(Gl A)n GigaScience, 2023, 12, 1-12
gCIENQ E

DOI: 10.1093/gigascience/giad062
Technical Note

OXFORD

BigSeqKit: a parallel Big Data toolkit to process FASTA
and FASTQ files at scale

César Pifieiro ~ and Juan C. Pichel ©*
CiTIUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
*Correspondence address. Juan C. Pichel, CiTIUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain. E-mail: juancarlos.pichel@usc.es

Abstract

Background: High-throughput sequencing technologies have led to an unprecedented explosion in the amounts of sequencing data
available, which are typically stored using FASTA and FASTQ files. We can find in the literature several tools to process and manipulate
those type of files with the aim of transforming sequence data into biological knowledge. However, none of them are well fitted
for processing efficiently very large files, likely in the order of terabytes in the following years, since they are based on sequential
processing. Only some routines of the well-known seqkit tool are partly parallelized. In any case, its scalability is limited to use few
threads on a single computing node.

Results: Our approach, BigSegKit, takes advantage of a high-performance computing-Big Data framework to parallelize and optimize
the commands included in seqkit with the aim of speeding up the manipulation of FASTA/FASTQ files. In this way, in most cases, it
is from tens to hundreds of times faster than several state-of-the-art tools. At the same time, our toolkit is easy to use and install on
any kind of hardware platform (local server or cluster), and its routines can be used as a bioinformatics library or from the command
line.

Conclusions: BigSeqKit is a very complete and ultra-fast toolkit to process and manipulate large FASTA and FASTQ files. It is publicly
available at https://github.com/citiususc/BigSeqKit.

Keywords: FASTA/FASTQ files, Performance, Parallelism, Big Data

Introduction

The history of modern DNA sequencing started several decades
ago and, since then, has seen astounding growth in sequencing
capacity and speed. From the first genomes with a few thousand
bases, DNA sequencing has advanced to sequence the human
genome of 3 billion bases. In recent years, next-generation se-
quencing (NGS) technology, also known as massive parallel se-
quencing (MPS), has made it possible to expand the amount of
sequencing data available. For example, the Illumina NovaSeq
6000 [1] platform can generate a maximum output of 6 Tb of data
and read about 20 billion sequences per run. Note that sequences,
commonly named reads, are composed of ASCII characters repre-
senting a nucleotide (base) from the sequence. In the DNA case,
we can only find 4 possible bases (A—adenine, C—cytosine, G—
guanine, and T—thymine).

The NGS raw data are mainly stored in FASTA [2] and FASTQ [3]
text-based file formats. In particular, nucleotide and protein se-
quences are typically stored in the FASTA file format, whereas
FASTQ is the most widely used format for sequencing read data.
An example of FASTA file is shown in Fig. 1. A sequence in FASTA
format begins with a single-line description about the sequence
in the subsequent lines. The description line is distinguished from
the sequence data by a greater-than (>) symbol at the beginning.
On the other hand, the FASTQ format was designed to handle the
quality metrics of the sequences obtained from the sequencers. In
FASTQ, every 4 lines describe a sequence or read. An example is
displayed in Fig. 2. The information provided per read is as follows:
identifier and an optional description (first line), sequence (second

line), and the quality score of the read (fourth line). An extra field,
represented by symbol “+,” is used as separator between the data
and the quality information (third line).

Manipulating these files efficiently is essential to analyze and
interpret data in any genomics pipeline. Common operations
on FASTA and FASTQ files include searching, filtering, sampling,
deduplication, and sorting, among others. We can find several
tools in the literature for FASTA/Q file manipulation such as HT-
Seq [5], FASTX [6], fqtools [7], seqtk [8], Biopython [9], samtools [10],
pyfadix [11], pyfastx [12], and seqkit [13]. These tools can be clas-
sified according to how the sequences are parsed [12]. In the
first category, sequences are processed in order, which causes im-
portant overheads when extracting and randomly sampling se-
quences. That is the case of HTSeq, FASTX, fqtools, and seqtk. In
the second category, we find tools that support random access to
sequences by establishing an index file. Tools belonging to this
category are more efficient in terms of performance and memory
consumption. However, none of them are well fitted for process-
ing very large files of hundreds of GB (likely TBs in the near future)
since they are based on sequential processing. The exception is
seqkit that allows some routines to use a few threads, but in any
case, its scalability is very limited.

To deal with this issue, in this article, we introduce BigSeqKit,
a parallel toolkit to manipulate FASTA and FASTQ files at scale
with speed and scalability at its core. BigSeqKit takes advantage
of IgnisHPC [14, 15], a computing engine that unifies the develop-
ment, combination, and execution of high-performance comput-
ing (HPC) and Big Data parallel tasks using different languages

Received: March 7, 2023. Revised: May 25, 2023. Accepted: July 10, 2023

£z0z Joquisydag Lo uo 1sanb Aq gg6££z//Z90peIB/e0ousioselib/Se0L 01 /Iop/a1one/eousiosebib/woo dno oiwspese//:sdiy wolj papeojumoq

© The Author(s) 2023. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://orcid.org/0000-0001-6490-7128
http://orcid.org/0000-0001-9505-6493
mailto:juancarlos.pichel@usc.es
https://github.com/citiususc/BigSeqKit
https://creativecommons.org/licenses/by/4.0/

2

GigaScience,

2023, Vol. 12, No. 1

>NG _008679.1:5001-38170 Homo sapiens paired box 6 (PAX6)

ACCCTCTTTTCTTATCATTGACATTTAAACTCTGGGGCAGGTCCTCGCGTAGAACGCGGCTGTCAGATCT
GCCACTTCCCCTGCCGAGCGGCGGTGAGAAGTGTGGGAACCGGCGCTGCCAGGCTCACCTGCCTCCCCGL
CCTCCGCTCCCAGGTAACCGCCCGGGCTCCGGCCCCGGCCCGGCTCGGGGCCCGCGGGGCCTCTCCGCTG
CCAGCGACTGCTGTCCCCAAATCAAAGCCCGCCCCAAGTGGCCCCGGGGCTTGATTTTTGCTTTTAAAAG
GAGGCATACAAAGATGGAAGCGAGTTACTGAGGGAGGGATAGGAAGGGGGGTGGAGGAGGGACTTGTCTT
TGCCGAGTGTGCTCTTCTGCAAAAGTAGCAAARATGTTCCACTCCTAAGAGTGGACTTCCAGTCCGGCCCT
GAGCTGGGAGTAGGGGGCGGGAGTCTGCTGCTGCTGTCTGCTARAGCCACTCGCGACCGCGAAAAATGCA
GGAGGTGGGGACGCACTTTGCATCCAGACCTCCTCTGCATCGCAGTTCACGACATCCACGCTTGGGAAAG
TCCGTACCCGCGCCTGGAGCGCTTARAGACACCCTGCCGLCGGGTCGGGCGAGGTGCAGCAGAAGTTTCCC
GCGGTTGCAAAGTGCAGATGGCTGGACCGCAACAAAGTCTAGAGATGGGGTTCGTTTCTCAGARAGACGC

Figure 1: Example of FASTA file showing the first part of the PAX6 gene (obtained from [4]).

