (SAM) [11] is an important step forward
in the object segmentation paradigm. This model is able to segment any object
—due to its class-agnostic nature— by providing different types of prompts:
bounding boxes, points, text, or even another mask. SAM counts with an image
and a prompt encoder in charge of embedding extraction, as well as a mask
decoder that generates the mask. Three masks are generated per prompt, since
a mask can represent the whole body or a part or subpart of it.

There are also architectures that perform single-object tracking using seg-
mentation masks. AOT —Associating Objects with Transformers— is one of
the top performer methods [27]. It is based on an ID assignment mechanism
for joint association and decoding of multiple targets, and a Long Short-Term
Transformer (LSTT) framework that performs hierarchical multi-object match-
ing and propagation. DeAOT [28] is an evolution that further enhances AOT
performance, decoupling hierarchical propagation in two parallel branches and
including a more efficient module —GPM: Gated Propagation Module— for
mask propagation.

In our LTR, we have taken into account both SAM and AOT networks for
fixing detection failures. SAM is used for generating masks for the tracks, and
for feature extraction in the mask selection network. This network is in charge
of ensuring that a mask corresponds to a track. AOT is the proposal chosen to
track said masks. More details will be given in Section 3.

3 Methodology

3.1 TbD architecture

Figure 2 shows an overview of our TbD architecture. The detector —DETECTOR
(Fig. 2)— is responsible for identifying all objects present throughout each video
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Fig. 2. TbD architecture, adding our LTR component for overcoming detector failures.

frame, and the association mechanism —ASSOCIATION (Fig. 2)— matches
those detections with the previous frame predictions —Dt+1 and Pt, respec-
tively (Fig. 2). The association is performed using the well-known Hungarian
Algorithm [12], with a cost matrix based on the Intersection over Union (IoU)
between the current frame detection bounding boxes and previous frame predic-
tions. The matched detection-track pairs —matches (Fig. 2)— are propagated
to the current frame, and the unmatched detections —unm. dets (Fig. 2)— are
initialized as new tracks. Both are concatenated and form the predictions of the
current frame —Pt+1 (Fig. 2).

Unmatched tracks after association —unm. tracks (Fig. 2)— would normally
be marked as lost. However, there are false negatives that appear due to detector
failures and could be kept on track. In order to do so, we design a new architec-
ture (LTR) that deals with those tracks —LOST TRACKS RECOVERY (Fig.
2). It is based on the generation and tracking of segmentation masks (Sect. 3.2).

3.2 Lost Tracks Recovery

Mask generation Every time a new object is lost, a mask needs to be gener-
ated. For that, the last available detection —from previous frame, namely Dt—
is taken. The mask generation process is detailed in Figure 3 —this corresponds
to block MASK GEN. in Figure 2. The bounding box is used to call the SAM
[11] method for getting the mask —SEGMENTATION NETWORK (Fig. 3).
SAM has a prompt encoder and an image encoder that process input prompts
and images, respectively. The fusion of the prompt and the image encoding is
sent to the image decoder in charge of predicting the masks. Three masks can
be extracted from each prompt to solve ambiguity situations.

If the bounding box of an occluded object is used directly as a prompt, the
mask can mix information from the objects inside that bounding box, or even
segment only the object in front. To avoid that, we propose to generate a set



Enhancing MOT with Segmentation Masks 5

of segmentation masks using a point grid inside the original bounding box. If a
point is located above the object of interest, the mask is more likely to cover only
that object. In this way, with an N × N grid, N × N × 3 masks are generated
—N-point grid and N ×N × 3 candidate masks, respectively (Fig. 3).

Mask selection network details It is necessary to check if there are one or
more valid masks for a track and, in that case, choose one of them. To do so,
we introduce a module named mask selection network (Fig 3). It is based on
the encoder of a Vision Transformer [5] and is responsible for taking all masks
and choosing the best. In Figure 3 we show how each input is processed. There
are the following inputs: a set of candidate segmentation masks —cand. masks
(Fig. 3)—, the reference bounding box of the object in the frame t, in which the
mask is generated —ref. bbox (Fig. 3)—, and the bounding boxes surrounding
each candidate mask —cand. bboxes (Fig. 3). Candidate boxes are provided to
compute the positional encoding. The candidate masks and reference bounding
box are embedded and processed as tokens.

