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Abstract
The integration of quantum processing units (QPUs) in a heterogeneous high-per-
formance computing environment requires solutions that facilitate hybrid classi-
cal–quantum programming. Standards such as OpenCL facilitate the programming 
of heterogeneous environments, consisting of CPUs and hardware accelerators. 
This study presents an innovative method that incorporates QPU functionality into 
OpenCL, standardizing quantum processes within classical environments. By lever-
aging QPUs within OpenCL, hybrid quantum–classical computations can be sped 
up, impacting domains like cryptography, optimization problems, and quantum 
chemistry simulations. Using Portable Computing Language (Jääskeläinen et al. in 
Int J Parallel Program 43(5):752–785, 2014. https:// doi. org/ 10. 1007/ s10766- 014- 
0320-y) and the Qulacs library (Suzuki et al. in Quantum 5:559, 2021. https:// doi. 
org/ 10. 22331/q- 2021- 10- 06- 559), results demonstrate, for instance, the successful 
execution of Shor’s algorithm  (Nielsen and Chuang in Quantum computation and 
quantum information, 10th anniversary edn. Cambridge University Press, Cam-
bridge, 2010), serving as a proof of concept for extending the approach to larger 
qubit systems and other hybrid quantum–classical algorithms. This integration 
approach bridges the gap between quantum and classical computing paradigms, pav-
ing the way for further optimization and application to a wide range of computa-
tional problems.

Keywords QPU · Hybrid programming · OpenCL · Qulacs · PoCL

1 Introduction

Computation has seen a significant surge in demand over recent years. The rise of 
disciplines such as big data analysis, artificial intelligence, and automation (related 
to IoT), among others, has underscored the need to enhance efficiency in both time 
and energy consumption.
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This is why hardware acceleration has become a topic of interest in the HPC 
landscape, with tools arising such as the one employed in this work, portable 
computing language (PoCL) [1]. This approach leverages specialized computer 
hardware designed to perform specific functions more adeptly than generic soft-
ware on a traditional central processing unit (CPU). In essence, tasks that soft-
ware can handle on a standard CPU can also be managed by custom hardware 
or a mix of the two. Thus, to amplify computing tasks, one might optimize the 
software, hardware, or both. While software improvements can speed up devel-
opment and simplify updates, they could introduce computational overhead. In 
contrast, a hardware-centric approach can yield faster processing, reduced power 
usage, and superior parallel processing. Quantum computing, in particular, and 
all its software tools (as the Qulacs library employed in this article [2])  aim to 
transform the latter by tapping into quantum mechanics principles to process data 
in ways conventional computers cannot, as algorithms such as Shor’s have shown 
[3], positioning it as a leading accelerator in today’s tech landscape.

Integrating this new computational paradigm as an accelerator into the estab-
lished HPC ecosystem poses significant challenges. This work will outline vari-
ous strategies. Currently, quantum computing and HPC integrations often involve 
a QPU communicating with a local system online. While direct, this setup faces 
speed and task handling challenges. A more sophisticated architecture proposes 
connecting individual computing nodes directly to a QPU, enabling swift com-
munication and improved parallel processing—a more suitable approach for 
accelerator devices [4]. As technology advances, compatibility with other accel-
erators like GPUs and FPGAs becomes increasingly crucial.

The motivation behind this work is to explore the integration of QPUs in con-
temporary HPC environments, specifically by merging OpenCL [5] with quantum 
computing. OpenCL is an open standard for parallel programming of heterogene-
ous systems, allowing developers to harness the power of both CPUs and various 
accelerators for computational tasks. Given the early stages of QPUs, full integra-
tion into HPC environments remains elusive. However, through simulations, this 
work seeks to provide a glimpse into how quantum computers might function as 
accelerators in present-day HPC nodes, shedding light on future advancements in 
this domain. These proof-of-concept explorations form a central component of 
our discussion.

In summary, by combining OpenCL and quantum simulations, the aim is to 
envision the role of quantum computers as accelerators within today’s HPC sys-
tems. This research explores the challenges and prospects of integrating quantum 
computing into the current HPC landscape and lays the groundwork for future 
technological intersections and advancements.

The rest of this article is organized as follows. In Sect.  2, the current and 
anticipated roles of quantum computers within contemporary HPC environments 
are elucidated. Subsequently, in Sect.  3, the heterogeneous platform paradigm 
is introduced to provide context for the synergy between OpenCL and quantum 
computing. Central to this research, Sect.  4 presents a proof of concept illus-
trating the integration of QPUs within the OpenCL standard, using simulations 
of the quantum phase estimation (QPE) circuit and Shor’s algorithm circuit as 
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examples. The paper concludes with an evaluation of the results and a discussion 
on future directions.

