
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-023-05879-9

1 3

QPU integration in OpenCL for heterogeneous
programming

Jorge Vázquez‑Pérez1 · César Piñeiro1 · Juan C. Pichel1 · Tomás F. Pena1 ·
Andrés Gómez2

Accepted: 23 December 2023
© The Author(s) 2024

Abstract
The integration of quantum processing units (QPUs) in a heterogeneous high-per-
formance computing environment requires solutions that facilitate hybrid classi-
cal–quantum programming. Standards such as OpenCL facilitate the programming
of heterogeneous environments, consisting of CPUs and hardware accelerators.
This study presents an innovative method that incorporates QPU functionality into
OpenCL, standardizing quantum processes within classical environments. By lever-
aging QPUs within OpenCL, hybrid quantum–classical computations can be sped
up, impacting domains like cryptography, optimization problems, and quantum
chemistry simulations. Using Portable Computing Language (Jääskeläinen et al. in
Int J Parallel Program 43(5):752–785, 2014. https:// doi. org/ 10. 1007/ s10766- 014-
0320-y) and the Qulacs library (Suzuki et al. in Quantum 5:559, 2021. https:// doi.
org/ 10. 22331/q- 2021- 10- 06- 559), results demonstrate, for instance, the successful
execution of Shor’s algorithm (Nielsen and Chuang in Quantum computation and
quantum information, 10th anniversary edn. Cambridge University Press, Cam-
bridge, 2010), serving as a proof of concept for extending the approach to larger
qubit systems and other hybrid quantum–classical algorithms. This integration
approach bridges the gap between quantum and classical computing paradigms, pav-
ing the way for further optimization and application to a wide range of computa-
tional problems.

Keywords QPU · Hybrid programming · OpenCL · Qulacs · PoCL

1 Introduction

Computation has seen a significant surge in demand over recent years. The rise of
disciplines such as big data analysis, artificial intelligence, and automation (related
to IoT), among others, has underscored the need to enhance efficiency in both time
and energy consumption.

Extended author information available on the last page of the article

https://doi.org/10.1007/s10766-014-0320-y
https://doi.org/10.1007/s10766-014-0320-y
https://doi.org/10.22331/q-2021-10-06-559
https://doi.org/10.22331/q-2021-10-06-559
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05879-9&domain=pdf

 J. Vázquez-Pérez et al.

1 3

This is why hardware acceleration has become a topic of interest in the HPC
landscape, with tools arising such as the one employed in this work, portable
computing language (PoCL) [1]. This approach leverages specialized computer
hardware designed to perform specific functions more adeptly than generic soft-
ware on a traditional central processing unit (CPU). In essence, tasks that soft-
ware can handle on a standard CPU can also be managed by custom hardware
or a mix of the two. Thus, to amplify computing tasks, one might optimize the
software, hardware, or both. While software improvements can speed up devel-
opment and simplify updates, they could introduce computational overhead. In
contrast, a hardware-centric approach can yield faster processing, reduced power
usage, and superior parallel processing. Quantum computing, in particular, and
all its software tools (as the Qulacs library employed in this article [2]) aim to
transform the latter by tapping into quantum mechanics principles to process data
in ways conventional computers cannot, as algorithms such as Shor’s have shown
[3], positioning it as a leading accelerator in today’s tech landscape.

Integrating this new computational paradigm as an accelerator into the estab-
lished HPC ecosystem poses significant challenges. This work will outline vari-
ous strategies. Currently, quantum computing and HPC integrations often involve
a QPU communicating with a local system online. While direct, this setup faces
speed and task handling challenges. A more sophisticated architecture proposes
connecting individual computing nodes directly to a QPU, enabling swift com-
munication and improved parallel processing—a more suitable approach for
accelerator devices [4]. As technology advances, compatibility with other accel-
erators like GPUs and FPGAs becomes increasingly crucial.

The motivation behind this work is to explore the integration of QPUs in con-
temporary HPC environments, specifically by merging OpenCL [5] with quantum
computing. OpenCL is an open standard for parallel programming of heterogene-
ous systems, allowing developers to harness the power of both CPUs and various
accelerators for computational tasks. Given the early stages of QPUs, full integra-
tion into HPC environments remains elusive. However, through simulations, this
work seeks to provide a glimpse into how quantum computers might function as
accelerators in present-day HPC nodes, shedding light on future advancements in
this domain. These proof-of-concept explorations form a central component of
our discussion.

In summary, by combining OpenCL and quantum simulations, the aim is to
envision the role of quantum computers as accelerators within today’s HPC sys-
tems. This research explores the challenges and prospects of integrating quantum
computing into the current HPC landscape and lays the groundwork for future
technological intersections and advancements.

The rest of this article is organized as follows. In Sect. 2, the current and
anticipated roles of quantum computers within contemporary HPC environments
are elucidated. Subsequently, in Sect. 3, the heterogeneous platform paradigm
is introduced to provide context for the synergy between OpenCL and quantum
computing. Central to this research, Sect. 4 presents a proof of concept illus-
trating the integration of QPUs within the OpenCL standard, using simulations
of the quantum phase estimation (QPE) circuit and Shor’s algorithm circuit as

1 3

QPU integration in OpenCL for heterogeneous programming

examples. The paper concludes with an evaluation of the results and a discussion
on future directions.

2 Quantum computers in high‑performance computing

2.1 QPUs as accelerators

A lot of speculation has been made in the last few years about quantum computa-
tion, from the quantum supremacy statement veracity to the feasibility of developing
a quantum computer that yields an acceptable error rate. But one thing is certain:
quantum computation is not foreseen to take the place of classical computation, at
least not in the near future. There are several reasons [6, 7] that justify this statement:

1. Memory One of the key differences between classical computation and quantum
computation is the decoherence of data. While classical computation is able to
store data for arbitrarily long time, quantum computation and, therefore, qubits
have small time windows where information is not lost, i.e., decoherence does
not destroy information [8]. Of course, time units depend strictly on the specific
technology of the quantum computer. Some researchers have theorized about
quantum memory random access [9], but this kind of theoretical models are far
away from being feasible.

