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Abstract

Applications in control and/or monitoring usu-
ally demand an explicit representation and man-
agement of time. Fuzzy Temporal Rules (FTRs)
introduce an explicit fuzzy representation of
time, allowing relative occurrences of events,
quantification, and other types of operators. In
this model fuzziness can appear not only in the
temporal references, but also in the sets of val-
ues and operators involved. This paper presents
the most relevant features and applications of
knowledge representation and reasoning within
the FTRs framework. New challenges, both re-
garding automated learning of knowledge bases
involving these rules and potential new fields of
application in a number of areas, are also de-
scribed.

Keywords: Fuzzy Temporal Rules, Fuzzy Tem-
poral Reasoning, Evolutionary Fuzzy Systems

1 INTRODUCTION

Modelling of applications in control and/or monitoring by
means of fuzzy rule-based systems usually demand an ex-
plicit representation and management of time. In propo-
sitions such as “The temperature has been very low for a
few seconds”, “Vomiting started more than 15 minutes after
the beginning of the radiation exposure” or “The distance
to the wall has kept low in part of the last measurements”
time appears as a temporal reference for a number of events
(“for a few seconds”, “in the last measurements”) or as
a relationship between the occurrence of different events
(“15 minutes after”). This explicit representation of time
in propositions and the subsequent models for performing
reasoning using these pieces of knowledge cannot be di-
rectly accomplished within the non-temporal propositions

scheme “X is A” usual in fuzzy rule-based systems (or at
least not in a direct and intuitive way).

Other expressions involving different types of operators,
either describing relationships between the variables (“the
temperature in most of the tanks is high”, “the minimum
of the high pressure values”, “the mean of the velocities
in the vicinity of an obstacle”), or stating the occurrence
of events in a fuzzy temporal window (“the mean of high
temperatures in the last ten minutes”, “the minimum of the
recent values of high pressure”), or even combinations of
both (“for a minute the mean value of the temperature in
heater 1 was bigger than the mean value of the temper-
ature in heater 2”) are examples of knowledge represen-
tation needs when modelling complex dynamic systems.
Furthermore, in other fields like flexible querying or data
mining it may become necessary to evaluate the fulfilment
of complex relationships such as “most of the people who
entered the ER recently are young”, “the maximum salary
between middle-aged employees with low income”. To sum
up, modelling such expressions demands an adequate se-
mantic model that take into account an explicit fuzzy rep-
resentation of time and consider that fuzziness can appear
not only in the temporal references, but also in the sets of
values and operators involved.

With the purpose of increasing the flexibility of the usual
model for fuzzy propositions, some models that include
time more or less explicitly as another decision variable
have been proposed [15, 18, 9, 6, 8]. In [3] a model of
fuzzy temporal rules (FTRs) that extended these proposals
aiming to allow the fuzzy representation and reasoning on
temporal and non-temporal references was described. A
language was introduced which allows experts to describe
their knowledge (including the temporal component) in a
legible and flexible way, allowing relative occurrences of
events, quantification and other types of operators.

Since this FTRs model is oriented to real-time applications,
the signal values are assumed to be obtained with a given
periodicity, or at least will be associated with successive
time points. In a dynamic system the variables are ob-
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tained from measurements of external signals, whose val-
uesare changing in time, or can be inferred at particular
time points. This makes it necessary to consider not only
the current values of the signals, but also those previously
observed, which allows to reason about the history of signal
values.

The general expression of a FTR in this model is:

IF P1 andP2 and ... andPM THEN C1 andC2 and ... andCN

wherePm, m = 1,...,M andCn, n = 1,...,N are Fuzzy
Temporal Propositions (FTPs). For the sake of clarity, we
will describe in what follows some of the most relevant fea-
tures of the FTPs.

Propositions in the antecedent part of the rule represent
facts where both temporal and non-temporal information
can be fuzzy and can be given in an absolute manner, or
relative to the occurrence of other facts. As an example,
we present in Table 1 some of the rewriting rules of the
grammar to construct these FTPs (the reader is referred to
[3, 4] for a more complete description of the rules).

A value constraint is a non-temporal fuzzy value, defined
on the universe of discourse of a given variable. Three
types of value constraints can be applied to a signal: abso-
lute (“Pressure ishigh”), relative to another reference sig-
nal through a point to pointvalue relationship, as in “Pres-
sure in heater 1 ismuch greater than pressure in heater 2”,
and quantified value constraints (“Pressure ishigh in most
of the heaters”).