Firstly, the reference bounding box is converted to a mask with ones inside
the bounding box and zeros outside. The embeddings for each mask are extracted
from SAM [11], encoding the frame information with SAM’s image encoder and
each candidate mask information with SAM’s prompt encoder (Fig. 3). As said
before, this embedding is normally generated in SAM as an input to the decoder
which generates the prediction, so we will also consider it for our transformer.
As the size of these embeddings is too large, we apply a reduction using the ROI
Align operator —RoI ALIGN (Fig. 3)—, getting input tokens of size 256×7×7.

Those tokens are then resized to the internal dimension of the transformer via
a linear projection, and the positional encoding is computed using the bounding
boxes and added afterwards to each token. Then, encoder layers are applied,
ending with an MLP layer with the output size of the number of candidate
masks + 1. Softmax activation function is calculated at the end. Probabilities
per each mask and an extra No−Mask token representing the situation when
no mask is suitable are given —per-class + no-mask probs (Fig. 3). The track
will be marked as lost if the highest probability is assigned to this extra token.

Mask tracking The complete LTR pipeline can be seen in Figure 4. The mask
generation process mentioned above is the first step —MASK GENERATION
(Fig. 4). After that, the tracking process begins —MASK TRACKING (Fig. 4).
Firstly, the mask is used to initialize a new instance of the segmentation tracker
—MASK TRACKER INITIALIZATION (Fig. 4). We have chosen AOT [27]
[28] as the tracker, which takes t as the reference frame and sets the mask there.
AOT will make the prediction by propagating the mask from frame t to t + 1
—MASK TRACKER PREDICTION (t → t+1) (Fig. 4)— with its LSTT [27].

An object could already have been tracked in previous frames thanks to LTR.
In that case, it would have a mask already generated for the previous frame t,
and an instance of the tracker already initialized —Tracker instance (Fig. 4).
Therefore, only a new propagation will be done.
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Fig. 3. Details of the mask generation process using the segmentation and mask selec-
tion networks.
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Fig. 4. Details of the process for managing detector failures. Tracks that have not been
matched after association will follow this pipeline.

Termination check After the prediction is completed, it is checked that the
mask is correct —TRACK TERMINATION CHECK (Fig. 4). To do that, the
masks of frames t and t + 1 are compared to check if they are similar enough,
that is, if their overlap —measured using the IoU— is over a certain threshold
T —SIMILAR MASKS? (t+1, t) (Fig. 4).

A similar comparison is made between the bounding box of t and the new
estimate for frame t + 1 using the same criteria —SIMILAR BOXES? (t+1,
t) (Fig. 4). For that, a bounding box is estimated for the track in t + 1 —
BOUNDING BOX ESTIMATION (Fig. 4)— as there is no detection to match
in this case. The new bounding box is computed taking into account the position
in the frame t and both segmentation masks. The center of the bounding box
is displaced from the one in t following the displacement of the mask centers
between t and t+ 1.

If a track does not pass any of the similarity filters, it will be marked as lost
and not maintained in t+ 1 —lost tracks (Fig. 4). In other cases, the estimated
bounding box for t+ 1 will be assigned to the track —matches (Fig. 4).

4 Implementation details

The detector of the TbD approach has been implemented with YOLOX-X and
we take the association method and related parameters from ByteTrack [30].
However, our approach could be integrated into any TbD solution. As the seg-
mentation method, we have used SAM with the largest backbone size. For track-
ing masks, we have used AOT. In particular, we have chosen the DeAOT-L model
with the SwinB transformer backbone.
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We have selected a grid size for mask generation of N = 3, getting a total of
27 masks per object as candidates for the selection network. The Mask Selection
Network has the sizes of a ViT-Base model: 12 layers, 12 heads, 3072 as the
output size of feed forward layers inside each encoder block, and an internal
dimension of 768. We train the network for 100 epochs with a batch size of
256, cross-entropy loss function, and AdamW optimizer. We use a learning rate
scheduler with the step policy, with a maximum learning rate of 10−5 and a
minimum learning rate of 10−6. The threshold T for controlling the similarity
of the masks and the bounding boxes between frames —in track termination
check— is set to 0.9. All the experimentation was performed on a single NVIDIA
A100 GPU.

5 Results

We report the results of our proposal on MOT20 [4], a dataset of the MOTChal-
lenge benchmark. We focus on this dataset as it contains very crowded scenes,
with objects constantly overlapping.