2. Approximate computing Quantum computing is not able to yield an approximate
result of a problem just as classical computers do. Classical computers can give
an approximate result of a problem with certainty, contrary to quantum computers
which give an approximate result with high probability. The stochastic nature of
quantum computers must never be forgotten and plays a really important part in
analyzing the quantum algorithms and why they provide an exponential speed up.

3. Software Software is essential for quantum computers [7]. Virtually all quantum
computation models necessitate the use of classical control. This is due to the
challenges in achieving dependable measurements and fault-tolerant computa-
tions with quantum devices that are prone to errors, especially in the absence of
a reliable method to sequence operations and make decisions for error correction.
As a result, all recognized software toolchains operate under the assumption
of a quantum co-processor model. In this model, several classical devices are
responsible of managing and directing the operations of the QPU, similar to how a
classical microprocessor today manages and interacts with the GPU on a graphics
co-processor card. While actual implementations may vary, software developers
can conceptualize this as a single microprocessor delivering instructions to the
quantum co-processor in every cycle.

In addition, quantum computers are inherently exceptional operating on some spe-
cific tasks in which classical computers are not that efficient. To be more precise,
bounded-error quantum polynomial time (BQP) is the class of decision problems
solvable by a quantum computer in polynomial time, with an error probability of

 J. Vázquez-Pérez et al.

1 3

at most 1
3
 for all instances [3]. On the other hand, in computational complexity the-

ory, P, also known as PTIME or DTIME(nO(1)), is a fundamental complexity class
that contains all decision problems which can be solved by a deterministic Turing
machine using a polynomial amount of computation time, or polynomial time. It is
known that P ⊂ BQP because it has been proven that every classical circuit can be
simulated by a quantum circuit [3]. The contrary is likely false, relying on the fact
that P = NP is believed to be false, and quantum computers can solve in polynomial
time some NP problems such as integer factorization, discrete logarithms, among
others. In some of these problems, the quantum advantage turns out to be exponen-
tial in comparison with its classical counterpart.

These two main characteristics, the need of classical computation in order to
execute quantum computation and the exponential advantage, are the reasons why
quantum computers are considered as accelerators, just as if quantum computers
were FPGAs or GPUs. This HQCC model, using QPU as an accelerator has its pin-
nacle example in variational quantum Eigensolver (VQE) [10], which represents
a hybrid algorithmic approach that leverages the capabilities of both classical and
quantum computing systems to ascertain the ground state of a specified physical
system. Initiated with an educated guess or ansatz, the quantum processor is tasked
with the computation of the expectation value of the system in relation to an observ-
able, frequently the Hamiltonian. Subsequently, a classical optimizer is employed
to refine the initial guess. The underlying principle of this algorithm is rooted in the
variational method of quantum mechanics.

2.2 Execution schemes for QPUs

Once the nature and purpose of quantum computers as accelerators are understood,
the need to define how these devices should be integrated into an HPC environment
becomes important. With this goal in mind, an examination of the current and future
approaches of the integration will be presented. Figure 1 will serve as a guideline.

Current approaches emphasize enabling remote access to QPUs via public net-
works as a significant aspect of their integration into HPC systems, evident in
Fig. 1a. This method permits users to utilize quantum resources without being

Fig. 1 Different schemes of quantum integration on HPC environments [4]

1 3

QPU integration in OpenCL for heterogeneous programming

physically present at the quantum hardware location. Nonetheless, it also introduces
challenges like ensuring security, managing network latency and fulfilling infra-
structure requirements. To address these challenges, various techniques and frame-
works, including virtualization, containerization and network protocols, have been
implemented. These strategies aim to enable seamless remote access to QPUs and
ensure their efficient and secure use within the HPC environment.

Quantum computers are considered among the most promising hardware accel-
erators. Similar to the utilization of other accelerators, the goal is to deploy them as
efficiently and optimally as possible. This mirrors the case with GPUs, which are
integrated within the same nodes as CPUs to minimize latency and ensure peak per-
formance. Such an integration goal is also envisioned for QPUs, evident in Fig. 1b.
Integration strategies span from networking the quantum device directly with the
motherboard to a future scenario where the CPU and quantum processor coexist
on the same die. Although on-die integration offers the best performance potential,
realizing it requires significant advancements in quantum technologies. An alterna-
tive approach involves motherboards with dedicated sockets for quantum accelera-
tors. This provides benefits like minimized latency, board lanes optimized for the
necessary bandwidth, and improved access to shared resources such as memory.
As the quantum computing field evolves, deeper integration of these components is
anticipated to unveil the maximum capabilities of HPC, allowing users to capitalize
on the benefits of quantum acceleration [11].

A novel macroarchitecture is also represented in Fig. 1c. It expands upon the
distributed design to encompass a distributed quantum computing system. This
approach leverages a quantum interconnect, unlocking a multitude of new applica-
tion possibilities by enabling entangling operations between nodes. However, to be
able to achieve these kind of architecture with such a sophisticated communication
as entanglement provides imply new requirements and advances that are out of the
scope of this work.

3 Integrating QPUs in OpenCL

As previously mentioned, hardware accelerators are being found as a good option
to release some pressure from the hectic need of computation that we are living on
nowadays. This has various implications, but the main one is: How should these
devices be integrated in HPC environments? Extracting the most out of them in
terms of computational performance is, obviously, one of the main concerns, but not
the only one. There is also a need to define how devices will communicate with the
host (the main CPU responsible for handling calls and executing the core program),
how portability concerns will addressed, and, most importantly, how programmers
and developers will handle these questions.