2  Quantum computers in high‑performance computing

2.1  QPUs as accelerators

A lot of speculation has been made in the last few years about quantum computa-
tion, from the quantum supremacy statement veracity to the feasibility of developing 
a quantum computer that yields an acceptable error rate. But one thing is certain: 
quantum computation is not foreseen to take the place of classical computation, at 
least not in the near future. There are several reasons [6, 7] that justify this statement: 

1. Memory One of the key differences between classical computation and quantum 
computation is the decoherence of data. While classical computation is able to 
store data for arbitrarily long time, quantum computation and, therefore, qubits 
have small time windows where information is not lost, i.e., decoherence does 
not destroy information [8]. Of course, time units depend strictly on the specific 
technology of the quantum computer. Some researchers have theorized about 
quantum memory random access [9], but this kind of theoretical models are far 
away from being feasible.

2. Approximate computing Quantum computing is not able to yield an approximate 
result of a problem just as classical computers do. Classical computers can give 
an approximate result of a problem with certainty, contrary to quantum computers 
which give an approximate result with high probability. The stochastic nature of 
quantum computers must never be forgotten and plays a really important part in 
analyzing the quantum algorithms and why they provide an exponential speed up.

3. Software Software is essential for quantum computers [7]. Virtually all quantum 
computation models necessitate the use of classical control. This is due to the 
challenges in achieving dependable measurements and fault-tolerant computa-
tions with quantum devices that are prone to errors, especially in the absence of 
a reliable method to sequence operations and make decisions for error correction. 
As a result, all recognized software toolchains operate under the assumption 
of a quantum co-processor model. In this model, several classical devices are 
responsible of managing and directing the operations of the QPU, similar to how a 
classical microprocessor today manages and interacts with the GPU on a graphics 
co-processor card. While actual implementations may vary, software developers 
can conceptualize this as a single microprocessor delivering instructions to the 
quantum co-processor in every cycle.

In addition, quantum computers are inherently exceptional operating on some spe-
cific tasks in which classical computers are not that efficient. To be more precise, 
bounded-error quantum polynomial time (BQP) is the class of decision problems 
solvable by a quantum computer in polynomial time, with an error probability of 
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at most 1
3
 for all instances [3]. On the other hand, in computational complexity the-

ory, P, also known as PTIME or DTIME(nO(1)), is a fundamental complexity class 
that contains all decision problems which can be solved by a deterministic Turing 
machine using a polynomial amount of computation time, or polynomial time. It is 
known that P ⊂ BQP because it has been proven that every classical circuit can be 
simulated by a quantum circuit [3]. The contrary is likely false, relying on the fact 
that P = NP is believed to be false, and quantum computers can solve in polynomial 
time some NP problems such as integer factorization, discrete logarithms, among 
others. In some of these problems, the quantum advantage turns out to be exponen-
tial in comparison with its classical counterpart.

These two main characteristics, the need of classical computation in order to 
execute quantum computation and the exponential advantage, are the reasons why 
quantum computers are considered as accelerators, just as if quantum computers 
were FPGAs or GPUs. This HQCC model, using QPU as an accelerator has its pin-
nacle example in variational quantum Eigensolver (VQE)  [10], which represents 
a hybrid algorithmic approach that leverages the capabilities of both classical and 
quantum computing systems to ascertain the ground state of a specified physical 
system. Initiated with an educated guess or ansatz, the quantum processor is tasked 
with the computation of the expectation value of the system in relation to an observ-
able, frequently the Hamiltonian. Subsequently, a classical optimizer is employed 
to refine the initial guess. The underlying principle of this algorithm is rooted in the 
variational method of quantum mechanics.

2.2  Execution schemes for QPUs

Once the nature and purpose of quantum computers as accelerators are understood, 
the need to define how these devices should be integrated into an HPC environment 
becomes important. With this goal in mind, an examination of the current and future 
approaches of the integration will be presented. Figure 1 will serve as a guideline.

Current approaches emphasize enabling remote access to QPUs via public net-
works as a significant aspect of their integration into HPC systems, evident in 
Fig.  1a. This method permits users to utilize quantum resources without being 

Fig. 1  Different schemes of quantum integration on HPC environments [4]
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physically present at the quantum hardware location. Nonetheless, it also introduces 
challenges like ensuring security, managing network latency and fulfilling infra-
structure requirements. To address these challenges, various techniques and frame-
works, including virtualization, containerization and network protocols, have been 
implemented. These strategies aim to enable seamless remote access to QPUs and 
ensure their efficient and secure use within the HPC environment.

Quantum computers are considered among the most promising hardware accel-
erators. Similar to the utilization of other accelerators, the goal is to deploy them as 
efficiently and optimally as possible. This mirrors the case with GPUs, which are 
integrated within the same nodes as CPUs to minimize latency and ensure peak per-
formance. Such an integration goal is also envisioned for QPUs, evident in Fig. 1b. 
Integration strategies span from networking the quantum device directly with the 
motherboard to a future scenario where the CPU and quantum processor coexist 
on the same die. Although on-die integration offers the best performance potential, 
realizing it requires significant advancements in quantum technologies. An alterna-
tive approach involves motherboards with dedicated sockets for quantum accelera-
tors. This provides benefits like minimized latency, board lanes optimized for the 
necessary bandwidth, and improved access to shared resources such as memory. 
As the quantum computing field evolves, deeper integration of these components is 
anticipated to unveil the maximum capabilities of HPC, allowing users to capitalize 
on the benefits of quantum acceleration [11].