Identifier I @HWI-EAS5209_0006_FC706VJ:5:58:5894:211414ATCACG/1
Sequence 4| TTAATTGGTAAATAAATCTCCTAATAGCTTAGATNTTACCTTNNNNNNNNNNTAGTTITCTTGAGA
+ sign & identifier- | +HWI-EAS209_0006_FC706VJ:5:58:5894:21141#ATCACG/1
Quallity scores——| efcfffffcfeefffcffffffddf feed]] Ba “~ [YBBBBBBBBBBRTT\|]|] [1dddd’

Figure 2: Example of FASTQ file format (obtained from [4]).

and programming models. As it was demonstrated, IgnisHPC out-
performs the state-of-the-art framework Spark [16] in terms of
performance and scalability running applications that represent
the most typical algorithmic patterns in Big Data and scientific
computing.

BigSeqKit uses the seqkit routines as basis since that toolkit cov-
ers a wide range of utilities and is one of the most used by the
bioinformatics research community. As a consequence, BigSegKit
will offer the same functionalities and command interface [17].
BigSegKit can be used from the command line, butitis at the same
time a library, so its routines can also be called from a C/C++,
Python, Go, or Java application.

Another important characteristic of BigSeqKit is that it is fully
containerized, which isolates the execution environment from the
physical system and avoids dependency problems. As a conse-
quence, BigSeqgKit is very easy to install and can run on a local
server or on any type of cluster since it supports some of the most
important resource and scheduler managers (e.g., Mesos [18], No-
mad [19], and Slurm [20]).

Background

IgnisHPC [14, 15] unifies the execution of Big Data and HPC work-
loads in the same computing engine. Unlike other frameworks
such as Hadoop [21] and Spark [16], IgnisHPC has native support
for multilanguage applications using both JVM (Java Virtual Ma-
chine) and non-JVM-based languages. In this way, applications can
be implemented using 1 or several programming languages fol-
lowing an API inspired by Spark’s one.

The previous version of IgnisHPC supported natively C, C++,
Java, and Python. However, seqkit was implemented using the
Go programming language. Since BigSegKit parallelizes and op-
timizes the seqkit routines using IgnisHPC, it was necessary to
add support for this language in the framework. Another solu-
tion would require to port the complete toolkit to a different lan-
guage, which is a difficult task prone to errors. It is worth not-
ing that, to the best of our knowledge, nowadays IgnisHPC is
the first parallel computing framework to include native sup-
port for this language. Considering Spark instead of IgnisHPC
is not an option because, as it was demonstrated in [14], when

Base T
phred Quality] =29

using a nonnative language code, data transfers between the
JVM and external processes degrade noticeably Spark’s overall
performance.

Go is a programming language with a simple syntax that was
designed to be easy to learn and use. With the release of Go v1.18,
the language included support for Generics, which allows the cre-
ation of functions, types, and methods that can work with any
data type. This makes Go an effective and user-friendly way to
implement Big Data interfaces. The implementation of Go in Ig-
nisHPC is similar to that of C++, as both are compiled and stati-
cally typed languages. However, Go replaces the concept of inher-
itance with composition, which does not change the philosophy
of use in IgnisHPC. Big Data functions are still accessible through
the IgnisHPC API, and users can create their own code by imple-
menting the same interfaces.

One of the key features of IgnisHPC is its use of containers to
isolate and execute code. Containers are lightweight and portable,
making it easy to run IgnisHPC on a variety of different clusters,
including both HPC and Big Data. IgnisHPC is also tolerant to fail-
ures, as the containers or processes can be easily restarted if there
areissues. In particular, if some data are lost, IgnisHPC has enough
information about how it was derived. In this way, only those op-
erations needed to recompute the corresponding portion of data
are performed.

We must highlight that although the IgnisHPC API [22] uses a
sequential notation, operations on data are performed in parallel.
As we pointed out, the IgnisHPC API was inspired by the Spark
API in such a way that IgnisHPC codes are easily understand-
able by users who are familiar with Spark. Table 1 shows a list of
some of the most important functions supported by IgnisHPC. In
particular:

® Map functions: The common characteristic to routines belong-
ing to this type is that they apply the same function to each
element in the data. As a result of the transformation, the
output could be of different size with respect to the input.

® Reduce functions: reduce and treeReduce methods aggregate
all the elements in the input data using a function. aggre-
gate and treehAggregate are a sort of reduction where the
type of the input and output data is different. In this case,
2 functions are necessary; the first one is applied to each

£20z Jaquiaydag o uo 1sanb Aq 88655z //z290peIB/aousiosebib/ca0 L 0L /10p/a]o1ue/aoualosebib/woo dnoolwapeoe//:sdyy woly papeojumoq

Table 1: Some of the most important IgnisHPC API functions

Type Functions

Map map, flatmap, mapWithIndex, filter, keyBy,

keys, values, mapPartitions, mapValues, etc.

BigS

Table 2: List of commands included in both BigSeqKit and seqkit.
Those commands with an asterisk support new functionalities
not included in seqkit

Basic commands
seq Transform sequences (extract ID, filter by length,
remove gaps, reverse complement, etc.)
Get subsequences by region/gtf/bed, including
flanking sequences
stats Simple statistics of FASTA/Q files: #segs, min/max
length, N50, Q20%, Q30%, etc.

subseq

Reduce reduce, treeReduce, aggregate, treeAggregate,
reduceByKey, aggregateByKey, etc.

Group groupBy, groupByKey

Sort sort, sortBy, sortByKey

/0 parallelize,collect, top, take,
saveAsObjectFile, saveAsTextFile,
saveAsJsonFile, etc

SQL union, join, distinct

Math sample, sampleByKey, take, takeSample, count,
countByKey, countByValue, max, min, etc.

Balancing repartition, partitionByHash,
partitionByRandom, partitionBy

Persistence persist, cache, unpersist, uncache

element in a data partition, and the second one combines
the partial results obtained for each partition. reduceByKey
and aggregateByKey are variations where the operation is
performed only among elements with the same key in such
a way that the final result is a set of unique pairs with
values calculated using reduce or aggregate operations,
respectively.

Group functions: These methods group elements in a data
frame according to their key value (groupByKey) or a user-
defined function (groupBy).

Sort functions: In order to sort elements, IgnisHPC provides 3
functions: sort, sortByKey, and sortBy. The first method
uses the natural order and does not need any additional
function. sortByKey sorts the keys using their natural order.
sortBy allows to use a user-defined function to specify the or-
der of the elements. If the result of applying that function to
2 elements is true, then the first element should precede the
second one. All methods support ascending and descending
order.

SQL functions: These functions operate on data frames. union
concatenates 2 data frames, join merges elements of 2 data
frames whose keys match, and distinct returns a new data
frame after removing the duplicate records. These methods
are necessary, for example, in many graph processing prob-
lems.