That is precisely what the OpenCL standard tries to give a response to. OpenCL
supports a broad range of applications, from embedded systems to high-perfor-
mance computing, by providing a low-level, high-performance and portable abstrac-
tion. It allows developers to write parallel code using a subset of ISO C99 and
offers an intermediate language for parallel execution. With consistent numerical

 J. Vázquez-Pérez et al.

1 3

requirements and seamless integration with APIs like OpenGL, OpenCL serves as
the foundation for a parallel computing ecosystem [12]. By empowering developers
to harness the potential of heterogeneous processors, OpenCL plays a vital role in
emerging interactive graphics applications, blending general parallel compute algo-
rithms with graphics rendering pipelines. Through its core specification, handheld/
embedded profile and optional extensions, OpenCL equips software developers to
unlock the full capabilities of heterogeneous processing platforms, enabling high-
performance applications across various devices. And to be able to do this, OpenCL
defines the following main standards:

1. A communication API This API is the responsible of establishing and performing
communication between the host and the devices. As long as a device implements
the necessary functions of the standard, the communication using OpenCL is
possible.

2. A cross-platform programming language This is the language in which all kernels
are going to be written. In the context of OpenCL, a kernel is a small program or
function that runs on a computing device like a GPU or CPU. It performs spe-
cific tasks in parallel, meaning it can process multiple pieces of data at the same
time. The kernel is the core part of the code that gets executed on the hardware
to carry out computations. That is why a specification of the language is required
in order to be able to execute a kernel in every device considered by, achieving
the portability sought by the OpenCL standard. As it has been peeked quickly
before, this language is a subset of the ISO C99 language. The restrictive nature
of this subset is related to the need of allowing only operations executable in every
device considered (CPU, GPU, FPGA…).

OpenCL also defines an intermediate cross-platform language and an extension
standards, but these are out of the scope of this work.

To elucidate the performance characteristics of OpenCL programs, Fig. 2 serves
as an illustrative guide. In conventional programming paradigms utilizing languages

Fig. 2 Comparison between common programming and OpenCL programming models

1 3

QPU integration in OpenCL for heterogeneous programming

such as C and C++, execution is predominantly CPU-centric, as depicted on the
left-hand side of the figure. While some programs exploit the multicore architec-
ture of modern CPUs or even offload certain computational tasks to a GPU through
vendor-specific APIs and libraries (e.g., CUDA), this approach diverges from the
objectives of OpenCL. OpenCL aims for a more versatile computational model, as
represented on the right-hand side of Fig. 2.

On the one hand, the OpenCL’s API standardizes the communication protocol,
enabling seamless interaction with a variety of computing devices, irrespective of
their inherent nature. This abstraction layer erases the need for device-specific con-
siderations in the code, with the exception of the compilation and execution phase
done in the host side, where the target device must be explicitly selected. Further-
more, OpenCL’s API provides the flexibility to specify the execution environment’s
characteristics, however, it is pertinent to note that the present discussion will not
dig into the general-purpose parallelism capabilities that OpenCL offers, as the field
of quantum computing is still in a premature stage with respect to parallelism and
high-performance techniques.

On the other hand, code intended for execution on an accelerator must be deline-
ated separately from the host code stream. This separation can be achieved either by
placing the accelerator code in a distinct file, as illustrated in Fig. 2, or by embed-
ding it as a string within the host file. The choice between these two approaches
is a matter of modularity that the programmer must determine. A non-negotiable
aspect, however, is the programming language in which the accelerator code must be
written in: OpenCL C, as defined in the previously mentioned standard. It is crucial
to highlight that the functions designated for execution on the device are explicitly
marked with the __kernel__ directive, representing the code declaration of the
kernel concept.

3.1 OpenCL and quantum computing

Now that the heterogeneous computing paradigm has been presented using OpenCL
as a means to standardize ideas, and quantum computation has been defined as a
tool to accelerate specific processes where classical computation lacks efficiency, it
is time to discuss how these two disciplines can be combined and how each of them
can harness its power with the help of the other.

First, the fact that quantum computers are considered as accelerators explains
why the use of OpenCL was initially considered. As depicted in Fig. 2, accelerators
play a central role in the OpenCL scheme, which recognizes that modern computa-
tion should not only have the capability but also the necessity to leverage all availa-
ble devices to maximize resource efficiency. This perspective aligns with how quan-
tum computers should be viewed: as accelerators. Therefore, integrating them into
this computational model represents a significant step toward incorporating quantum
computers into our heterogeneous computing environments.

Secondly, the most relevant practical quantum algorithms today are primarily
iterative, featuring alternating quantum components where the concept of “quantum
supremacy” is applied, along with classical counterparts responsible for optimizing

 J. Vázquez-Pérez et al.

1 3

the parameter gates and preparing the circuit for the next execution. These are the
variational quantum algorithms [13]. Examples of these type of algorithms are the
VQE [10] or the quantum approximate optimization algorithm (QAOA) [14]. For
example, this execution model is particularly intriguing for distributing the work-
load between a GPU, responsible for optimizing the parameters, and a QPU, dedi-
cated to applying quantum acceleration.

Of course, not everything in this combination of schemes is a perfect match.
The introduction of quantum computation represents a wholly new paradigm at the
computational table, which poses challenges for the portability aspect that OpenCL
highly values. There are several reasons for this incompatibility, one of the main
ones being that the operations used in quantum computation are not even consid-
ered in the OpenCL C language. Moreover, an issue that may not have significant
implications in classical computing, such as executing code on an FPGA that was
originally designed for a GPU, takes on greater significance when QPUs are intro-
duced into the discussion. Executing classical code on a quantum computer serves
little purpose. Quantum algorithms require an entirely different approach compared
to classical algorithms, involving distinct programming flows, operations, and more.
This is one of the major challenges when integrating quantum computers into the
OpenCL framework.

4 Proof of concept: OpenCL for QPUs

In addition to the issues highlighted at the end of the previous section, there is
another significant obstacle preventing us from integrating a complete QPU into this
scheme: the current lack of fully functional quantum computers. To include a device
in the OpenCL scheme, it is essential to possess a comprehensive understanding of
the device’s architecture, enabling the establishment of compilation rules. Without
knowledge of how memory is accessed, how quantum gates are transpiled, which
backend the QPU supports, and so forth, it becomes impossible to define compila-
tion procedures

As a result, the option of employing simulated quantum computers becomes a
viable choice, similar to its use in other contemporary paradigms that incorporate
quantum computation. As a preliminary step in this direction, rather than incorpo-
rating a QPU as a CPU with emulation tools, a proof of concept was initiated using
a conventional CPU and a kernel code that implements all the necessary functions
for quantum simulation.