A novel macroarchitecture is also represented in Fig.  1c. It expands upon the 
distributed design to encompass a distributed quantum computing system. This 
approach leverages a quantum interconnect, unlocking a multitude of new applica-
tion possibilities by enabling entangling operations between nodes. However, to be 
able to achieve these kind of architecture with such a sophisticated communication 
as entanglement provides imply new requirements and advances that are out of the 
scope of this work.

3  Integrating QPUs in OpenCL

As previously mentioned, hardware accelerators are being found as a good option 
to release some pressure from the hectic need of computation that we are living on 
nowadays. This has various implications, but the main one is: How should these 
devices be integrated in HPC environments? Extracting the most out of them in 
terms of computational performance is, obviously, one of the main concerns, but not 
the only one. There is also a need to define how devices will communicate with the 
host (the main CPU responsible for handling calls and executing the core program), 
how portability concerns will addressed, and, most importantly, how programmers 
and developers will handle these questions.

That is precisely what the OpenCL standard tries to give a response to. OpenCL 
supports a broad range of applications, from embedded systems to high-perfor-
mance computing, by providing a low-level, high-performance and portable abstrac-
tion. It allows developers to write parallel code using a subset of ISO C99 and 
offers an intermediate language for parallel execution. With consistent numerical 
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requirements and seamless integration with APIs like OpenGL, OpenCL serves as 
the foundation for a parallel computing ecosystem [12]. By empowering developers 
to harness the potential of heterogeneous processors, OpenCL plays a vital role in 
emerging interactive graphics applications, blending general parallel compute algo-
rithms with graphics rendering pipelines. Through its core specification, handheld/
embedded profile and optional extensions, OpenCL equips software developers to 
unlock the full capabilities of heterogeneous processing platforms, enabling high-
performance applications across various devices. And to be able to do this, OpenCL 
defines the following main standards: 

1. A communication API This API is the responsible of establishing and performing 
communication between the host and the devices. As long as a device implements 
the necessary functions of the standard, the communication using OpenCL is 
possible.

2. A cross-platform programming language This is the language in which all kernels 
are going to be written. In the context of OpenCL, a kernel is a small program or 
function that runs on a computing device like a GPU or CPU. It performs spe-
cific tasks in parallel, meaning it can process multiple pieces of data at the same 
time. The kernel is the core part of the code that gets executed on the hardware 
to carry out computations. That is why a specification of the language is required 
in order to be able to execute a kernel in every device considered by, achieving 
the portability sought by the OpenCL standard. As it has been peeked quickly 
before, this language is a subset of the ISO C99 language. The restrictive nature 
of this subset is related to the need of allowing only operations executable in every 
device considered (CPU, GPU, FPGA…).

OpenCL also defines an intermediate cross-platform language and an extension 
standards, but these are out of the scope of this work.

To elucidate the performance characteristics of OpenCL programs, Fig. 2 serves 
as an illustrative guide. In conventional programming paradigms utilizing languages 

Fig. 2  Comparison between common programming and OpenCL programming models
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such as C and C++, execution is predominantly CPU-centric, as depicted on the 
left-hand side of the figure. While some programs exploit the multicore architec-
ture of modern CPUs or even offload certain computational tasks to a GPU through 
vendor-specific APIs and libraries (e.g., CUDA), this approach diverges from the 
objectives of OpenCL. OpenCL aims for a more versatile computational model, as 
represented on the right-hand side of Fig. 2.

On the one hand, the OpenCL’s API standardizes the communication protocol, 
enabling seamless interaction with a variety of computing devices, irrespective of 
their inherent nature. This abstraction layer erases the need for device-specific con-
siderations in the code, with the exception of the compilation and execution phase 
done in the host side, where the target device must be explicitly selected. Further-
more, OpenCL’s API provides the flexibility to specify the execution environment’s 
characteristics, however, it is pertinent to note that the present discussion will not 
dig into the general-purpose parallelism capabilities that OpenCL offers, as the field 
of quantum computing is still in a premature stage with respect to parallelism and 
high-performance techniques.

On the other hand, code intended for execution on an accelerator must be deline-
ated separately from the host code stream. This separation can be achieved either by 
placing the accelerator code in a distinct file, as illustrated in Fig. 2, or by embed-
ding it as a string within the host file. The choice between these two approaches 
is a matter of modularity that the programmer must determine. A non-negotiable 
aspect, however, is the programming language in which the accelerator code must be 
written in: OpenCL C, as defined in the previously mentioned standard. It is crucial 
to highlight that the functions designated for execution on the device are explicitly 
marked with the __kernel__ directive, representing the code declaration of the 
kernel concept.