Other functions: IgnisHPC implements several operations that
return a value to the driver code, but they do not modify or
generate new stored data. Spark refers to this type of opera-
tions as actions. For instance, IgnisHPC supports methods such
as count, take, takeSample, and collect. The most basic
operation is count that returns the number of elements of a
stored data collection. collect returns a collection with all
the elements stored in the executors of a task. take applies

faidx* Create FASTA or FASTQ index file and extract

subsequences
Format conversion

fa2fq Retrieve corresponding FASTQ records by a FASTA
file

fg2fa Convert FASTQ file to FASTA format

translate Translate DNA/RNA to protein sequence

Searching

grep Search sequences by
ID/name/sequence/sequence motifs

locate Locate subsequences/motifs

Set operations

sample Sample sequences by number or proportion

rmdup Remove duplicated sequences by
ID/name/sequence

common Find common sequences of multiple files by
ID/name/sequence

duplicate Duplicate sequences N times

head Print first N FASTA/Q records

head-genome

Print sequences of the first genome with common
prefixes in name

pair Match up paired-end reads from 2 FASTQ files
range Print FASTA/Q records in a range (start:end)
Edit
concat Concatenate sequences with the same ID from
multiple files
replace Replace name/sequence using a regular
expression
rename Rename duplicated IDs
Ordering
sort Sort sequences by ID/name/sequence/length
shuffle Shuffle sequences
Methods

As we commented previously, BigSegKit (RRID:SCR_023592) speeds
up the seqkit routines through parallelization and optimization
techniques. Table 2 shows the routines supported by the current
version of BigSeqKit. Despite most of the commands in seqkit are
sequential, we can classify each command implementation into
3 categories according to its inherent parallelism:

® Independent: it is a embarrassingly parallel workload. As a

a collect operation but obtains only the first n elements,
where n is chosen by the user. takeSample returns a ran-
dom sample of n elements from the distributed data, with
or without replacement. Finally, another interesting routine
is parallelize, which distributes the elements of a collec-
tion among the executors to form a distributed dataset. In
this case, new stored data are created.

It is worth noting that the IgnisHPC API functions allow users
to parallelize a code with a high level of abstraction. In this way,
it is only necessary to focus on data dependencies.

consequence, the computation could be applied to all se-
quences in parallel. An example is seq, a function that trans-
forms sequences. In this case, the transformation only affects
each sequence individually.

Partially dependent: computations could be done in parallel,
but the method requires some type of consensus to obtain the
result. For instance, stats should merge the partial results
computed for each sequence to calculate some statistics of
the considered FASTA/Q file.

Dependent: dependencies between sequences prevent the
method from being executed in parallel. As a consequence,

£20z Jaquiaydag o uo 1sanb Aq 88655z //z290peIB/aousiosebib/ca0 L 0L /10p/a]o1ue/aoualosebib/woo dnoolwapeoe//:sdyy woly papeojumoq

https://scicrunch.org/resolver/RRID:SCR_023592

4 | GigaScience, 2023, Vol. 12, No. 1

BigSegKit requires a complete new algorithm to perform
the same command in parallel. rmdup is a good example
because with the aim of removing duplicated sequences,
it is necessary to read all of them before generating a
result.

The integration, parallelization, and optimization of each segkit
command in IgnisHPC will be different depending on its category.
More details are provided below.

Independent routines

For these commands, the computation can be applied to all se-
quences in parallel because there are no dependencies (commu-
nication) among them. In other words, routines belonging to this
category can be processed using an embarrassingly parallel ap-
proach. Considering the IgnisHPC (and Spark) API, it is only nec-
essary to use map functions to parallelize the computations. As
we pointed out, the common characteristic to these API func-
tions is that they apply the same operation to each element in the
data.

The following BigSeqKit commands belong to this category: segq,
subseq, stats, fg2fa, fa2fq, translate, grep, locate, dupli-
cate, and replace (see Table 2 for details).

Partially dependent routines

As we mentioned, this category includes commands in which
computations can be done in parallel using map functions, but
the methods require some type of consensus to get the desired
outcome. This consensus can be easily implemented using the
IgnisHPC API. The following BigSegKit commands belong to this
category:

® stats: statistics can be generated in parallel but the fi-
nal result must be unique, so all partial results must be
merged using a reduction (reduce operation in the IgnisHPC
API).

® head: sequences should know their position inside the file
to check if they are inside the head window. To do that, it is
necessary to use mapWithIndex, a special map operation in-
cluded in the IgnisHPC API that allows each element to know
its global index within a data structure.

® head-genome: similar to head, butnot all sequences are valid.
In order to determine the window, invalid sequences must be
removed first.

® range: also similar to head. Sequences should know their
position inside the file to check if they are within the range
window.

® grep: although this command was included in the previous
category, a command option (- -delete-matched) limits the
number of results to just 1 per search pattern. In such cases,
it is necessary to remove the extra results.

® faidx: also similar to head, sequences compute their
offsets inside the input file using mapPartitionWithIn-
dex and exchange the information between executors
to perform a parallel indexing operation with a simple
map.

Dependent routines

Commands belonging to this category have an implementation in
seqkit that by its nature cannot be parallelized. However, IgnisHPC
allows us to define the implementation at a high level, which in-
creases noticeably the productivity. Behaviors and functionalities

will be preserved in BigSeqgKit but through a complete new parallel
implementation. In particular:

® sample: a sequential sampling can be performed in parallel if
we split the sequences and run a sample for each partition. It
was mathematically proven that sampling without replace-
ment follows a hypergeometric function [23]. In this way, we
can calculate the proportion of the sample that corresponds
to each partition.

® rmdup: sequences are grouped (groupBy API function) using
a hash with the ID, name, or sequence. In those groups con-
taining more than 1 element, a search for duplicates is carried
out to remove them.

® pair and concat: sequences of the input files generate key-
value pairs where the key is the ID and the value is the se-
quence with its index file (map). Pairs are unified by means of
union and grouped using groupByKey. Afterward, sequences
in the same group are paired or concatenated if they belong
to different files.

® common: the first stage of the command is the same one ex-
plained above for pair and concat. Then if a sequence can be
found in all files, we check its index file, to avoid its deletion.

® rename: sequences are grouped (groupBy) using their ID, and
then IDs in the same group are renamed.

® sort: the sequential sort algorithm implemented in seqkit is
replaced by a sample MergeSort [24] algorithm that can be
efficiently executed in parallel in a distributed environment.

® shuffle: sequences shuffling can be implemented using the
IgnisHPC API function partitionByRandom.

Another implementation details

In order to parallelize and integrate the seqkit routines into Ig-
nisHPC, it was necessary to start considering the sequence parser.
It takes a stream of characters in FASTA and FASTQ format and
generates a data structure with the sequence representation. In
seqkit, this stream can be represented by a file or the standard in-
put. In BigSeqKit, this stream is implemented using the IgnisHPC
iterators, which grant the users access to the data partitions. In
this way, BigSeqKit will read the data from a file and split it in
multiple partitions, which facilitates their parallel processing. In
particular, each worker reads a portion of the input file, so the
input/output (I/O) operation is performed in parallel. There is 1
worker per computing node. Within each worker, its portion of the
file is further divided among the available threads, improving the
overall I/O performance. As a result, the seqkit command argu-
ments that affect file processing will have no effect in BigSegKit.
For example, the - -two-pass option, which reads a file multiple
times instead of storing all the sequences in memory, does not
make sense in BigSegKit. We must highlight that the fact of split-
ting the input files between several computing nodes in BigSeqKit
means that the memory consumed by node is also split, which
allows our tool to work with larger datasets. In addition, BigSeqKit
also reduces the memory footprint by only storing the IDs and
indices of each sequence.

Another important advantage of using IgnisHPC is how mem-
ory is handled. Users can choose a type of storage according to
their particular case. For instance, if an input file is too large
to be kept completely in the server memory, it could be stored
compressed in memory or in disk. Performance would be lower,
but it could be successfully processed. That scenario is not
considered by segkit that simply would raise an “out of mem-
ory” error. In particular, BigSeqKit supports the following storage
options:

£20z Jaquiaydag o uo 1sanb Aq 88655z //z290peIB/aousiosebib/ca0 L 0L /10p/a]o1ue/aoualosebib/woo dnoolwapeoe//:sdyy woly papeojumoq

® In-Memory: it is the best performer since all data are stored in
memory. It is the default option.