To accomplish this, the first requirement is the implementation of OpenCL, as
it was explained in Sect. 3. OpenCL is a standard that defines a set of communica-
tion functions within its API and provides a cross-platform programming language.
However, it does not prescribe how these functions should be implemented. In this
work, the open-source implementation known as PoCL was utilized, as described
in [1]. The version 3.1 of PoCL was the one chosen.

Additionally, because there was a need to simulate quantum circuits within a ker-
nel, a set of functions defining the quantum simulation was necessary to complete
the job. There was two options: either implement a custom library following the

1 3

QPU integration in OpenCL for heterogeneous programming

OpenCL C language specification or adapt an already existing library to conform to
the aforementioned language specifications. The chosen option was the latter due to
the availability of the Qulacs library [2]. This library includes a C implementation as
well as C++ and Python implementations, providing a solid foundation for enabling
quantum simulation within an OpenCL kernel.

4.1 OpenCL restrictions

Numerous difficulties were encountered in this seemingly easy task, as discussed
in the previous section, which involved adapting Qulacs to meet the OpenCL C
requirements. These difficulties included the following:

1. Function recursion This type of operation is allowed in OpenCL C. However,
recursion, while technically feasible, imposes a significant computational cost
on GPUs. This is due to the need to allocate stack space for thousands of threads
and account for recursion during the challenging process of register allocation.
Additionally, the issue of thread divergence further complicates matters. When
transitioning to FPGA synthesis, the problem becomes insurmountable. Given
these circumstances, the most straightforward solution was to completely elimi-
nate recursion. This is precisely what PoCL does; it forbids its use and generates
a compilation error.

2. Standard math libraries The nature of quantum computing necessitates a signifi-
cant reliance on linear algebra and complex numbers. Typically, these mathemati-
cal constructs are implemented using common C math libraries like math.h.
However, standard libraries are not permissible in OpenCL due to its prior com-
pilation with the common GCC compiler, which does not adhere to the require-
ments of the OpenCL C specification. Consequently, custom operations and data
types had to be implemented specifically for this work. This included the develop-
ment of complex number representations and all the operations associated with
this data type.

3. Double pointers In C, when working with matrices, double pointers are commonly
used to access dynamically allocated memory. However, in OpenCL C, the use
of double pointers is not allowed due to the complexities that arise when deal-
ing with multi-level pointers across different memory spaces in heterogeneous
computing environments. OpenCL is designed to target a wide range of devices
with diverse memory architectures, and supporting multi-level pointers could
introduce inconsistencies and inefficiencies. By restricting this feature, OpenCL
ensures portability, efficient data transfer, and simplified memory management,
enabling developers to write optimized code that can run effectively on various
hardware architectures. In this work, alternative techniques were employed, such
as flattening arrays, to effectively handle multi-dimensional data.

4. Dynamic memory allocation Arguably, one of the most crucial functionalities of
the C language, custom dynamic memory allocation, is prohibited in OpenCL
C. This prohibition stems from several compelling reasons, including the neces-
sity for deterministic memory access patterns, concerns about potential memory

 J. Vázquez-Pérez et al.

1 3

management overhead, incompatibility with heterogeneous memory architectures,
and the inherent risk of data races and synchronization issues. OpenCL kernels
are meticulously designed to execute in a parallel and deterministic manner across
multiple processing elements, demanding predictable memory access patterns at
compile time. The introduction of dynamic memory allocation would introduce
unpredictability and hinder memory access optimizations, potentially compromis-
ing performance. Moreover, efficiently managing dynamic memory in the context
of heterogeneous environments with varying memory architectures, as previously
encountered with double pointers, would prove exceptionally challenging. The
associated bookkeeping overhead and synchronization requirements in multi-
threaded execution could further exacerbate performance concerns.

 Instead, OpenCL promotes explicit memory management through statically
allocated memory objects like buffers and images, ensuring both predictability
and efficiency in memory access. However, for the specific requirements of this
project, dynamic memory allocation was an imperative despite the efficiency
trade-off. To implement dynamic memory management, the KMA model was
adopted, as described in [15]. This model serves as a dynamic memory manager
explicitly designed for OpenCL, accommodating the unique demands of our com-
putational environment.

5. Specification of address space There was also the need of changing address space
as needed to fit in the constant, private and global scheme that OpenCL
requires. This would not be needed if the generic address space was implemented,
but in the version of PoCL used (3.1) the generic address space was not imple-
mented and so pertinent address space specification was required which, because
of the classical C nature of Qulacs, was not defined.

4.2 Examples

To comprehensively represent our research, this work will present two distinct
examples. Firstly, a simulation of the quantum phase estimation (QPE) [3] algorithm
will be conducted due to its simplicity and applicability, making it an ideal intro-
ductory algorithm for simulations. Subsequently, the Shor algorithm [16] will be
introduced in a manner analogous to the QPE. The objective of this comparison is to
illustrate that even more intricate algorithms can be effectively simulated using the
Qulacs library adapted for the OpenCL C language.

It should be noted that the algorithms will not be fully implemented within the
scope of this paper. Specifically, with regard to the QPE, this research demonstrates
the effective simulation of the circuit but does not delve deeply into post-processing
of the data to estimate the phase. Instead, an illustrative example will be provided to
demonstrate the accuracy of the algorithm’s results. Similarly, in the case of Shor’s
algorithm, the primary focus of this study is not on the factorization of integers but
rather on ensuring the correct execution and outcomes of the quantum component,
namely the accurate estimation of the period.