A filtered signalrepresents a signal defined in the[0, 1] in-
terval, obtained after applying a value constraint to a vari-
able, by means of alinguistic filtering process [14]: eval-
uation of the possibility distribution defining the constraint
on each one of the signal values.

Sometimes it is necessary to establishtemporal con-
straints on the set of time points where a signal is being
evaluated. For example, it may be required that the value
constraint is applied not over all the history of signal val-
ues, but only for a subset of time points. This subset will
be defined by a temporal constraint, which can be an instant
or an interval, fuzzy or not. Temporal constraints can also
be absolute or relative, so they require the consideration of
different relationships between temporal entities. We con-
sider the following basic temporal entities: fuzzy tempo-
ral instant, fuzzy temporal duration, fuzzy temporal inter-
val and fuzzy temporal relationships, assuming that all the
basic temporal relationships (both qualitative and quantita-
tive) between instants and/or intervals, and between tempo-
ral durations can be reduced to relationships between time
points and durations. Some examples of this kind of rela-
tionships are [1]:before, at the end of, when,....

A temporal constraint can also act as atemporal context
[17] for signal evaluation, establishing a temporal window
within which the degree of fulfilment of the proposition has
to be obtained. Basically, a temporal reference can be de-
scribed in an absolute manner (“at 20:00”), relative to the
current time point (“ten minutes ago”) or relative to the oc-
currence of an event (“a little after an increase in pressure”,
“between 30 minutes and 2 hours after the beginning of the
irradiation” [8]).

Three types of operators are considered: quantifiers, spec-
ification operators and reduction operators.Quantifiers in
the temporal part of FTPs allow to model expressions of the
form X is A in Q of T (for example, “the temperature
has been high inmost of theprevious half an hour”), which
introduce the central concept ofpersistence[2], related to
the use of fuzzy temporal intervals as temporal references
in the propositions: when a condition on a variable must be
evaluated over a fuzzy temporal interval, it may be required
that the value or condition is fulfilled, at least to some de-
gree, for all the time points in the interval, or just for any
of them. Between both extremes there is a continuous of
situations (“in most of the previous hour”) that have not yet
been fully developed within the scope of temporal reason-
ing.

A signalspecification operatorselects a candidate among
several, according to specific non-temporal or temporal,
and maybe fuzzy, criteria. Examples of this type of op-
erators arefirst, last, maximum, minimum... Thus, a propo-
sition can refer to “the maximum of pressure values in the
last 30 minutes”, “the last value of high temperatures”, “the
minimum of the velocity values in the proximity of an ob-
stacle”...

A reduction operator resumes a series of signal values in
a single one, defined on the same universe of discourse.
When describing dynamic systems we usually find expres-
sions involving operators that act on the values observed or
inferred for a variable on a temporal reference, in order to
obtain a new value that does not necessarily have to match
any of the original ones. Examples of these operators are:
mean valueor accumulated value.

Considering this type of FTP, expressions containing value
relationships between variables can be described (“Tem-
perature in heater 1 is much greater than temperature in
heater 2”), with different degrees of structural complex-
ity (“Temperature in heater 1 in the previous seconds was
much greater than temperature in heater 2 two hours ago”).
More generic structures can be described, where the tem-
poral and value constraints in the proposition are rewritten
in a more elaborate way: “Pressure 1 was much higher than
pressure 2, a little after temperature 1 was lower than tem-
perature 2”, “Temperature is low while pressure is high”.
Related to the use of different operators, other expressions
are: “Most of the temperature values through the previous
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Table 1: FTP: General structure of a propositional clause.
(R1)<Propositional clause>::=(<Proposition>| <Proposition><Value relationship><Proposition>)[<Temporal interval>]
(R2)<Proposition>::=(<Filtered signal>| <Signal>)<Temporal instant>|