® Raw memory: data are stored in a memory buffer using a seri-
alized binary format. Extra memory consumption is minimal
and the buffer is compressed by Zlib.

® Disk: similar to raw memory but the buffer is stored as a
POSIX file. Although the performance is significantly worse,
it enables working with vast amounts of data that cannot be
entirely kept in memory.

On the other hand, rmdup, common, and pair commands in
seqkit use hash functions to check duplicates. It is well known
that hash functions can produce the same result for different
values. This event is commonly known as a hash collision. How-
ever, seqkit does not check for collisions, so it is possible to
generate incorrect results. BigSeqKit uses hashes to group se-
quences but then checks for collisions by comparing the real
values.

Finally, seqkit and other state-of-the-art tools build index files
(faidx routine) to speed up some other tasks (e.g., searches). Al-
though BigSeqKit is also capable of creating those index files, it
does not require them to improve its performance since data
within IgnisHPC are already indexed. In other words, the index
is created while reading the input file.

New functionalities

BigSegKit not only enables the parallelization of seqkit functions
but also improves its algorithms to provide benefits even for se-
quential executions and includes additional functionalities. In
particular, the faidx command in seqkit implements indexing
of FASTA files using the samtools format, but FASTQ files are
not supported. BigSeqKit adds support for this type of files and
generates an index file using the samtools format as well. Note
that this is the most widespread format and is also supported
by other state-of-the-art tools. Therefore, BigSeqKit allows index-
ing of both FASTA and FASTQ files using the same syntax than
seqkit.

How to Use BigSeqKit

BigSeqKit can be used in 2 different ways. The first one is by means
of a command-line interface (CLI). This approach is similar to the
“command subcommand” structure adopted by seqkit [13]. In this
way, it is only necessary to select a subcommand or routine (see
a complete list in Table 2) and pass its arguments through com-
mand line. As we mentioned previously, to improve the usability
and facilitate the adoption of BigSeqKit, it implements the same
command interface as seqkit.

Since BigSeqKit runs within the IgnisHPC framework, it is neces-
sary to send the BigSeqKit routine through the IgnisHPC submitter.
For instance, if we are running BigSeqKit on a local server, the fol-
lowing expression uses the routine seq to print the name of the
sequences included in a FASTA file to an output file:

ignis-submit ignishpc/full bigseqkit seq -n -o names.txt
input-file.fa

Therefore, the syntax should be:
nishpc/full bigsegkit <cmd> <arguments>.

In addition, users can also specify through arguments the num-
ber of instances, cores, and memory (in GB) to be used in the exe-
cution. By default, those values are set to 1. For example, we can
execute the previous command using 2 cores:

ignis-submit ig-

1| import ignis

2| import bigsegkit

3

4| # Initialization of the framework
5| ignis.Ignis.start()

6

Resources/Configuration of the cluster
7| prop = ignis.IProperties()

8| propl["ignis.executor.image"] = "ignishpc/go"
9| prop["ignis.executor.instances"] = "1"

10| prop["ignis.executor.cores"] = "2"

u| prop["ignis.executor.memory"] = "1GB"

1| # Construction of the cluster

13| cluster = ignis.ICluster (prop)

14| # Initialization of a Go Worker

15| worker = ignis.IWorker(cluster, "go")
16| # Sequence reading

17| seqs = bigseqkit.readFASTA("file.fa", worker)
18| # Obtain Sequence names

19| names = bigseqkit.seq(seqs, name=True)
20| # Save the result

21| names.saveAsTextFile("names.txt")

22| # Stop the framework

3| ignis.Ignis.stop()

Figure 3: Example of Python code using the BigSegKit routines.

ignis-submit ignishpc/full -p ignis.executor.cores=2

bigseqkit seq -n -o names.txt input-file.fa

Unlike the other state-of-the-art tools, BigSeqKit can also
be executed on a parallel cluster. Typical HPC clusters have
Slurm [20] as the preferred resource manager and Singularity [25]
as a container-based technology. In this case, users will send
the job using the ignis-slurm submitter instead of ignis-
submit.

On the other hand, BigSeqKit can also be used as a bioinformat-
ics library. It is worth noting that BigSeqgKit was implemented in Go
language. However, thanks to the multilanguage support provided
by IgnisHPC, it is possible to call BigSeqKit routines from C/C++,
Python, Java, and Go applications without additional overhead.
An example of Python code is shown in Fig. 3. This example is
equivalent to the previous one used in the explanation of the CLI
Since BigSeqKit has been created as a library, it only needs to be im-
ported to be used. Functions in BigSeqKit do not use files as input;
they use DataFrames instead, an abstract representation of paral-
lel data used by IgnisHPC (similar to RDDs in Spark). Parameters
are grouped in a data structure where each field represents the
long names of a parameter. We must highlight that BigSegKit func-
tions can be linked (like system pipes using “|"), so the DataFrame
generated by one can be used as input to another. In this way,
integrating BigSeqKit routines in a more complex code is really
easy.

The code starts initializing the IgnisHPC framework (line 5 in
Fig. 3). Next, a cluster of containers is configured and built (lines
from 7 to 15). Multiple parameters can be used to configure the en-
vironment such as image, number of containers, number of cores,
and memory per container. In this example, we will use 1 node
(instances) and 2 cores by node. After configuring the IgnisHPC ex-
ecution environment, the BigSeqKit code actually starts. First, we
read the input file (line 17). There is a different function for read-
ing FASTA and FASTQ files. All the input sequences are stored as a
single data structure. The next stage consists of printing the name
of the sequences included in the FASTA file (line 19). The function

£20z Jaquiaydag o uo 1sanb Aq 88655z //z290peIB/aousiosebib/ca0 L 0L /10p/a]o1ue/aoualosebib/woo dnoolwapeoe//:sdyy woly papeojumoq

6 | GigaScience, 2023, Vol. 12, No. 1

takes as parameters the sequences and the options that specify
its behavior. Finally, the names of the sequences are written to
disk. It is important to highlight that lazy evaluation is performed,
so functions are only executed when the result is required to be
saved on disk.

Experimental Results

In this section, we analyze the performance results obtained by
BigSegKit with respect to other state-of-the-art tools. In partic-
ular, we have considered samtools, pyfastx, and seqkit for their
performance and number of commands supported. Experiments
were conducted using up to 8 computing nodes of the FinisTer-
rae III [26] supercomputer installed at CESGA (Spain). Each node
contains a 32-core Intel Xeon Ice Lake 8352Y @2.2 GHz proces-
sor and 256 GB of memory interconnected with Infiniband HDR
100. Itis a Linux cluster running Rocky Linux v8.4 (kernel v4.18.0).
We have used SingularityCE v3.9.7 (containers), IgnisHPC v2.2, py-
fastx v0.8.4, samtools v1.16.1, and seqkit v2.3.1 (with Slurm as clus-
ter manager and Lustre as distributed file system).

The performance evaluation was carried out using as input 6
different FASTA/FASTQ files that cover a wide variety of character-
istics and sizes. The main features of these files are the following:

* D (m64013e_210227_222017.hifi reads—FASTA—
24 GB):
Number of sequences: 1.2M, Minimum length: 85, Average
length: 19.7K, Maximum length: 48.5K.

® D, (SRR642648 1.£i1t—FASTQ—24.1 GB):
Number of sequences: 98.7M, Minimum length: 100, Average
length: 100, Maximum length: 100.