1 3

QPU integration in OpenCL for heterogeneous programming

4.2.1 QPE algorithm

The QPE algorithm is one of the most well-known quantum algorithms [3]. Given
a unitary operator U, the algorithm estimates � in U��⟩ = e2�i���⟩ . So, basically, it
estimates the phase of an eigenvalue of a given gate. The circuit responsible of this
estimation can be seen in Fig. 3. The algorithm employs a two-register quantum sys-
tem: one to hold the phase estimation and another initialized to the eigenstate ��⟩ .
It applies controlled-U operations, with U raised to exponentially increasing pow-
ers based on the qubit position, creating a superposition of phase states. An inverse
quantum Fourier transform (QFT†) on the first register converts these phases into
a binary representation that can be measured to yield an estimate of � , as it will be
shown at the end of this section. The precision of QPE and its probability of success
improve with more qubits, showcasing the algorithm’s ability to leverage quantum
mechanics for tasks that challenge classical computers. The mathematical proof of
the result will be omitted, as it falls outside the scope of the article.

Regarding the gate employed, it should be mentioned that the job was executed
employing a phase gate P as the U gate of the circuit for simplicity purposes,
because using �1⟩ as the eigenvector for the algorithm satisfies P�1⟩ = ei��1⟩ , as it
shows a simple application of the gate to the state:

In Fig. 4, the host code is depicted as a standard OpenCL code.1 This OpenCL
program begins by establishing its operational context (lines 1–4), searching for a
compatible device using the search_device function, and setting up a command
queue for executing instructions. It then prepares for computation by incorporating

(
1 0

0 ei�

)(
0

1

)
= ei�

(
0

1

)
.

Fig. 3 QPE circuit

1 This code and all the following ones can be found in https:// github. com/ jorge vazqu ezper ez/ OpenC
LQPU.

https://github.com/jorgevazquezperez/OpenCLQPU
https://github.com/jorgevazquezperez/OpenCLQPU

 J. Vázquez-Pérez et al.

1 3

kernel files which include the modified Qulacs library (line 7) and including nec-
essary external sources as it is the allocation operations (line 9), followed by the
compilation of the program with the aforementioned resources (line 10). It specifies
the dimension for the number of qubits n that are going to be used to estimate the
phase using the variable n_counts, which is then used to calculate the dimension
over the ℝ space, i.e., 2n , and this dimension, in turn, is used for defining the buffer
in which the measured results are going to be stored (lines 12–14). Subsequently,
the program allocates memory buffers on the device for memory allocation, with
the heap buffer, and result storage, with the countsbuf buffer (lines 16–17).
The QPE kernel, which performs the main computation, has its arguments set (lines
19–22), including the allocated buffers and the size parameter. Execution is man-
aged through a series of queue commands that write to the buffer, initiate the ker-
nel, and read back the results (lines 24–27). To ensure all processes are complete, it
synchronizes with queue.finish() (line 28). Finally, the program processes and

Fig. 4 Host code for QPE

1 3

QPU integration in OpenCL for heterogeneous programming

displays the results with the print_probabilities function (line 29), before
terminating with a return statement (line 30).

In examining the kernel code, Fig. 5 illustrates the resemblance between the ker-
nel program and a conventional Qulacs program scripted in C. The adapted Qulacs
functions are highlighted in italics in the code. One can see that the kernel takes
in the heap, a global counts array and the n_counts variable as inputs (line 1),
being coherent with the arguments set in the host code in Fig. 4. The kernel begins
by setting the dimensionality of the quantum state as a power of two based on the
number of counts (line 3) and then allocates and initializes a quantum state within
the provided heap memory (lines 3–4) using the adapted Qulacs functions allo-
cate_quantum_state and initialize_quantum_state, respectively.
Subsequently, the kernel defines a phase input and a matrix for quantum opera-
tions (lines 6–8). It applies a Hadamard gate H_gate to the first three qubits (lines
10–12), setting the state into superposition. It then performs an operation with an X_
gate on the fourth qubit (line 14), to prepare the state for the subsequent controlled

Fig. 5 Kernel code for QPE

 J. Vázquez-Pérez et al.

1 3

operations, as it was explained at the beginning of this section. The kernel contin-
ues with a loop applying a controlled gate, where it adjusts the phase based on the
iteration (lines 16–19), using the adapted single_qubit_control_single_
qubit_dense_matrix_gate function from Qulacs. After completing the
controlled operations, it applies an inverse quantum Fourier transform inverse_
qft to the qubits first n_count qubits (line 22), which is the final step in QPE to
extract the phase information. Finally, the kernel prepares an index list and allocates
memory for it on the heap (lines 24–26). It populates this list with indices (line 27),
which is then used for measuring the quantum state. The get_probabilities
function (line 29) then extracts the probabilities of the quantum state’s outcomes,
which in a normal appliance of the QPE algorithm would be an actual measurement,
but, for illustrative purposes, this work chooses to get the actual probabilities of the
possible measurements.

In this example, as displayed in Fig. 5, the value of the phase was � =
1

2
 . Given

the inherent characteristics of the algorithm, the phase can be estimated using the
relationship � =

value

2n
 . Here, value denotes the quantity with the maximal prob-

ability; while, n represents the precision used, quantified by the number of qubits
read. Subsequent to the execution of the kernel on the device and the retrieval of the
buffer containing the outcomes, as illustrated in Fig. 4 and labeled as countsbuf,
the results shown in Table 1 were obtained.

And so, the most probable value is 4 (100 in binary format), and then � =
4

8
=

1

2
 .

In the given scenario, the outcome is evident as the phase, denoted by � , adheres to
the relationship � =

value

2n
 . Conversely, in distinct scenarios, the probability tends to

converge around the closest value
2n

 corresponding to the actual phase. Those scenarios
are not considered on the post-processing of the data for being out of the scope of
the program, as it was previously mentioned at the beginning of the Sect. 4.2. All
in all, the QPE algorithm has been successfully simulated utilizing the OpenCL
framework.

4.2.2 Shor’s algorithm

Conversely, Shor’s algorithm [16] exemplifies the pinnacle of quantum compu-
tational capabilities. It entails an intricate integration of classical techniques, such

Table 1 QPE results
obtained with the possible
measured values accompanied
by their corresponding
probability

 Values Probability

000 3.7494e−33
001 4.39269e−33
010 7.4988e−33
011 2.56025e−32
100 1.00000
101 2.56025e−32
110 7.4988e−33
111 4.39269e−33

1 3

QPU integration in OpenCL for heterogeneous programming

as the continued fraction algorithm, with a sophisticated quantum circuit. In fact,
Shor’s algorithm is a seminal quantum computational method designed for effi-
ciently factoring large numbers, a problem traditionally considered challenging for
classical computers. By harnessing quantum parallelism, this algorithm can deter-
mine the factors of a composite number in polynomial time, thereby showing a
potential threat to classical encryption systems, particularly RSA, which rely on the
difficulty of factoring large numbers.