| (<Operator>| <Quantifier>) (<Filtered signal>| <Signal>) [<Value constraint>]<Temporal interval>
(R3)<Filtered signal>::=<Signal> <Value constraint>
(R4)<Signal>::=TEMPERATURE| PRESSURE| ...
(R5)<Value constraint>::=(<Relative value constraint>| <Absolute value constraint>) [<Quantified value constraint>]
(R6)<Relative value constraint>::=<Value relationship> <Signal>
(R7)<Absolute value constraint>::=HIGH | LOW | MORE THAN 30| ...
(R8)<Quantified value constraint>::=<Quantifier>[<Signal>] (<Absolute value constraint>| <Relative value constraint>)
(R9)<Value relationship>::=GREATER THAN| LESSER THAN| SIMILAR TO |...
(R10)<Temporal instant>[...]
(R11)<Temporal interval>[...]
(R24)<Operator>::=<Reduction operator>| <Specification operator>
(R27)<Quantifier>::=<Absolute quantifier>| <Relative quantifier>
(R28)<Absolute quantifier>::=[APPROXIMATELY] (MORE THAN 2 | LESSTHAN 7 | BETWEEN 3 AND 5 | ...)
(R29)<Relative quantifier>::=[APPROXIMATELY] (ALL | MOST OF | HALF | PART OF | ...)

minutes have been high” (quantification),“The maximum
of temperature values between 6 and 8:30 was very low”
(specification) or “The mean value of temperature in the
last 48 hours was moderate” (reduction).

1.1 APPLICATIONS OF FUZZY TEMPORAL
RULES

The first real application of the FTR model was in the field
of mobile robotics, namely in the implementation of two
behaviours on a Nomad 200 robot: moving objects avoid-
ance and wall-following [13, 12]. When the robot has to
avoid a collision with a moving object, it is specially wor-
thy to estimate the trend of the object. In that way, in-
stead of taking a control action based on the current values
of some variables, a more appropriate behavior can be ob-
tained through the analysis of the movement of the object
in the recent past (last few seconds). FTRs play a central
role in this analysis, as they can cope with noisy measure-
ments coming from the robot sensors and, at the same time,
evaluate the trend of each variable. The control system was
implemented with 114 rules divided in three modules: ob-
ject course evaluation, behaviour selection, and behaviour
implementation. A typical FTP for this behaviour is: “the
speed of the object is not increasing in part of the last sec-
onds”.

The wall-following behaviour was implemented by several
authors using fuzzy controllers. However, on the real robot
this behaviour is quite sensible to spurious sensor measure-
ments, which is reflected in oscillations of the robot along
the path. That situation can be mostly solved taking control
actions based on several consecutive measurements, dis-
carding those that are noisy. A 321 FTRs system was im-
pemented to that purpose. The system has been divided in
three rule bases: straight wall, convex and concave corner.
FTPs are like: “right-hand distance diminishes a little ap-
proximately in the last measurements”. With this model,
the persistence in the occurrence of certain events in time,

and also temporal and value relationships between signals
can be taken into account.

Another practical application of the FTR model was in the
field of landmark detection for mobile robots in indoor en-
vironments (door-detection in a corridor [5]). This task
constitutes a vital part within a complex navigation sys-
tem in closed environments, since it provides information
for robot localization in the environment, fundamental for
planning trajectories and movements. It was developed
again using real data from the ultrasound sensors of the
robot, and good results have been obtained given the re-
quirements of the system.

Door detection requires the consideration of two aspects:
temporal relationship between consecutive detections in
some sensors, and value relationships between the signals.
Translating the knowledge associated to door detection into
our FTRs model, two rules are obtained for the detection of
doors on the robot’s left and right side, respectively. To de-
scribe these rules, the temporal relationship “a few instants
before” between the events “sharp rise” and “sharp fall”
of the ultrasound signals was considered since the tempo-
ral distance between the current distance value provided by
one of the sensors, and previous values provided by the
other is the key for the detection of a door.

This temporal distance between the events marking the be-
ginning and end of each door depends on the velocity of the
robot. This velocity is not constant, but changes according
to the environment (it decreases when the robot turns, or
when an irregularity in the wall is detected, and it is bigger
in straight wall situations [12]), so we take as a reference
the velocity when the robot is getting close to a door. Since
the velocity presents important oscillations, it is more ade-
quate to consider the mean velocity in the neighbourhood
of the door we try to detect. Thus, a FTP describing this
situation, for doors on the left side, is: “The mean value
of the velocity in the previous instants to a sharp fall in
UltrasoundSensor6”. The particular semantic expres-
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sions used in this application of FTRs to door detection are
detailedin [5].