® D3 (Homo sapiens.GRCh38.dna sm.toplevel—FASTA—
59.7 GB):
Number of sequences: 639, Minimum length: 970, Average
length: 98.8M, Maximum length: 248.9M.

® D, (ERR4667750—FASTQ—79.1 GB):
Number of sequences: 318.1M, Minimum length: 101, Average
length: 101, Maximum length: 101.

® Ds (uniprot trembl—FASTA—104 GB):
Number of sequences: 229.9M, Minimum length: 7, Average
length: 351.6, Maximum length: 45.3K.

® Ds (DRR002180 2—FASTQ—395 GB):
Number of sequences: 1.625B, Minimum length: 101, Average
length: 101, Maximum length: 101.

As example to illustrate the benefits of our tool, we will evalu-
ate the following utilities (see Table 2 for a complete list of com-
mands): faidx builds an index for FASTA/FASTQ files, locate
locates sequences following some search pattern, replace re-
places a name/sequence using a regular expression, rmdup re-
moves duplicated sequences, sample selects sequences by num-
ber or proportion, seq transforms sequences (extract ID, filter
by length, etc.) and removes gaps, and sort sorts sequences
by ID/name/sequence/length. We will also include the perfor-
mance results of the corresponding utilities, if they exist, for sam-
tools, pyfastx, and seqkit. Execution times for all the tools con-
sidered include the overhead of loading sequences into mem-
ory and the subsequent writing of results to disk. Note that the
“2-pass” argument of seqkit was not used in the experiments.
Each result was computed as the median of 5 experiments. For
the sake of reproducibility, all the codes and scripts used for
performing the benchmarks are freely available at the BigSegKit
repository.

First, in order to provide an overall idea about the scalabil-
ity and performance of BigSeqKit with respect to the other state-
of-the-art tools, we will show the speedups obtained for the D4
dataset using different number of cores. The behavior is very sim-
ilar when considering the other datasets. Results in log scale are
displayed in Fig. 4. Speedups were calculated using as reference
the sequential execution (1 core) of the corresponding BigSeqKit
command. According to the results, several conclusions can be
made. It can be observed that the scalability of BigSegKit is quite
good, reaching speedups up to 27.7x and 95.7x (seq command)
using 1 server (32 cores) and 8 computing nodes (256 cores), re-
spectively. Note that speedups of some routines are not higher
when using 256 cores due to a small fraction of the code that
should be executed sequentially (Amdahl’s law).

While samtools and pyfastx routines are always processed se-
quentially, seqkit uses a multithreaded approach to (partly) par-
allelize some commands. However, its scalability is limited to
use a few threads on a single server (computing node). This
is the case of locate. Its best speedup only reaches 11.3x (32
cores) while this value increases until 19.6x with BigSeqKit. If
8 nodes are used, BigSeqKit is 49.9x faster than the sequential
execution.

For all the commands studied, BigSeqKit clearly outperforms
samtools, pyfastx, and seqkit. There are only a few cases using 1 core
where the speedups of these tools are slightly greater than 1 (e.g,,
executing the faidx routine with samtools and pyfastx). However,
other commands such as sort and sample are processed faster
with BigSegKit even using 1 core.

Tables from 3 to 9 display, for all the datasets, the execution
times of BigSeqKit and the other state-of-the-art tools when run-
ning faidx, locate, replace, rmdup, sample, seq, and sort util-
ities, respectively. Speedups with respect to the sequential exe-
cution of the corresponding BigSeqKit command are shown be-
tween brackets. Highlighted is the fastest time overall and the
corresponding speedup. Note that BigSeqKit stores compressed
in memory the largest dataset Dy when using 1 computing
node since it exceeds the memory capacity of an individual
server (see the Raw memory storage option in the Background
section).

For all the experiments conducted, BigSeqKit is always the
fastest tool both considering a single server (1 node) or several
computing nodes. In any case, let’s take a look in detail of the be-
havior for each command:

® faidx (Table 3): BigSeqKit speedups range from 5.4x to 27.4x
considering a single server (32 cores) and from 7.2x to 144x
with 8 nodes. It means, for example, building the index file
for our largest dataset Ds (395 GB) in just 5.8 minutes (sin-
gle server), while samtools and pyfastx require about 2.1 hours.
This time decreases to 1 minute when BigSeqKit uses 8 nodes.
As mentioned previously, the £aidx routine in seqkit does not
support FASTQ files (D, D4, and Dg).

® locate (Table 4): the searching routines, grep and locate,
are very expensive in terms of computations. Note that
considering sequential processing, locate takes more than
3 hours to process our smallest dataset D; independently of
the tool considered. This time increases to more than 3 days
of computation for Dg. seqkit has a multithread version of
locate, which obtains speedups from 10.5x to 18.8x. These
speedups are always lower than the ones obtained by BigSe-
gKit on a single server. It is important to highlight that seqkit
raises an out-of-memory error when processing Dg with 1, 2,
and 4 cores. On the other hand, when using 8 nodes, BigSe-

£20z Jaquiaydag o uo 1sanb Aq 88655z //z290peIB/aousiosebib/ca0 L 0L /10p/a]o1ue/aoualosebib/woo dnoolwapeoe//:sdyy woly papeojumoq

0%+ 107
f . I
e | faddx (e | Locate
|| M BigSeqKit BigSeqKit
s g
B10'r T 1o':
Q Q 3
] b o
=3 =3
n)
100} 100 10°
A2k ® A0 a2 ée'e\ ce‘"’\“) A2 N D a0 Q’?"\od?ﬁ’\“ 605\0 20 A T N ib =) de"i el
2T oS @ VAU \J
Cores 6&\ %\ 6%\ Cores 61\\@%\ PN Cores S 'L%\qfﬁ\
102 E—— . d . 102 = 1 10%
seqkit rmdu pyfastx sam e [Tpyfastx
Il BigSeqKit p Il seqkit P Bl seqkit
o a Il BigSeqKit o Il BigSeqKit
B 4! B 1! 3B 10!
o 3 o
a 2 Q
(7] (7] 7]
10° 10° 10°£. I
E A S SN &e\ 9 o N R e R o oD © R D o o
O O 5000 00 St
Cores %, %\ 6@ Cores ¢ 1%\%56\?’ Cores ﬁu\'L \“ 6@
102
mtools | SOrt
qkit
a BigSeqKit
5 401
ER
Q
o
-3
(7]
10°

A2 N
Cores

® A0 r_:,‘?«) 685\ 625\
Qy@ e,\b‘ 6\%(\

Figure 4: Speedups (in log scale) obtained by BigSeqKit and other state-of-the-art tools with respect to the BigSeqKit sequential time when executing
different commands using Dy as input. Note that locate was parallelized in seqgkit.

gKit achieves noticeable speedups up to 104.1x. In this way, it
is able to reduce the time necessary to execute the locate
command with our largest dataset Dg from 3 days to only
0.8 hours.

® replace (Table 5): this routine (or an equivalent) is not
supported by samtools and pyfastx. In this case, BigSeqKit is
from tens to hundreds of times faster than seqkit, reaching
speedups up to 159.8x.

® rmdup (Table 6): this routine is also not supported by samtools
and pyfastx. In this case, BigSeqKit is tens of times faster than
seqkit, achieving a maximum speedup of 74.7x when remov-
ing the duplicated sequences in Ds.