3.1  OpenCL and quantum computing

Now that the heterogeneous computing paradigm has been presented using OpenCL 
as a means to standardize ideas, and quantum computation has been defined as a 
tool to accelerate specific processes where classical computation lacks efficiency, it 
is time to discuss how these two disciplines can be combined and how each of them 
can harness its power with the help of the other.

First, the fact that quantum computers are considered as accelerators explains 
why the use of OpenCL was initially considered. As depicted in Fig. 2, accelerators 
play a central role in the OpenCL scheme, which recognizes that modern computa-
tion should not only have the capability but also the necessity to leverage all availa-
ble devices to maximize resource efficiency. This perspective aligns with how quan-
tum computers should be viewed: as accelerators. Therefore, integrating them into 
this computational model represents a significant step toward incorporating quantum 
computers into our heterogeneous computing environments.

Secondly, the most relevant practical quantum algorithms today are primarily 
iterative, featuring alternating quantum components where the concept of “quantum 
supremacy” is applied, along with classical counterparts responsible for optimizing 
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the parameter gates and preparing the circuit for the next execution. These are the 
variational quantum algorithms [13]. Examples of these type of algorithms are the 
VQE  [10] or the quantum approximate optimization algorithm (QAOA)  [14]. For 
example, this execution model is particularly intriguing for distributing the work-
load between a GPU, responsible for optimizing the parameters, and a QPU, dedi-
cated to applying quantum acceleration.

Of course, not everything in this combination of schemes is a perfect match. 
The introduction of quantum computation represents a wholly new paradigm at the 
computational table, which poses challenges for the portability aspect that OpenCL 
highly values. There are several reasons for this incompatibility, one of the main 
ones being that the operations used in quantum computation are not even consid-
ered in the OpenCL C language. Moreover, an issue that may not have significant 
implications in classical computing, such as executing code on an FPGA that was 
originally designed for a GPU, takes on greater significance when QPUs are intro-
duced into the discussion. Executing classical code on a quantum computer serves 
little purpose. Quantum algorithms require an entirely different approach compared 
to classical algorithms, involving distinct programming flows, operations, and more. 
This is one of the major challenges when integrating quantum computers into the 
OpenCL framework.

4  Proof of concept: OpenCL for QPUs

In addition to the issues highlighted at the end of the previous section, there is 
another significant obstacle preventing us from integrating a complete QPU into this 
scheme: the current lack of fully functional quantum computers. To include a device 
in the OpenCL scheme, it is essential to possess a comprehensive understanding of 
the device’s architecture, enabling the establishment of compilation rules. Without 
knowledge of how memory is accessed, how quantum gates are transpiled, which 
backend the QPU supports, and so forth, it becomes impossible to define compila-
tion procedures

As a result, the option of employing simulated quantum computers becomes a 
viable choice, similar to its use in other contemporary paradigms that incorporate 
quantum computation. As a preliminary step in this direction, rather than incorpo-
rating a QPU as a CPU with emulation tools, a proof of concept was initiated using 
a conventional CPU and a kernel code that implements all the necessary functions 
for quantum simulation.

To accomplish this, the first requirement is the implementation of OpenCL, as 
it was explained in Sect. 3. OpenCL is a standard that defines a set of communica-
tion functions within its API and provides a cross-platform programming language. 
However, it does not prescribe how these functions should be implemented. In this 
work, the open-source implementation known as PoCL was utilized, as described 
in [1]. The version 3.1 of PoCL was the one chosen.

Additionally, because there was a need to simulate quantum circuits within a ker-
nel, a set of functions defining the quantum simulation was necessary to complete 
the job. There was two options: either implement a custom library following the 
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OpenCL C language specification or adapt an already existing library to conform to 
the aforementioned language specifications. The chosen option was the latter due to 
the availability of the Qulacs library [2]. This library includes a C implementation as 
well as C++ and Python implementations, providing a solid foundation for enabling 
quantum simulation within an OpenCL kernel.

4.1  OpenCL restrictions

Numerous difficulties were encountered in this seemingly easy task, as discussed 
in the previous section, which involved adapting Qulacs to meet the OpenCL C 
requirements. These difficulties included the following: 

1. Function recursion This type of operation is allowed in OpenCL C. However, 
recursion, while technically feasible, imposes a significant computational cost 
on GPUs. This is due to the need to allocate stack space for thousands of threads 
and account for recursion during the challenging process of register allocation. 
Additionally, the issue of thread divergence further complicates matters. When 
transitioning to FPGA synthesis, the problem becomes insurmountable. Given 
these circumstances, the most straightforward solution was to completely elimi-
nate recursion. This is precisely what PoCL does; it forbids its use and generates 
a compilation error.