Although the structure of the propositions involved in these
three tasks was quite simple (this meaning they did not
made use of all the expressiveness of the FTRs model)
the quality of the results obtained made us feel optimistic
about the applicability of the model. Nevertheless further
work should be done in order to successfully extend the
application of the FTRs model to different real complex
applications. Given the huge number of rules that have to
be defined for complex behaviours such as the ones pre-
viously mentioned, a natural continuity of the work done
was to introduce some automatic learning mechanism for
the generation of the FTRs, at least for a part of the model
(if not for the complete set of rules in the grammar). In
this way, the process of construction of the fuzzy temporal
knowledge base (FTKB) would be automatic, saving de-
velopment time and allowing the model to be applied in
many different fields, by users not specially skilled in the
underlaying formalism. The next section presents the ap-
plication of an evolutionary algorithm to learn a FTKB for
the classification of moving objects in mobile robotics.

2 AUTOMATED EXTRACTION OF FTRS
FROM DATA USING EVOLUTIONARY
COMPUTATION

Learning of a FTKBs in the field of mobile robotics for
the detection of people and other moving objects was de-
scribed in [11]. A correct classification of these objects
is fundamental for the development of a number of tasks
for human-robot interaction. This is a usual scenario in
real environments, where people walk together, and carry
objects (like suitcases, trolleys, etc.). In these situations,
the density of moving objects is high, and there are occlu-
sions between moving objects, so the detection and track-
ing difficulties are higher [10] than for individual objects.
Detection of people moving in groups is therefore a truly
complex pattern classification task that demands evaluat-
ing spatial-temporal information rather than classifying a
pattern as a moving object by solely using the current val-
ues of some variables. In this realm, quantifying the fulfill-
ment of a linguistic label by a set of data (spatial pattern),
and analyzing the persistence of this fulfillment in a tempo-
ral reference (temporal pattern) is accomplished by means
of FTRs made up of FTPs involving both spatial and tem-
poral quantification. In this section we describe a pattern
classifier system for the detection of moving objects using
laser range finders data that has been learned through an
evolutionary algorithm [11]. The laser sensors emit several
beams, each one in a given direction. When a beam hits
an obstacle, it is reflected and registered by the scanner’s
receiver. The time between the transmission and the recep-
tion of the pulse is known as the time of flight. With this

information, the distance measured in the direction of each
beam can be calculated. The existence of moving objects
in the surrounding of the robot can be determined by two
basic features:

1. A moving object appears in the distance histograms of
the lasers as a local minimum.

2. As other static objects (like the legs of a table, a
wastepaper basket, etc.) can share this characteristic,
the object that has generated the local minimum must
also be new at that position. This condition is veri-
fied using an occupancy grid map, and calculating the
probabilityP i, j

new that the detected object is new in that
cell.

The rules for the detection of moving objects must take into
account information about the size of the local minimum
(the gap between the object that produces the local mini-
mum and the obstacles behind), the number of beams of the
local minimum, and the probability of a new object in each
of the cells of the local minimum. This last characteristic
distinguishes between static and moving objects. The anal-
ysis ofP i, j

new can also generate false positives. These errors
can be reduced if, instead of taking into accountP i, j

new, the
system analyzes this probability in different time instants.
Moreover, some cells of the local minimum can have a high
probability of containing a new object, but others not. The
system should also quantify how many cells must have a
Pnew above a threshold.

A FTP that is able to perform the spatial filtering of succes-
sive values ofP i, j

new is the following:

Pnew is high in most of the cells in part of the last instants
(1)

This type of FTP (X is A<in Qs of> Ss <in Qt of> St),
whereX (P i, j

new) is a linguistic variable,A (high) repre-
sents a linguistic value ofX, Qs (”most of”) andQt (”part
of”) are fuzzy quantifiers,Ss is the (fuzzy) set of reference
(”cells”), andSt (” the last instants”) is a temporal refer-
ence, can be formally described in the framework of the
FTR model.

The syntactic tree representing FTP in (1) according to the
grammar proposed in [3] is shown in Figure 1. In this
proposition quantifiers are applied both to the non-temporal
part of the proposition (in most of the cells) and to the tem-
poral part (in part of the last instants).