More specifically, Shor’s algorithm centers around the modular exponential func-
tion f (x) = ax mod N , where a is randomly chosen and N is the number wished to
be factored. The algorithm proceeds as follows:

1. Computation of the greatest common divisor (GCD) By using the Euclidean
algorithm, the algorithm finds the GCD of a and N. If the GCD is not 1, it has
found a factor, and ends. If not, the algorithm moves to the second step.

2. QPE This is the only quantum portion of the algorithm. It uses the quantum
circuit presented in Fig. 6 to evaluate the modular exponential function across a
superposition of states. It can be noticed that it is the same circuit of Fig. 3 but
with ��⟩ = �1⟩ and with the U operator satisfying:

 It must be remarked that the randomly chosen value a is fed into the U gate of
the QPE algorithm. As it is presented in Fig. 6, the final state before the meas-
urements (highlighted with a red dashed line) will be of the form:

 and so, after measurement, the state obtained is of the form �2n ⋅ s

r
⟩ , with

0 < s < r , getting the phase � =
s

r
.

3. Classical post-processing with continued fractions Once the phase � is extracted
from the quantum circuit, classical algorithms come back into play. The period r is

U�x⟩ = �ax mod N⟩ ≡ Ua�x⟩.

1√
r

�
�2n ⋅ 1

r
⟩ +⋯ + �2n ⋅ r − 1

r
⟩
�

Fig. 6 Shor’s circuit (color figure online)

 J. Vázquez-Pérez et al.

1 3

not directly observed but inferred from the output phase using the continued frac-
tion algorithm. This classical algorithm is used to analyze the output and deduce
the period from the quantum measurement. If r is odd or if ar∕2 ≡ −1 mod N ,
the algorithm moves back to the first step. Otherwise, it proceeds to the next step.

4. Factorization With the period r in hand satisfying the necessary conditions (it
is even and ar∕2 ≢ −1 mod N), the algorithm uses classical computations (like
Euclid’s algorithm for computing the GCD) to factor N. Specifically, the factors
of N can often be found by taking the GCD of N with ar∕2 ± 1 and, if they are not,
the algorithm restarts.

In the current study, it is performed a simulation of a circuit comprising three count-
ing qubits and four auxiliary qubits, totaling seven qubits. A more generalized
algorithm implementation would demand excessive computational resources and
time, diverging from the intended scope of this work. It should be noted that count-
ing qubits are specifically employed to find the period via the continued fraction
algorithm.

After presenting Shor’s algorithm, the discussion shifts to the main objectives of
the study. In examining Fig. 7, one observes minimum alterations in the host pro-
gram relative to the QPE implementation. Notably, the kernel name is shifted from
the QPE one to the Shor one and the post-processing of the data returned by the
OpenCL kernel now employs the continued fraction algorithm to discern the period
which is done in the print_guess function. But, excluding that part, the code
maintains the same structure and calls as the one for the QPE.

Pertaining to the kernel code, Fig. 8 delineates the circuit implementation utiliz-
ing the same adapted Qulacs library as in the QPE instance and, again, the calls to
the adapted function are highlighted in italics. As it happened with the host code for
QPE and Shor’s, both kernels are really similar. The only notable change is the use
of the gate facilitating modular multiplication instead of the phase gate employed in
the QPE circuit. This gate is denoted as c_amod15 in the code (line 14), and is a
bespoke construction leveraging the capabilities of the Qulacs library. This library
allows for the integration of any valid gate operation, provided its matrix is unitary,
by handing several tools to the programmer, which were used in this work to achieve
the desired functionality. It should be clarified that the study adopts a constrained
version of Shor’s algorithm, with a predetermined value of N = 15 (hence the name
of the gate c_amod15). This selection is predicated on fostering clarity and facili-
tating a comparison with results found in the Qiskit [17] textbook, where an analo-
gous circuit is employed. As previously explained, this study aims to illustrate the
efficient integration of quantum processes into heterogeneous platforms. Conse-
quently, attempting to simulate the entirety of Shor’s algorithm, given its inherent
complexity, could compromise the primary objective.

The possible outcomes of the algorithm are delineated in Table 2. Observing
Table 2a, one notes that states 000, 010, 100, and 110 exhibit identical prob-
ability distributions. This suggests that each corresponding guess bears an equiv-
alent likelihood of selection. Taking into account that the correct period is r = 4 ,
one can observe in Table 2b that the probability of selecting a correct response

1 3

QPU integration in OpenCL for heterogeneous programming

stands at 0.5, evidenced by measurements 010 or 110. Conversely, measure-
ments 000 or 100 would not yield accurate results: the former due to s = 0 and
the latter because it produces r, albeit a factor, given s = 2 . As was said when the
algorithm was explained, if instead of 010 or 110, the algorithm was to yield
000 or 100 then it would be repeated until a correct period is found. The remain-
ing step of the algorithm, which is finding the actual factor is left for completion
as it is a classical process with no interest for this work.

When juxtaposing these findings with those exposed in the Qiskit textbook, a
clear congruence emerges. This consistency not only underscores the accuracy of
the results but, akin to the QPE example, substantiates the efficacy of integrating
quantum algorithms into the OpenCL pipeline, which was the main objective all
along this study.

Fig. 7 Host code for Shor’s algorithm

 J. Vázquez-Pérez et al.

1 3

5 Conclusions

In conclusion, this work explored the integration of a contemporary computa-
tional paradigm—heterogeneous platform computing—with quantum computa-
tion. Such an integration is reflective of ongoing efforts to harness the strengths
of both quantum and classical computation. The overarching aim, as elaborated in
this paper, is the seamless synergy between classical and quantum computation,
allocating tasks based on the nature and strengths of each.