2. Standard math libraries The nature of quantum computing necessitates a signifi-
cant reliance on linear algebra and complex numbers. Typically, these mathemati-
cal constructs are implemented using common C math libraries like math.h. 
However, standard libraries are not permissible in OpenCL due to its prior com-
pilation with the common GCC compiler, which does not adhere to the require-
ments of the OpenCL C specification. Consequently, custom operations and data 
types had to be implemented specifically for this work. This included the develop-
ment of complex number representations and all the operations associated with 
this data type.

3. Double pointers In C, when working with matrices, double pointers are commonly 
used to access dynamically allocated memory. However, in OpenCL C, the use 
of double pointers is not allowed due to the complexities that arise when deal-
ing with multi-level pointers across different memory spaces in heterogeneous 
computing environments. OpenCL is designed to target a wide range of devices 
with diverse memory architectures, and supporting multi-level pointers could 
introduce inconsistencies and inefficiencies. By restricting this feature, OpenCL 
ensures portability, efficient data transfer, and simplified memory management, 
enabling developers to write optimized code that can run effectively on various 
hardware architectures. In this work, alternative techniques were employed, such 
as flattening arrays, to effectively handle multi-dimensional data.

4. Dynamic memory allocation Arguably, one of the most crucial functionalities of 
the C language, custom dynamic memory allocation, is prohibited in OpenCL 
C. This prohibition stems from several compelling reasons, including the neces-
sity for deterministic memory access patterns, concerns about potential memory 
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management overhead, incompatibility with heterogeneous memory architectures, 
and the inherent risk of data races and synchronization issues. OpenCL kernels 
are meticulously designed to execute in a parallel and deterministic manner across 
multiple processing elements, demanding predictable memory access patterns at 
compile time. The introduction of dynamic memory allocation would introduce 
unpredictability and hinder memory access optimizations, potentially compromis-
ing performance. Moreover, efficiently managing dynamic memory in the context 
of heterogeneous environments with varying memory architectures, as previously 
encountered with double pointers, would prove exceptionally challenging. The 
associated bookkeeping overhead and synchronization requirements in multi-
threaded execution could further exacerbate performance concerns.

  Instead, OpenCL promotes explicit memory management through statically 
allocated memory objects like buffers and images, ensuring both predictability 
and efficiency in memory access. However, for the specific requirements of this 
project, dynamic memory allocation was an imperative despite the efficiency 
trade-off. To implement dynamic memory management, the KMA model was 
adopted, as described in [15]. This model serves as a dynamic memory manager 
explicitly designed for OpenCL, accommodating the unique demands of our com-
putational environment.

5. Specification of address space There was also the need of changing address space 
as needed to fit in the constant, private and global scheme that OpenCL 
requires. This would not be needed if the generic address space was implemented, 
but in the version of PoCL used (3.1) the generic address space was not imple-
mented and so pertinent address space specification was required which, because 
of the classical C nature of Qulacs, was not defined.

4.2  Examples

To comprehensively represent our research, this work will present two distinct 
examples. Firstly, a simulation of the quantum phase estimation (QPE) [3] algorithm 
will be conducted due to its simplicity and applicability, making it an ideal intro-
ductory algorithm for simulations. Subsequently, the Shor algorithm  [16] will be 
introduced in a manner analogous to the QPE. The objective of this comparison is to 
illustrate that even more intricate algorithms can be effectively simulated using the 
Qulacs library adapted for the OpenCL C language.

It should be noted that the algorithms will not be fully implemented within the 
scope of this paper. Specifically, with regard to the QPE, this research demonstrates 
the effective simulation of the circuit but does not delve deeply into post-processing 
of the data to estimate the phase. Instead, an illustrative example will be provided to 
demonstrate the accuracy of the algorithm’s results. Similarly, in the case of Shor’s 
algorithm, the primary focus of this study is not on the factorization of integers but 
rather on ensuring the correct execution and outcomes of the quantum component, 
namely the accurate estimation of the period.
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4.2.1  QPE algorithm

The QPE algorithm is one of the most well-known quantum algorithms [3]. Given 
a unitary operator U, the algorithm estimates � in U��⟩ = e2�i���⟩ . So, basically, it 
estimates the phase of an eigenvalue of a given gate. The circuit responsible of this 
estimation can be seen in Fig. 3. The algorithm employs a two-register quantum sys-
tem: one to hold the phase estimation and another initialized to the eigenstate ��⟩ . 
It applies controlled-U operations, with U raised to exponentially increasing pow-
ers based on the qubit position, creating a superposition of phase states. An inverse 
quantum Fourier transform (QFT† ) on the first register converts these phases into 
a binary representation that can be measured to yield an estimate of � , as it will be 
shown at the end of this section. The precision of QPE and its probability of success 
improve with more qubits, showcasing the algorithm’s ability to leverage quantum 
mechanics for tasks that challenge classical computers. The mathematical proof of 
the result will be omitted, as it falls outside the scope of the article.