The design of this FTP involves the definition and tuning
of ten parameters (linguistic labels and quantifiers) per rule
for this application. Moreover, drastic changes in the char-
acteristics of the environment or the moving objects could
affect the accuracy of the pattern classifier system, making
useless the tunned parameters. Therefore, an evolutionary
algorithm based on the cooperative-competitive approach
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Figure 1: Syntactic decomposition of FTP:P i, j
new is high in

most of the cells in part of the last instants.

has been used to learn a pattern classifier that was tested
with data obtained with aPioneer II robot equipped with
two laser range scanners.

Experiments have been performed with a five-fold cross-
validation. Results showing the average and standard devi-
ation values of the five-fold cross-validation for the number
of rules of the knowledge base, false positives (fp), false
negatives (fn), and percentage of examples correctly classi-
fied (% correct) over the training and test examples sets are
shown in Table 2. The percentage of examples correctly
classified over the test set is 96,10%, despite the number of
moving objects, their high concentration in small areas of
the hall, and the movement of the robot (see [11] for more
details).

Table 2: Results of the five-fold cross-validation.
Training (x ± σ) Test (x ± σ)

#rules 25.60 ± 5.32 —
fp 11.40 ± 5.73 2.20 ± 2.95
fp 19.60 ± 7.57 7.40 ± 3.21

% correct 96.85 ± 0.61 96.10 ± 1.74

The fact that people move in groups increases the difficul-
tiesin the detection, as compared with a single person, be-
cause cells that were originally free are occupied in succes-
sive time instants by different moving objects (legs). Thus
the values ofP i, j

new are lower. During the experiment up to
ten people moved around the robot, which means 20 mov-
ing objects at the same time. Such a high number of mov-
ing objects concentrated in a few and small areas of the
environment generates partial (and total) occlusions of the
objects, modifying the values of the gaps and the number
of beams of the detected moving objects. Also, more than
half of the time the robot was moving, making harder the
discrimination of new objects as the scan matching errors
increase.

3 OPEN ISSUES AND NEW
CHALLENGES

Taking into account the FTR model features there are a
number of open issues, both in the area of the most ap-
propriate strategies and techniques for automatic discovery
of rules and in the area of real applications of the model.

3.1 AUTOMATIC LEARNING OF FTRS

One of the challenges that must be tackled to extend the
use of FTRs is the adaptation of the existing genetic fuzzy
systems to the FTR paradigm. FTRs have a complex and
variable structure. This structure can change not only at
the rule level (as a conventional fuzzy rule), but also at
the proposition level. Therefore, it is necessary to define
a context-free grammar to generate only those structures
that are valid. Genetic programming seems to be the most
adequate frame to learn the rules, due to its ability to work
with chromosomes with very different shapes. Moreover,
the size of the search space is much larger than that of a
conventional knowledge base, due to the complex syntax of
the rules, the dependence on the temporal reference frame-
work, the existence of reduction, specification and quantifi-
cation operators, temporal membership functions, etc. In
this context parallel and/or distributed approaches for the
execution of the algorithm should be taken in consideration
as options.

Another challenge is the construction of the training
dataset. Generally, examples only provide information of
the spatial part of the propositions, i.e., they do not contain
temporal information. Thus, the temporal part of the propo-
sition has to be learned from scratch, trying to improve the
performance of the corresponding rule or knowledge base.
Usually, the initial population is composed of conventional
fuzzy rules that evolve into FTRs, because the considera-
tion of the temporal part of the proposition contributes to
an increase in the performance. Of course, the inclusion
of temporal information in the initial population could ac-
celerate the convergence of the learning algorithm, and im-
prove the results. However, how this temporal information
could be included remains an open issue.

3.2 NEW FIELDS OF APPLICATION OF FTRS

FTRs have been successfully applied in the field of mobile
robotics, but there are many other fields which could bene-
fit from the extended capabilities of this model as opposed
to traditional non-temporal rules.

3.2.1 Medicine

In the process of diagnosing a disease a lot of informa-
tion is obtained from the patient, producing a variety of
data stored in different places: administrative data, physio-
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logical signals (ECG,...), results from clinical tests (blood
analysis,...),etc. Specially in the case of data from labo-
ratory tests, diagnosis or therapeutical procedures, most of
the data are temporal. In some cases, it is relevant to know
the relative occurrence of an event with regard to other
events; in other cases, what is interesting is the duration
of an event. Temporal patterns can be used to distinguish
between different pathologies, or to support the choice of a
given therapy.