Fig. 8 Kernel code for Shor’s algorithm

Table 2 The results show
the possible measured values
and their probability while
the period guess shows
which fraction and guess for
r correspond to each phase
obtained

Results Period guess

Values Probability Phase Fraction Guess for r

000 0.25 0 0

1

1

001 0 0.25 1

4

4

010 0.25 0.5 1

2

2

011 0 0.75 3

4

4

100 0.25
101 0
110 0.25
111 0

1 3

QPU integration in OpenCL for heterogeneous programming

As an initial endeavor, this work aims to give a glimpse of the incorporation
of quantum computation within these heterogeneous frameworks. The objec-
tive extends beyond simply adapting quantum computation to fit these schemes;
it seeks to ensure that existing frameworks and libraries recognize and account
for quantum computers as viable computational entities. This integration is not
merely theoretical. Practical illustrations, particularly the QPE and Shor’s algo-
rithm, exemplify the potential role of QPUs within heterogeneous settings like
OpenCL. These examples not only demonstrate the feasible integration but also
validate its execution through circuit simulations. Actual QPU implementation,
as posited, hinges on refining compilers to produce quantum–machine–readable
code.

It is pertinent to note that subsequent steps in this research may not be exclu-
sively tied to OpenCL. OpenCL was chosen for this investigation due to its com-
prehensive documentation and active community, making it a representative het-
erogeneous platform standard for the study’s objectives. Notably, such standards
were originally formulated without anticipating the integration of quantum com-
puters, leading to certain challenges as exposed in Sect. 3.1. Nonetheless, there
are some following steps that should be approached in order to achieve a seamless
integration of QPUs into HPC environments, i.e., heterogeneous platforms:

1. Development of a driver for QPUs. QPUs, with their distinct quantum architec-
ture, require specialized drivers to maximize their potential within these plat-
forms. A tailored driver facilitates seamless integration of QPUs alongside clas-
sical computational units, ensuring efficient task distribution and optimization.
By bridging the technical gap between classical and quantum systems, such a
driver plays a pivotal role in unlocking the full potential of these combined com-
putational environments.

2. Kernel code compilation into a format interpretable by quantum machinery, or
into a quantum intermediate code. While there are established examples of such
developments in the literature such as Qiskit, ProjectQ [18], Cirq [19] or QCOR,
among others (being QCOR really interesting for its ability of generating various
quantum machine codes depending on the technology used [20]), integration into
a heterogeneous platform remains a gap. Ideally, a single codebase should serve
diverse hardware, be it a QPU, GPU, or CPU, with each device tasked to translate
the code into its device-specific instructions.

Moving forward, the confluence of quantum and classical computation within
heterogeneous platforms heralds a new frontier in computational capabilities.
While challenges persist, they are not insuperable. The advancements highlighted
in this study, and the outlined future directions, pave the way for a collaborative
computing era, where quantum and classical systems work in tandem to address
problems of unprecedented complexity. Embracing the potential of this fusion, an
important impact is anticipated on various scientific and technological domains.

 J. Vázquez-Pérez et al.

1 3

Author contributions JV-P wrote the main manuscript and prepared all figures and tables. All authors
reviewed the manuscript and correct errors and incorrections found in it.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
This work was supported by MICINN through the European Union NextGenerationEU recovery plan
(PRTR-C17.I1), and by the Galician Regional Government through the “Planes Complementarios de
I+D+I con las Comunidades Autónomas” in Quantum Communication. Simulations on this work were
performed using the Finisterrae III Supercomputer, funded by the project CESGA-01 FINISTERRAE
III. This work was also supported by the Ministry of Economy and Competitiveness, Government of
Spain (Grant Numbers PID2019-104834GB-I00, PID2022-141623NB-I00 and PID2022-137061OB-
C22), Consellería de Cultura, Educación e Ordenación Universitaria (accreditations ED431C 2022/16
and ED431G-2019/04), and the European Regional Development Fund (ERDF), which acknowledges the
CiTIUS-Research Center in Intelligent Technologies of the University of Santiago de Compostela as a
Research Center of the Galician University System.

Data availability Specific data are not required to reproduce this study. The work itself explains which
input data are used and how to generate it.

Declarations

Conflict of interest The authors have no conflicts of interest that may have affected the content of this
work.

Ethics approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Jääskeläinen P, La Lama CS, Schnetter E, Raiskila K, Takala J, Berg H (2014) PoCL: a perfor-
mance-portable OpenCL implementation. Int J Parallel Program 43(5):752–785. https:// doi. org/ 10.
1007/ s10766- 014- 0320-y

 2. Suzuki Y, Kawase Y, Masumura Y, Hiraga Y, Nakadai M, Chen J, Nakanishi KM, Mitarai K, Imai
R, Tamiya S, Yamamoto T, Yan T, Kawakubo T, Nakagawa YO, Ibe Y, Zhang Y, Yamashita H,
Yoshimura H, Hayashi A, Fujii K (2021) Qulacs: a fast and versatile quantum circuit simulator for
research purpose. Quantum 5:559. https:// doi. org/ 10. 22331/q- 2021- 10- 06- 559

 3. Nielsen MA, Chuang IL (2010) Quantum computation and quantum information, 10th anniversary
edn. Cambridge University Press, Cambridge

 4. Humble TS, McCaskey A, Lyakh DI, Gowrishankar M, Frisch A, Monz T (2021) Quantum comput-
ers for high-performance computing. IEEE Micro 41(5):15–23. https:// doi. org/ 10. 1109/ MM. 2021.
30991 40

 5. Stone JE, Gohara D, Shi G (2010) OpenCL: a parallel programming standard for heterogeneous
computing systems. Comput Sci Eng 12(3):66–73. https:// doi. org/ 10. 1109/ MCSE. 2010. 69

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10766-014-0320-y
https://doi.org/10.1007/s10766-014-0320-y
https://doi.org/10.22331/q-2021-10-06-559
https://doi.org/10.1109/MM.2021.3099140
https://doi.org/10.1109/MM.2021.3099140
https://doi.org/10.1109/MCSE.2010.69