Regarding the gate employed, it should be mentioned that the job was executed 
employing a phase gate P as the U gate of the circuit for simplicity purposes, 
because using �1⟩ as the eigenvector for the algorithm satisfies P�1⟩ = ei��1⟩ , as it 
shows a simple application of the gate to the state:

In Fig. 4, the host code is depicted as a standard OpenCL code.1 This OpenCL 
program begins by establishing its operational context (lines 1–4), searching for a 
compatible device using the search_device function, and setting up a command 
queue for executing instructions. It then prepares for computation by incorporating 

(
1 0

0 ei�

)(
0

1

)
= ei�

(
0

1

)
.

Fig. 3  QPE circuit

1 This code and all the following ones can be found in https:// github. com/ jorge vazqu ezper ez/ OpenC 
LQPU.

https://github.com/jorgevazquezperez/OpenCLQPU
https://github.com/jorgevazquezperez/OpenCLQPU
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kernel files which include the modified Qulacs library (line 7) and including nec-
essary external sources as it is the allocation operations (line 9), followed by the 
compilation of the program with the aforementioned resources (line 10). It specifies 
the dimension for the number of qubits n that are going to be used to estimate the 
phase using the variable n_counts, which is then used to calculate the dimension 
over the ℝ space, i.e., 2n , and this dimension, in turn, is used for defining the buffer 
in which the measured results are going to be stored (lines 12–14). Subsequently, 
the program allocates memory buffers on the device for memory allocation, with 
the heap buffer, and result storage, with the countsbuf buffer (lines 16–17). 
The QPE kernel, which performs the main computation, has its arguments set (lines 
19–22), including the allocated buffers and the size parameter. Execution is man-
aged through a series of queue commands that write to the buffer, initiate the ker-
nel, and read back the results (lines 24–27). To ensure all processes are complete, it 
synchronizes with queue.finish() (line 28). Finally, the program processes and 

Fig. 4  Host code for QPE
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displays the results with the print_probabilities function (line 29), before 
terminating with a return statement (line 30).

In examining the kernel code, Fig. 5 illustrates the resemblance between the ker-
nel program and a conventional Qulacs program scripted in C. The adapted Qulacs 
functions are highlighted in italics in the code. One can see that the kernel takes 
in the heap, a global counts array and the n_counts variable as inputs (line 1), 
being coherent with the arguments set in the host code in Fig. 4. The kernel begins 
by setting the dimensionality of the quantum state as a power of two based on the 
number of counts (line 3) and then allocates and initializes a quantum state within 
the provided heap memory (lines 3–4) using the adapted Qulacs functions allo-
cate_quantum_state and initialize_quantum_state, respectively. 
Subsequently, the kernel defines a phase input and a matrix for quantum opera-
tions (lines 6–8). It applies a Hadamard gate H_gate to the first three qubits (lines 
10–12), setting the state into superposition. It then performs an operation with an X_
gate on the fourth qubit (line 14), to prepare the state for the subsequent controlled 

Fig. 5  Kernel code for QPE
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operations, as it was explained at the beginning of this section. The kernel contin-
ues with a loop applying a controlled gate, where it adjusts the phase based on the 
iteration (lines 16–19), using the adapted single_qubit_control_single_
qubit_dense_matrix_gate function from Qulacs. After completing the 
controlled operations, it applies an inverse quantum Fourier transform inverse_
qft to the qubits first n_count qubits (line 22), which is the final step in QPE to 
extract the phase information. Finally, the kernel prepares an index list and allocates 
memory for it on the heap (lines 24–26). It populates this list with indices (line 27), 
which is then used for measuring the quantum state. The get_probabilities 
function (line 29) then extracts the probabilities of the quantum state’s outcomes, 
which in a normal appliance of the QPE algorithm would be an actual measurement, 
but, for illustrative purposes, this work chooses to get the actual probabilities of the 
possible measurements.

In this example, as displayed in Fig. 5, the value of the phase was � =
1

2
 . Given 

the inherent characteristics of the algorithm, the phase can be estimated using the 
relationship � =

value

2n
 . Here, value denotes the quantity with the maximal prob-

ability; while, n represents the precision used, quantified by the number of qubits 
read. Subsequent to the execution of the kernel on the device and the retrieval of the 
buffer containing the outcomes, as illustrated in Fig. 4 and labeled as countsbuf, 
the results shown in Table 1 were obtained.

And so, the most probable value is 4 (100 in binary format), and then � =
4

8
=

1

2
 . 

In the given scenario, the outcome is evident as the phase, denoted by � , adheres to 
the relationship � =

value

2n
 . Conversely, in distinct scenarios, the probability tends to 

converge around the closest value
2n

 corresponding to the actual phase. Those scenarios 
are not considered on the post-processing of the data for being out of the scope of 
the program, as it was previously mentioned at the beginning of the Sect. 4.2. All 
in all, the QPE algorithm has been successfully simulated utilizing the OpenCL 
framework.