When the amount of temporal data stored in a database rel-
ative to a particular patient is too large to be globally ex-
amined by a human expert, it would be useful to have an
automatic tool that can extract relevant information from
these data, which can assist the expert in diagnosing a given
disease or the degree of severity of an illness.

Development of an automatic tool for standard polysomno-
graphic analysis is currently undergoing, aiming to provide
the physician with new information from the intelligent
processing of the set of polysomnography signals. The use
of techniques for temporal abstraction of the information
from two perspectives (solutions based on domain knowl-
edge, and solutions based on supervised learning) needs to
be complemented with the design, development and im-
plementation of new computational tools for information
fusion and analysis of association relationships in the in-
formation obtained from patients follow-up.

In particular, it could be of interest to extract fuzzy tempo-
ral association rules from a database of temporal events,
which have been obtained from a preprocessing of the
polysomnographic data. In this sense, existing algorithms
for association rules extraction must be adapted, since none
of the proposals in the literature deals with actual fuzzy
temporal information, but only time stamps associated to
the data. Furthermore, it would be interesting to include the
concept of more complex relationships/operators such as
quantification in the associations extracted from the rules,
in order to evaluate for instance the severity of an illness.

3.2.2 Trends analysis in economy temporal series

In fields like economy, the problem of qualitatively describ-
ing information provided by indicators (e.g. the trend of a
temporal series: increasing, decreasing or approximately
constant) is far more complex than in more analytical-
friendly fields. Although statistical techniques can be used
to analyse temporal series, we want to stress that a linguis-
tic qualitative description of these signals (as usual for ex-
ample in finances reports or economic argumentation) is
very useful to provide accurate and brief information that
compiles all the numeric data. As an example, an “approx-
imate trend” of a signalS could be defined involving tem-
poral information and quantifiers as:

• S is approximately increasing/decreasing aroundt:
when the percentage variation issignificantly supe-
rior/inferior to 0 inmost of thepoints close tot.

• S is approximately constant aroundt: when the per-
centage variation issignificantly closeto 0 in most of
thepoints close tot.

Here,significantly superior/inferiorto 0 is a fuzzy number,
andmost of thea fuzzy quantifier.

There are plenty of common-use examples in these areas
that need to be modelled using similar fuzzy semantic ap-
proaches, such as: “the oil production is becoming stag-
nant in the last years” (reinterpreted as “in at least about
the 80% of the approximate period of the last 5 years, the
increasing in oil production was negative or only slightly
superior to 0”); “the variation of the yearly variations of
home prices has been close to 0 in the last months”; “the
correlation between the significant falls in the yearly vari-
ation of the number of initiated homes, and the significant
increases in the unemployment rate in the real state sector
six months later, has been very high in the last year” (in this
case using correlation quantifiers such as those described in
[7]).

Several promising application fields of this kind of expres-
sions can be identified:

• Fuzzy filtering. Applying quantifiers to percentage
variations extends the possibilities of fuzzy filtering.
For example, in Figure 2 (top) the yearly percentage
variation of the number of initiated homes is shown
for the period Jan. 1992-Oct. 2007. Figure 2 (bottom)
shows the result of evaluating the quantified expres-
sion “In most of the last six months the yearly varia-
tion in the number of initiated houses has significantly
fallen”. Periods of negative trends are easily detected
by means of a fuzzy quantified expression.

• Argument assessment. Reasoning in economy is
plenty of examples of expressions that can be mod-
elled and evaluated by means of a combination of per-
centage series and fuzzy quantifiers. For example, the
degree of fulfillment of expression “the oil production
is becoming stagnant in the last years” could be eval-
uated in order to check the validity of the argument.

• Linguistic summaries of series. This would allow
automatic detection of positive, negative and stagnant
trends in a temporal series. For example, the propo-
sition “the unemployment trend is increasing in the
last year” (reinterpreted as ”in most of the last twelve
months, the yearly unemployment variation was in-
creasing”) could be an automatically generated sum-
mary as a result of a fuzzy temporal rule-based analy-
sis of the unemployment rate.