® sample (Table 7): operation not supported by samtools. BigSe-
gKit is again faster than the other tools, increasing the
speedups as the input data size grows. It can be observed
that BigSeqKit is able to sample sequences in seconds. For in-
stance, pyfastx and seqkit take about 3 hours to process D,
while BigSeqKit requires just 2 minutes.

® seq (Table 8): operation not supported by samtools. Perfor-
mance results are similar to the sample ones in such a way
that BigSeqKit filters sequences by ID in a few seconds, achiev-
ing a noticeable speedup of 169.7x. It should be noted that
among the routines examined in this study, seq is the least
computationally demanding.

® sort (Table 9): this routine was not included in pyfastx. In
general, the performance of samtools and seqkit is poor. And,
most importantly, both tools produce memory errors when

processing the largest dataset Dg, so it cannot be sorted. How-
ever, BigSeqKit sorts Dg 21.8x and 131.1x faster than the se-
quential version using a single server and 8 computing nodes,
respectively. It means that the time decreases from 5 hours to
barely 2 minutes.

Finally, we must highlight that one of the main reasons for the
differences in the speedups between datasets running the same
command with BigSeqKit is the load balance between threads. It
will depend on the characteristics of the dataset: number of se-
quences and their length.

Conclusions

Current state-of-the-art tools such as seqkit, pyfastx, and samtools
are not ready for processing and manipulating very large FASTA
and FASTQ files because all of them are mainly based on sequen-
tial processing. To that end, we have presented BigSegKit, which
parallelizes and optimizes the seqkit routines using the IgnisHPC
computing framework. Since seqkit was programmed in Go, Ig-
nisHPC was extended to support thatlanguage. As a consequence,
IgnisHPC is nowadays the first parallel computing framework that
supports Go. BigSegKit can be easily installed on a local server or
on a cluster. In addition, it can be used from the command line
or as a library. Thanks to the multilanguage support of IgnisHPC,
BigSeqKit routines can be called from C/C++, Python, Java, and Go
codes.

£20z Jaquiaydag o uo 1sanb Aq 88655z //z290peIB/aousiosebib/ca0 L 0L /10p/a]o1ue/aoualosebib/woo dnoolwapeoe//:sdyy woly papeojumoq

8 |

Table 3: Execution times (seconds) using different number of cores: faidx command. Highlighted are fastest time and number of times

GigaScience, 2023, Vol. 12, No. 1

faster than sequential BigSeqKit

1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes)
D,
samtools 86.2 [1.03x] - - - — _ _ _ _
pyfastx 109.2 [0.81x] - - - - _ - _ _
seqkit 754 [1.17x] - - - — _ _ _ _
BigSegKit 88.4 46.0 35.3 26.3 19.4 16.3 [5.4x] 13.6 12.3 [7.2x] 12.5
D,
samtools 165.6 [1.06x] - - - — _ _ _ _
pyfastx 177.9 [0.99x] - - - - _ - _ _
BigSeqKit 175.9 90.8 67.4 50.3 39.1 31.4 [5.6x] 23.4 19.1 15.5 [11.3x]
D3
samtools 210.0 [0.77 x] - - - _ _ _ _ _
pyfastx 131.2 [1.23x] - - - - - _ _ _
seqkit 131.8 [1.23x] - - - - - - - _
BigSeqKit 161.9 83.9 61.7 245 17.5 15.7 [10.3x] 13.6 13.4 [12.1x] 14.7
Dy
samtools 538.4 [1.27x] - - - _ _ _ _ _
pyfastx 615.5[1.11x] - - - - - - - _
BigSeqKit 684.2 346.6 175.2 90.3 45.4 29.3[23.3x] 19.6 15.3 12.5 [54.7 x]
Ds
samtools 771.0 [1.08x] - - - — _ _ _ _
pyfastx 634.3 [1.31x] - - - - - - — _
seqkit 1,096.2 [0.76x] - - - - - - - _
BigSeqKit 829.8 361.3 179.4 89.3 49.4 30.3 [27.4x] 23.6 19.3 16.5 [50.3x]
D¢
samtools 7,651.6 [1.14x] - - - - - - - _
pyfastx 7,712.5 [1.13x] - - - - - - — _
BigSeqKit 8,712.3 4,423.3 2,282.2 1,191.9 640.2 350.4 [24.9x] 129.5 85.3 60.5 [144x]

Table 4: Execution times (seconds) using different number of cores: locate command. Highlighted are fastest time and number of times

faster than sequential BigSeqKit

1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes)

D,

pyfastx 11,523.5 [1.0x] - - - - - - - -

seqkit 12,822.9 6,385.0 3,210.9 1,731.4 940.5 612.4 [18.8x] - - -

BigSeqKit 11,486.2 6,286.1 3,180.0 1,637.3 850.9 470.6 [24.4x] 264.6 156.9 110.3 [104.1x]
D>

pyfastx 8,841.2 [1.2x] - - - - - - - -

seqkit 12,319.8 6,909.4 3,335.9 1,746.2 997.3 971.2 [10.5x] - - -

BigSeqKit 10,168.6 5,264.5 2,711.5 14122 8146 5454 [18.6x] 384.7 2935 234.9 [43.3x]
D3

pyfastx 13,075.3 [1.1x] - - - - - - - -

seqkit 14,281.6 8,161.7 5,009.6 3,184.1 1,832.4 1,054.9 [14.1x] - - -

BigSeqKit 14,834.2 8,223.3 4,572.8 2,585.6 1,494.6 872.1[17.0x] 532.8 365.9 262.5 [56.5x]
Dy

pyfastx 30,028.3 [1.05x] - - - - - - - -

seqkit 39,640.5 21,257.6 10,803.1 57151 3,369.7 2,795.2 [11.3x] - - -

BigSegKit 31,615.2 16,832.1 8,531.9 44333 24668 1,609.9 [19.6x] 1,074.7 794.6 633.5 [49.9x]
Ds

pyfastx 27,876.5 [1.06x] - - - - - - - -

seqkit 31,301.8 16,884.7 9,141.1 4,698.4 29718 2,802.9[10.5%] - - -

BigSeqKit 29,540.7 15,431.3 8,120.2 4,401.4 2,4545 1,443.9[20.5x] 908.1 599.5 440.9 [67 x]
D¢

pyfastx 270,214 [1.02x] - - - - - - - -

seqkit Out of Mem. Out of Mem. Outof Mem. 40,122 23,075 18,309 [15.0x] - - -

BigSeqKit 275,680 141,095 72,110 37,140 19,810 11,477 [24.0x] 7,003 4,422 3,080 [89.5x]

£z0z Joquisydag Lo uo 1sanb Aq gg6££z//Z90peIB/e0ousioselib/Se0L 01 /Iop/a1one/eousiosebib/woo dno oiwspese//:sdiy wolj papeojumoq

BigSegqKit | 9

Table 5: Execution times (seconds) using different number of cores: replace command. Highlighted are fastest time and number of
times faster than sequential BigSeqKit