We report the results on commonly used MOT metrics like MOTA —Multiple
Object Tracking Accuracy—, IDF1 score —Identity F1 score, which is more
related to how long each object is detected correctly through the video—, HOTA
[15] —Higher Order Tracking Accuracy, a metric that measures how well the
trackers detect, associate, and locate each of the objects— and the number of
identity switches (IDSW).

Table 1 compares the state-of-the-art with our approach. We can see how
ByteTrack improves the previous state-of-the-art in MOTA, staying behind in
other metrics such as HOTA or IDF1 score. We are reporting their results with-
out including their offline interpolation and per-sequence thresholds. The addi-
tion of our LTR solution in a TbD architecture like ByteTrack has proven to
be helpful: we improve by 0.3 in MOTA and by 0.9 in HOTA. Moreover, the
greatest improvement is achieved in the IDF1 score, which improves by more
than 1 point.

In Table 2 we provide a more precise analysis in terms of the number of
false positives and false negatives. Since we aim at tracks that would normally
be marked as lost, this has an impact on the number of false negatives, which
is reduced by more than 3,000. At the same time, some tracks are incorrectly
recovered, increasing the number of false positives. Nevertheless, the reduction
in false negatives is more significant, resulting in the observed improvement in
the previously mentioned metrics.

Finally, we can see in Figure 5 an example of how LTR recovers an object
missed by the detector. Taking ByteTrack as the baseline tracker, we show how
it is unable to track object ID 194, as no detection is matched —its bounding
box is marked in red. Conversely, we generate a mask in frame t and make the
prediction for t+ 1 thanks to LTR. Overcoming these kind of situations helped
us to boost the results of the tracker.
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Table 1. Results of our proposal and comparison with another state of the art trackers
in MOT20 test set. ByteTrack and OC-SORT results are reported avoiding their in-
terpolation and per-video tuning tricks. We report MOTA, HOTA, IDF1 and Identity
Switches.

Tracker MOTA HOTA IDF1 IDSW
MTrack [29] 63.5 — 69.2 6,031
MeMOT [2] 63.7 54.1 66.1 1,938
GSDT [25] 67.1 53.6 67.5 3,230
Decode-MOT [13] 67.2 54.5 69.0 2,805
OUTrack [14] 68.6 54.7 65.7 1,532
FairMOT [31] 61.8 54.6 67.3 5,243
TrackFormer [16] 68.6 54.7 65.7 1,532
TransTrack [20] 64.5 — 59.2 3,565
AOH [9] 67.9 55.1 70.0 2,698
CrowdTrack [19] 70.7 55.0 68.2 3,198
OC-SORT [3] 73.1 60.5 74.4 1,307
SGT [8] 72.8 56.9 70.5 2,649
CorrTracker [24] 65.2 — 69.1 5,183
MTracker [32] 66.3 — 66.7 2,715
MO3TR-YOLOX [34] 72.3 57.3 69.0 2,200
CountingMOT [17] 70.2 57.0 72.4 2,795
CenterTrack [33] 45.8 31.8 36.6 6,296
TransCenter [26] 72.9 50.2 57.7 2,625
GHOST [18] 73.7 61.2 75.2 1,264
StrongSORT [6] 72.2 61.5 75.9 1,066
ByteTrack [30] 74.0 59.2 72.6 1,069
ByteTrack + LTR 74.3 60.1 73.9 1,069

+0.3 +0.9 +1.3 —

Table 2. Results of our proposal and comparison with ByteTrack in MOT20 test set.
ByteTrack results are reported avoiding their interpolation and per-video tuning tricks.
We report the number of false positives and false negatives.

Tracker FP FN
ByteTrack [30] 16,749 116,927
ByteTrack + LTR 18,890 113,617

+2,141 -3,310

6 Conclusions and future work

In this work, we have proposed a new TbD architecture that maintains active
tracks that would normally be marked as lost due to detection failures. Our solu-
tion is based on segmentation masks, which are more precise than methods based
on bounding boxes. We used SAM to obtain multiple candidate segmentation
masks for each of the objects, a new transformer to select one of the candidate
masks, and AOT to track masks through time.
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Fig. 5. Example of our architecture overcoming a miss from ByteTrack.

Our module, in integration with a state-of-the-art tracker, is able to increase
its performance in a crowded dataset such as MOT20. Metrics like MOTA,
HOTA and IDF1 are improved, as well as the false negatives. In future work, we
plan to extend the experimentation taking into account more TbD solutions —
our architecture can be integrated into any TbD approach— and more datasets.
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