ESTYLF08, Cuencas Mineras (Mieres - Langreo), 17 - 19 de Septiembre de 2008

512 XIV Congreso Español sobre Tecnologías y Lógica fuzzy



• Temporal causal analysis. Let us consider the ex-
pression “the correlation between the significant falls
of the yearly percentage variation of initiated homes,
and the significant increases of the yearly percentage
variation in the unemployment rate in the real state
sector six months after that, has been very high in the
last year”. Evaluating the expression on experimental
data, if for some range of the temporal difference (six
months in the example) the fulfillment of the expres-
sion is very high a possible causal relation could be
detected.

1992 1994 1996 1998 2000 2002 2004 2006 2008
−100

−50

0

50

100

1992 1994 1996 1998 2000 2002 2004 2006 2008
0

0.2

0.4

0.6

0.8

Figure 2: Fuzzy percentage quantified filtering of the num-
berof initiated houses.

The most interesting features of this approach are:

• The approximation is linguistic, fuzzy and easily in-
terpretable.

• Quantifiers, temporal granularity, and linguistic vari-
ables are all fuzzy thus being able to cope with uncer-
tainty.

• Fuzzy quantifiers let us avoid outliers (usually due to
noise); in this way, the result does not depend on a
particular increase in a decreasing series.

• Working with percentage variations allows us to oper-
ate with independence of the base signal. As absolute
values of series are not involved, certain signal inde-
pendence is achieved.

• And perhaps the most remarkable,common senseex-
pressions (e.g., economic arguments) can be evalu-
ated.

3.2.3 Business intelligence

Organizations and companies have carried out in the recent
years a huge effort to improve their productivity by means

of automating their business processes. Such automation
was achieved through defining workflows that describe the
coordination of the execution of the activities that have to
be performed in order to achieve the goals stated in the
business process [16].

Execution of workflows is typically performed in the com-
pany information system, where all the data that are gener-
ated during the execution are stored. Examples of such data
are: who was the person/process that performed a given ac-
tivity, when it occurred, which was the information used,...
Starting from such data a process mining stage can be done,
aiming [16] (i) to reconstruct or discover processes for an
automatic definition of the workflow associated to the ac-
tivities performed by the members of the organization dur-
ing the execution of a business process, (ii) to evolve pro-
cesses, aiming to monitor the workflow execution in order
to detect exceptions or execution conditions of activities
that may produce changes in the initial workflow.

The techniques proposed for process mining are typically
based on the identification of causal temporal relationships
among the events recorded in the information system. Tem-
poral rules in this context could allow to detect the execu-
tion order of the activities or to avoid repetition of activities
or deadlocks. Within this context, frameworks for tempo-
ral representation and reasoning involving representation
of changing relationships over time (instants, intervals, and
topological relationships among them) are now starting to
be used for development of semantic-based approaches to
business intelligence applications.

3.2.4 Industrial and other applications

Monitoring, supervision, diagnosis and control of pro-
cesses are areas where a number of elements coexist, mak-
ing them a potential field of application for temporal infor-
mation processing techniques. In complex environments
such as chemical or environmental processes, power and
water-treatment plants a huge number of signals have to
be processed, temporal evolution of indicators is relevant,
and also temporal relationships between events needs to be
considered. Furthermore knowledge-based approaches in
these fields are becoming a common-use tool for the de-
sign of advanced intelligent systems and researchers are
paying increasing attention to them. Developing a support
software suite for defining and executing Fuzzy Tempo-
ral Knowledge Bases (those involving FTRs), with facili-
ties for rule editing, debugging, code generation, and au-
tomated learning of rules from data is a must for solving
complex applications in industrial systems using FTRs.

4 REMARKS

Although Fuzzy Temporal Rules provide a general frame-
work for the representation of knowledge and reasoning

ESTYLF08, Cuencas Mineras (Mieres - Langreo), 17 - 19 de Septiembre de 2008

XIV Congreso Español sobre Tecnologías y Lógica fuzzy 513



in complex systems, the applications developed to date
(mostly in the field of intelligent control and classification
in robotics) do not fully exploit all the syntactic and se-
mantic richness of the model. The natural niche for appli-
cation of FTRs is monitoring, control, diagnosis and other
complex tasks in dynamic systems, and these fields demand
that tools and methodologies are available for making eas-
ier the design and/or automatic learning of fuzzy temporal
systems. This is in our opinion the main challenge to be
faced in the near future for achieving a successful use of
temporal reasoning based systems in these fields.
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