1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes)
D1
seqkit 132.4 [1.02x] - - - - - - - -
BigSegKit 134.5 69.5 36.1 25.0 18.7 12.7 [10.6x] 13.1 13.6 12.5 [10.8x]
D,
seqkit 395.7 [1.04x] - - - - - - - -
BigSeqKit 410.6 213.5 110.1 74.5 56.9 29.7 [13.8x] 16.8 13.9 13.5 [30.4x]
D3
seqkit 410.5 [0.99x%] - - - - - - - -
BigSegKit 406.7 209.5 109.4 74.0 56.1 29.5[13.8x] 15.3 13.6 12.9 [31.5x]
Dy
seqkit 543.7 [1.05x] - - - - - - - -
BigSeqKit 570.3 293.5 109.4 74.0 55.1 29.4 [19.4x] 20.3 13.5 12.5 [45.6x]
Ds
seqkit 1,572.1 [1.03x] - - - - - - - -
BigSegKit 1,621.7 819.9 420.1 217.2 115.1 62.9 [25.8x] 37.2 24.2 18.5 [87.7 x]
Ds
seqkit 8,980.8 [1.07x] - - - - - - - -
BigSeqKit 9,620.8 5,000.3 2,605.2 1,364.2 717.7 387.5 [24.8x] 142.1 90.5 60.2 [159.8x]

Table 6: Execution times (seconds) using different number of cores: rmdup command. Highlighted are fastest time and number of times
faster than sequential BigSeqKit

1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes)
Dy
seqkit 178.9 [1.01x] - - - - - - - -
BigSeqKit 180.5 943 50.2 35.1 27.1 15.8 [11.4x] 14.8 14.4 13.8 [13.1x]
D,
seqkit 320.6 [1.04x] - - - - - - - -
BigSegKit 333.3 174.7 93.5 65.9 49.9 26.5 [12.6x] 15.9 14.1 [23.6x] 15.0
D3
seqkit 515.5 [0.91x] - - - - - - - -
BigSegKit 469.5 246.7 182.7 127.5 96.1 51.4[9.1x] 27.4 20.9 20.6 [22.8x]
Dy
seqkit 729.9 [0.99x] - - - - - - - -
BigSeqKit 720.5 378.5 197.5 139.7 102.9 54.0 [13.3x] 30.5 16.4 14.1 [51.1x]
Ds
seqkit 2,173.6 [0.97x] - - - - - - - -
BigSegKit 2,100.2 1,110.4 612.3 341.2 195.1 115.2 [18.2x] 70.5 43.2 28.1[74.7x]
Ds
seqkit 9,937.1 [1.11x] - - - - - - - -
BigSeqKit 11,022.3 5,578.5 3,006.7 1,709.6 1,004.1 600.1 [18.4x] 275.2 241.6 228.8 [48.2x]
Regarding the experimental results, BigSegKit clearly outper- As future work, we plan to add also the remainder seqkit com-
forms seqkit, pyfastx, and samtools for all the tasks considered. On mands not included in the current version of BigSeqKit: s1iding,
a single server, BigSeqKit is overall tens of times faster than those sana, fx2tab, tab2fx, convert, amplicon, fish, split, split2,
state-of-the-art tools, reaching speedups with respect to the BigSe- restart, and mutate. Note that all of them are independent rou-
gKit sequential time up to 27.7x. Considering an 8-node cluster, tines, so their implementation using IgnisHPC will be straightfor-

BigSeqKit is even faster, reaching speedups higher than 160x. It ward.
means that most of the tasks can be performed in just a few sec-
onds. For instance, our toolkit effectively reduces the execution . ere
time of the locate command on our largest dataset from 3 days Avall.ablhty of Source Code and

to a mere 0.8 hours. It is important to highlight that seqkit and Requirements

samtools were unable to process that dataset with some routines Project name: BigSegKit

due to memory issues, which confirms that current state-of-the-

art tools are not well fitted for processing very large files. ® Project homepage: https://github.com/citiususc/BigSegKit

£z0z Joquisydag Lo uo 1sanb Aq gg6££z//Z90peIB/e0ousioselib/Se0L 01 /Iop/a1one/eousiosebib/woo dno oiwspese//:sdiy wolj papeojumoq

https://github.com/citiususc/BigSeqKit

10 | GigaScience, 2023, Vol. 12, No. 1

Table 7: Execution times (seconds) using different number of cores: sample command. Highlighted are fastest time and number of times

faster than sequential BigSeqKit

1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes)

D1

pyfastx 308.2 [0.67 x] - - - - - - - _

seqkit 196.1 [1.05x%] - - - - - - - _

BigSeqKit 205.7 108.2 57.8 36.4 27.1 17.3 [11.9x] 15.1 15.4 14.1 [14.6x]
D,

pyfastx 458.7 [1.12x] - - - - _ - _ _

seqkit 492.4 [1.04x] - - - - - - - —

BigSeqKit 514.5 271.7 143.8 98.1 76.1 42.2 [12.2x] 36.1 30.1 26.4 [19.5x]
Ds

pyfastx 450.2 [0.88x] - - - - - - - _

seqkit 491.7 [0.80x] - - - - - - - _

BigSeqKit 394.3 207.8 105.2 70.5 52.7 26.1[15.1x] 22.1 19.2 14.3 [27.6x]
Dy

pyfastx 1,929.1 [0.99x] - - - - - - _ _

seqkit 1,996.7 [0.96 x| - - - - - - - -

BigSeqKit 1,912.8 1,000.5 529.3 365.8 283.4 156.3 [12.2x] 90.4 56.2 36.5 [52.4x]
Ds

pyfastx 1,567.7 [0.71x] - - - - - _ _ _

seqkit 1,057 [1.06x] - - - - _ _ _ _

BigSeqKit 1,121.5 572.3 299.4 164.2 91.3 52.4 [21.4x] 33.6 25.1 22.5 [49.8x]
D¢

pyfastx 9,507.7 [1.16x] - - - - - - _ _

seqkit 9,550 [1.16] - - - - - - - -

BigSeqKit 11,070.2 5,539.5 2,812.3 1,543.6 876.2 515.9 [21.5x] 202 143.2 109.5 [101.1x]

Table 8: Execution times (seconds) using different number of cores: seq command. Highlighted are fastest time and number of times

faster than sequential BigSeqKit

1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes)

D1

pyfastx 151.8 [0.56x] - - - - - - _ _

seqkit 234.4[0.36x] - - - - - - - _

BigSeqKit 84.4 435 225 11.6 6.3 4.8[17.6x] 47 3.7 3.5 [24.1x]
D,

pyfastx 209.4 [1.15x] - - - - - - - _

seqkit 234.0 [1.03x] - - - - - - — _

BigSeqKit 240.9 1285 65.0 346 19.5 10.7 [22.5x] 6.1 43 4.0 [60.2x]
D3

pyfastx 400.5 [0.90x] - - - - - - — _

seqkit 541.2 [0.67 x] - - - - - - - _

BigSeqKit 360.2 182.7 93.4 48.1 27.1 20.2 [17.8x] 8.6 5.1 [65.5x] 55
Dy

pyfastx 901.2 [1.13x] - - - - - - - _

seqkit 981.7 [1.03x] - - - - - - — _

BigSeqKit 1,014.7 508.8 257.1 129.1 66.3 36.6 [27.7x] 22.5 15.2 10.6 [95.7 x]
Ds

pyfastx 1,051.4 [0.94x] - - - — _ _ _ _

seqkit 1,165.5 [0.85x] - - - - - - — _

BigSeqKit 987.6 500.2 259.1 135.9 73.6 41.5[23.8x] 26.1 17.9 16.2 [60.9x]
Ds

pyfastx 7,657.6 [1.23x] - - - . _ _ _ _

seqkit 9,080.5 [1.04x] - - - - - - - -

BigSeqKit 9,420.3 4,712.1 2,400.3 1,323.4 755.5 430.3 [21.9x%] 110.3 70.2 55.5 [169.7 x]