4.2.2  Shor’s algorithm

Conversely, Shor’s algorithm  [16] exemplifies the pinnacle of quantum compu-
tational capabilities. It entails an intricate integration of classical techniques, such 

Table 1  QPE results 
obtained with the possible 
measured values accompanied 
by their corresponding 
probability

 Values Probability

000 3.7494e−33
001 4.39269e−33
010 7.4988e−33
011 2.56025e−32
100 1.00000
101 2.56025e−32
110 7.4988e−33
111 4.39269e−33
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as the continued fraction algorithm, with a sophisticated quantum circuit. In fact, 
Shor’s algorithm is a seminal quantum computational method designed for effi-
ciently factoring large numbers, a problem traditionally considered challenging for 
classical computers. By harnessing quantum parallelism, this algorithm can deter-
mine the factors of a composite number in polynomial time, thereby showing a 
potential threat to classical encryption systems, particularly RSA, which rely on the 
difficulty of factoring large numbers.

More specifically, Shor’s algorithm centers around the modular exponential func-
tion f (x) = ax mod N , where a is randomly chosen and N is the number wished to 
be factored. The algorithm proceeds as follows: 

1. Computation of the greatest common divisor (GCD) By using the Euclidean 
algorithm, the algorithm finds the GCD of a and N. If the GCD is not 1, it has 
found a factor, and ends. If not, the algorithm moves to the second step.

2. QPE This is the only quantum portion of the algorithm. It uses the quantum 
circuit presented in Fig. 6 to evaluate the modular exponential function across a 
superposition of states. It can be noticed that it is the same circuit of Fig. 3 but 
with ��⟩ = �1⟩ and with the U operator satisfying: 

 It must be remarked that the randomly chosen value a is fed into the U gate of 
the QPE algorithm. As it is presented in Fig. 6, the final state before the meas-
urements (highlighted with a red dashed line) will be of the form: 

 and so, after measurement, the state obtained is of the form �2n ⋅ s

r
⟩ , with 

0 < s < r , getting the phase � =
s

r
.

3. Classical post-processing with continued fractions Once the phase � is extracted 
from the quantum circuit, classical algorithms come back into play. The period r is 

U�x⟩ = �ax mod N⟩ ≡ Ua�x⟩.

1√
r

�
�2n ⋅ 1

r
⟩ +⋯ + �2n ⋅ r − 1

r
⟩
�

Fig. 6  Shor’s circuit (color figure online)
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not directly observed but inferred from the output phase using the continued frac-
tion algorithm. This classical algorithm is used to analyze the output and deduce 
the period from the quantum measurement. If r is odd or if ar∕2 ≡ −1 mod N , 
the algorithm moves back to the first step. Otherwise, it proceeds to the next step.

4. Factorization With the period r in hand satisfying the necessary conditions (it 
is even and ar∕2 ≢ −1 mod N ), the algorithm uses classical computations (like 
Euclid’s algorithm for computing the GCD) to factor N. Specifically, the factors 
of N can often be found by taking the GCD of N with ar∕2 ± 1 and, if they are not, 
the algorithm restarts.

In the current study, it is performed a simulation of a circuit comprising three count-
ing qubits and four auxiliary qubits, totaling seven qubits. A more generalized 
algorithm implementation would demand excessive computational resources and 
time, diverging from the intended scope of this work. It should be noted that count-
ing qubits are specifically employed to find the period via the continued fraction 
algorithm.

After presenting Shor’s algorithm, the discussion shifts to the main objectives of 
the study. In examining Fig. 7, one observes minimum alterations in the host pro-
gram relative to the QPE implementation. Notably, the kernel name is shifted from 
the QPE one to the Shor one and the post-processing of the data returned by the 
OpenCL kernel now employs the continued fraction algorithm to discern the period 
which is done in the print_guess function. But, excluding that part, the code 
maintains the same structure and calls as the one for the QPE.

Pertaining to the kernel code, Fig. 8 delineates the circuit implementation utiliz-
ing the same adapted Qulacs library as in the QPE instance and, again, the calls to 
the adapted function are highlighted in italics. As it happened with the host code for 
QPE and Shor’s, both kernels are really similar. The only notable change is the use 
of the gate facilitating modular multiplication instead of the phase gate employed in 
the QPE circuit. This gate is denoted as c_amod15 in the code (line 14), and is a 
bespoke construction leveraging the capabilities of the Qulacs library. This library 
allows for the integration of any valid gate operation, provided its matrix is unitary, 
by handing several tools to the programmer, which were used in this work to achieve 
the desired functionality. It should be clarified that the study adopts a constrained 
version of Shor’s algorithm, with a predetermined value of N = 15 (hence the name 
of the gate c_amod15). This selection is predicated on fostering clarity and facili-
tating a comparison with results found in the Qiskit [17] textbook, where an analo-
gous circuit is employed. As previously explained, this study aims to illustrate the 
efficient integration of quantum processes into heterogeneous platforms. Conse-
quently, attempting to simulate the entirety of Shor’s algorithm, given its inherent 
complexity, could compromise the primary objective.