1 3

QPU integration in OpenCL for heterogeneous programming

 6. Resch S, Karpuzcu UR (2019) Quantum computing: an overview across the system stack. arXiv
preprint arXiv: 1905. 07240. https:// doi. org/ 10. 48550/ arXiv. 1905. 07240

 7. Chong FT, Franklin D, Martonosi M (2017) Programming languages and compiler design for realis-
tic quantum hardware. Nature 549(7671):180–187. https:// doi. org/ 10. 1038/ natur e23459

 8. Saki AA, Alam M, Ghosh S (2019) Study of decoherence in quantum computers: a circuit-design
perspective. arXiv preprint arXiv: 1904. 04323. https:// doi. org/ 10. 48550/ arXiv. 1904. 04323

 9. Giovannetti V, Lloyd S, Maccone L (2008) Quantum random access memory. Phys Rev Lett. https://
doi. org/ 10. 1103/ physr evlett. 100. 160501

 10. Tilly J, Chen H, Cao S, Picozzi D, Setia K, Li Y, Grant E, Wossnig L, Rungger I, Booth GH, Tenny-
son J (2022) The variational quantum eigensolver: a review of methods and best practices. Phys Rep
986:1–128. https:// doi. org/ 10. 1016/j. physr ep. 2022. 08. 003

 11. Ruefenacht M, Taketani BG, Lähteenmäki P, Bergholm V, Kranzlmüller D, Schulz L, Schulz M
(2022) Bringing quantum acceleration to supercomputers. Technical report, Leibniz Supercomput-
ing Centre. https:// www. quant um. lrz. de/ filea dmin/ QIC/ Downl oads/ IQM_ HPC- QC- Integ ration-
White paper. pdf

 12. KOW Group (2023) The OpenCL Specification. Version 3.0. https:// regis try. khron os. org/ OpenCL/
specs/3. 0- unifi ed/ pdf/ OpenCL_ API. pdf

 13. Cerezo M, Arrasmith A, Babbush R, Benjamin SC, Endo S, Fujii K, McClean JR, Mitarai K, Yuan
X, Cincio L, Coles PJ (2021) Variational quantum algorithms. Nat Rev Phys 3(9):625–644. https://
doi. org/ 10. 1038/ s42254- 021- 00348-9

 14. Farhi E, Goldstone J, Gutmann S (2014) A quantum approximate optimization algorithm. arXiv
preprint arXiv: 1411. 4028. https:// doi. org/ 10. 48550/ arXiv. 1411. 4028

 15. Spliet R, Howes L, Gaster BR, Varbanescu AL (2014) KMA: a dynamic memory manager for
OpenCL. In: Proceedings of the Workshop on General Purpose Processing Using GPUs (GPGPU-
7), pp 9–18. Association for Computing Machinery, New York, NY, USA. https:// doi. org/ 10. 1145/
25887 68. 25767 81

 16. Shor PW (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J Comput 26(5):1484–1509. https:// doi. org/ 10. 1137/ s0097 53979 52931 72

 17. Qiskit contributors (2023) Qiskit: an open-source framework for quantum computing. https:// doi.
org/ 10. 5281/ zenodo. 25735 05

 18. Steiger DS, Häner T, Troyer M (2018) Projectq: an open source software framework for quantum
computing. Quantum. https:// doi. org/ 10. 22331/q- 2018- 01- 31- 49

 19. Cirq Developers (2023) Cirq. Zenodo. https:// doi. org/ 10. 5281/ zenodo. 81612 52
 20. Mintz TM, Mccaskey AJ, Dumitrescu EF, Moore SV, Powers S, Lougovski P (2020) QCOR: a lan-

guage extension specification for the heterogeneous quantum–classical model of computation. ACM
J Emerg Technol Comput Syst (JETC) 16(2):1–17

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Jorge Vázquez‑Pérez1 · César Piñeiro1 · Juan C. Pichel1 · Tomás F. Pena1 ·
Andrés Gómez2

 * Jorge Vázquez-Pérez
 jorgevazquez.perez@usc.es

 César Piñeiro
 cesaralfredo.pineiro@usc.es

 Juan C. Pichel
 juancarlos.pichel@usc.es

http://arxiv.org/abs/1905.07240
https://doi.org/10.48550/arXiv.1905.07240
https://doi.org/10.1038/nature23459
http://arxiv.org/abs/1904.04323
https://doi.org/10.48550/arXiv.1904.04323
https://doi.org/10.1103/physrevlett.100.160501
https://doi.org/10.1103/physrevlett.100.160501
https://doi.org/10.1016/j.physrep.2022.08.003
https://www.quantum.lrz.de/fileadmin/QIC/Downloads/IQM_HPC-QC-Integration-Whitepaper.pdf
https://www.quantum.lrz.de/fileadmin/QIC/Downloads/IQM_HPC-QC-Integration-Whitepaper.pdf
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
http://arxiv.org/abs/1411.4028
https://doi.org/10.48550/arXiv.1411.4028
https://doi.org/10.1145/2588768.2576781
https://doi.org/10.1145/2588768.2576781
https://doi.org/10.1137/s0097539795293172
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.5281/zenodo.8161252

 J. Vázquez-Pérez et al.

1 3

 Tomás F. Pena
 tf.pena@usc.es

 Andrés Gómez
 agomez@cesga.es

1 Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de
Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain

2 Centro de Supercomputación de Galicia (CESGA), 15705 Santiago de Compostela, Galicia,
Spain

	QPU integration in OpenCL for heterogeneous programming
	Abstract
	1 Introduction
	2 Quantum computers in high-performance computing
	2.1 QPUs as accelerators
	2.2 Execution schemes for QPUs

	3 Integrating QPUs in OpenCL
	3.1 OpenCL and quantum computing

	4 Proof of concept: OpenCL for QPUs
	4.1 OpenCL restrictions
	4.2 Examples
	4.2.1 QPE algorithm
	4.2.2 Shor’s algorithm

	5 Conclusions
	References