The possible outcomes of the algorithm are delineated in Table 2. Observing 
Table 2a, one notes that states 000, 010, 100, and 110 exhibit identical prob-
ability distributions. This suggests that each corresponding guess bears an equiv-
alent likelihood of selection. Taking into account that the correct period is r = 4 , 
one can observe in Table 2b that the probability of selecting a correct response 
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stands at 0.5, evidenced by measurements 010 or 110. Conversely, measure-
ments 000 or 100 would not yield accurate results: the former due to s = 0 and 
the latter because it produces r, albeit a factor, given s = 2 . As was said when the 
algorithm was explained, if instead of 010 or 110, the algorithm was to yield 
000 or 100 then it would be repeated until a correct period is found. The remain-
ing step of the algorithm, which is finding the actual factor is left for completion 
as it is a classical process with no interest for this work.

When juxtaposing these findings with those exposed in the Qiskit textbook, a 
clear congruence emerges. This consistency not only underscores the accuracy of 
the results but, akin to the QPE example, substantiates the efficacy of integrating 
quantum algorithms into the OpenCL pipeline, which was the main objective all 
along this study.

Fig. 7  Host code for Shor’s algorithm



 J. Vázquez-Pérez et al.

1 3

5  Conclusions

In conclusion, this work explored the integration of a contemporary computa-
tional paradigm—heterogeneous platform computing—with quantum computa-
tion. Such an integration is reflective of ongoing efforts to harness the strengths 
of both quantum and classical computation. The overarching aim, as elaborated in 
this paper, is the seamless synergy between classical and quantum computation, 
allocating tasks based on the nature and strengths of each.

Fig. 8  Kernel code for Shor’s algorithm

Table 2  The results show 
the possible measured values 
and their probability while 
the period guess shows 
which fraction and guess for 
r correspond to each phase 
obtained

Results Period guess

Values Probability Phase Fraction Guess for r

000 0.25 0 0

1

1

001 0 0.25 1

4

4

010 0.25 0.5 1

2

2

011 0 0.75 3

4

4

100 0.25
101 0
110 0.25
111 0



1 3

QPU integration in OpenCL for heterogeneous programming  

As an initial endeavor, this work aims to give a glimpse of the incorporation 
of quantum computation within these heterogeneous frameworks. The objec-
tive extends beyond simply adapting quantum computation to fit these schemes; 
it seeks to ensure that existing frameworks and libraries recognize and account 
for quantum computers as viable computational entities. This integration is not 
merely theoretical. Practical illustrations, particularly the QPE and Shor’s algo-
rithm, exemplify the potential role of QPUs within heterogeneous settings like 
OpenCL. These examples not only demonstrate the feasible integration but also 
validate its execution through circuit simulations. Actual QPU implementation, 
as posited, hinges on refining compilers to produce quantum–machine–readable 
code.

It is pertinent to note that subsequent steps in this research may not be exclu-
sively tied to OpenCL. OpenCL was chosen for this investigation due to its com-
prehensive documentation and active community, making it a representative het-
erogeneous platform standard for the study’s objectives. Notably, such standards 
were originally formulated without anticipating the integration of quantum com-
puters, leading to certain challenges as exposed in Sect. 3.1. Nonetheless, there 
are some following steps that should be approached in order to achieve a seamless 
integration of QPUs into HPC environments, i.e., heterogeneous platforms: 

1. Development of a driver for QPUs. QPUs, with their distinct quantum architec-
ture, require specialized drivers to maximize their potential within these plat-
forms. A tailored driver facilitates seamless integration of QPUs alongside clas-
sical computational units, ensuring efficient task distribution and optimization. 
By bridging the technical gap between classical and quantum systems, such a 
driver plays a pivotal role in unlocking the full potential of these combined com-
putational environments.

2. Kernel code compilation into a format interpretable by quantum machinery, or 
into a quantum intermediate code. While there are established examples of such 
developments in the literature such as Qiskit, ProjectQ [18], Cirq [19] or QCOR, 
among others (being QCOR really interesting for its ability of generating various 
quantum machine codes depending on the technology used [20]), integration into 
a heterogeneous platform remains a gap. Ideally, a single codebase should serve 
diverse hardware, be it a QPU, GPU, or CPU, with each device tasked to translate 
the code into its device-specific instructions.

Moving forward, the confluence of quantum and classical computation within 
heterogeneous platforms heralds a new frontier in computational capabilities. 
While challenges persist, they are not insuperable. The advancements highlighted 
in this study, and the outlined future directions, pave the way for a collaborative 
computing era, where quantum and classical systems work in tandem to address 
problems of unprecedented complexity. Embracing the potential of this fusion, an 
important impact is anticipated on various scientific and technological domains.
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