£z0z Joquisydag Lo uo 1sanb Aq gg6££z//Z90peIB/e0ousioselib/Se0L 01 /Iop/a1one/eousiosebib/woo dno oiwspese//:sdiy wolj papeojumoq

BigSegKit | 11

Table 9: Execution times (seconds) using different number of cores: sort command. Highlighted are fastest time and number of times

faster than sequential BigSeqKit

1 2 4 8 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes)
samtools 1,590.3 [0.10x] - - - - - - -
seqkit 169.0 [0.97x] - - - - - - _
BigSeqKit 164.4 86.2 46.2 335 242 14.5 [11.3x] 13.8 13.5 12.9 [12.7x]
samtools 1,672.5 [0.25x] - - - - - - _
seqkit 1,050.5 [0.40x] - - - - - - -
BigSeqKit 422.8 221.6 117.6 81.7 62.1 34.9 [12.1x] 215 15.8 13.2 [32.0x]
samtools 1,203.5 [0.44x] - - - - - - -
seqkit 497.5 [1.05x] - - - - - - _
BigSeqKit 5238 2725 1442 100.7 776 43.2 [12.1x] 26.5 18.6 15.8 [33.1x]
samtools 3,835.1 [0.36x] - - - - - - _
seqkit 3,122.2 [0.44x] - - - - - - -
BigSeqKit 1,377.3 708.5 372.5 243.7 1715 94.6 [14.6x] 57.6 46.0 36.0 [38.3x]
samtools 1,899.6 [0.85x] - - - - - - -
seqkit 3,350.4 [0.48x] - - - - - - -
BigSeqKit 1,612.4 839.2 443.2 239.2 137.2 84.2 [19.1x] 53.4 40.2 39.2 [41.1x]
samtools Out of Mem. - - - - - - _
seqkit Out of Mem. - - - - - - -
BigSeqKit 18,309.6 9,439.6 4,899.2 2,592.8 1,444.4 839.7 [21.8x] 215.8 165.3 139.6 [131.1x]

® BiotoolsID: biotools:bigsegkit
® RRID: SCR_023592

® Operating system(s): Linux

® Programming language: Go

¢ Other requirements: IgnisHPC 2.2
® License: GNU GPL-3.0

Data Availability

The datasets supporting the results of this article are available as
follows: D; was obtained from the PacBio repository; Dy, D4, and
D¢ from the International Genome Sample Resource (accession
ids, SRR642648_1.filt, ERR4667750, and DRR002180_2) [27]; D3 from
Ensembl [28] (assembly accession id, GCA_000001405.20); and Ds
from UniProtKB—release 2022_03.

All supporting data and materials are available in the Giga-
Science GigaDB database [29].

Abbreviations

CLL: command-line interface; HPC: high-performance comput-
ing; JVM: Java Virtual Machine; NGS: next-generation sequencing;
MPS: massive parallel sequencing.

Competing Interests

The authors declare that they have no competing interests.

Funding

This work was supported by MICINN, Spain [PLEC2021-007662];
Xunta de Galicia, Spain [ED431G/08, ED431G-2019/04, ED431C

2018/19, and EDA431F 2020/08]; European Commission RIA—
H2020 [HPC-EUROPA3—INFRAIA-2016-1-730897]; and European
Regional Development Fund (ERDF).

Authors’ Contributions

C.P.. methodology, software development, conducted experiments,
and contributed to writing.

J.C.P.: conceptualization, methodology, supervision, writing, and
revision.

Acknowledgments

C.P. acknowledges the support of Marco Aldinucci (University of
Torino, Italy) and the computer resources provided by CINECA
(Italy) used in the preliminary tests. The authors also thank
CESGA (Galicia, Spain) for providing access to their supercomput-
ing facilities.

References

1. Ilumina. NovaSeq 6000 System. 2023. https://www.illumina.c
om/systems/sequencing-platforms/novaseq.html. Accessed 28
February 2023.

2. Pearson WR, Lipman DJ. Improved tools for biological sequence
comparison. Proc Natl Acad Sci U S A 1988;85(8):2444-8.

3. Cock PJ, Fields CJ, Goto N, et al. The Sanger FASTQ file format for
sequences with quality scores, and the Solexa/Illumina FASTQ
variants. Nucleic Acids Res 2010;38(6):1767-71.

4. Akalin A. Computational Genomics with R. Chapman and
Hall/CRC; 2020. https://compgenomr.github.io/book/fasta-and-
fastg-formats.html.

£z0z Joquisydag Lo uo 1sanb Aq gg6££z//Z90peIB/e0ousioselib/Se0L 01 /Iop/a1one/eousiosebib/woo dno oiwspese//:sdiy wolj papeojumoq

https://www.illumina.com/systems/sequencing-platforms/novaseq.html
https://compgenomr.github.io/book/fasta-and-fastq-formats.html

12

10.

11.

12.

13.

14.

15.

16.

| GigaScience, 2023, Vol. 12, No. 1

Anders S, Pyl PT, Huber W. HTSeq—a Python framework to
work with high-throughput sequencing data. Bioinformatics
2014;31(2):166-9.

Gordon A, Hannon G. FASTX-Toolkit: FASTQ/A short-reads pre-
processing tools. 2010. http://hannonlab.cshl.edu/fastx_toolkit.
Accessed 28 February 2023.

Droop AP. fgtools: an efficient software suite for modern FASTQ
file manipulation. Bioinformatics 2016;32(12):1883—4.

LiH. seqtk: toolkit for processing sequences in FASTA/Q formats.
2012. https://github.com/lh3/seqtk. Accessed 28 February 2023.
Cock PJ, Antao T, Chang JT, et al. Biopython: freely available
Python tools for computational molecular biology and bioinfor-
matics. Bioinformatics 2009;25(11):1422-3.

Danecek P, Bonfield JK, Liddle J, et al. Twelve years of SAMtools
and BCFtools. Gigascience 2021;10(2):giab008.

Shirley MD, Ma Z, Pedersen BS, et al. Efficient “pythonic” access
to FASTA files using pyfaidx. Peer] PrePrints. 2015. https://github
.com/mdshw5/pyfaidx/.

DulL,LiuQ, Fan Z, et al. Pyfastx: a robust Python package for fast
random access to sequences from plain and gzipped FASTA/Q
files. Brief Bioinform 2020;22(4). https://github.com/Imdu/pyfa
stx. Accessed 28 February 2023.

Shen W, Le S, Li Y, et al. SegKit: a cross-platform and
ultrafast toolkit for FASTA/Q file manipulation. PLoS One
2016;11(10):0163962.

Pineiro C, Martinez-Castano R, Pichel JC. Ignis: an efficient and
scalable multi-language Big Data framework. Future Generation
Comput Syst 2020;105:705-16.

Pineiro C, Pichel JC. A unified framework to improve the in-
teroperability between HPC and Big Data languages and pro-
gramming models. Future Generation Comput Syst 2022;134:
123-39.

Zaharia M, Chowdhury M, Franklin MJ, et al. Spark: cluster com-
puting with working sets. In: HotCloud. 2010. p. 10. https://spar
k.apache.org.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

SeqgKit—Ultrafast FASTA/Q kit—Usage and examples. https://bi
oinf.shenwei.me/seqkit/usage/. Accessed 28 February 2023.
Hindman B, Konwinski A, Zaharia M, et al. Mesos: a platform for
fine-grained resource sharing in the data center. In: Proceedings
of the 8th USENIX Conference on Networked Systems Design
and Implementation. Boston, USA; 2011:295-308.

HashiCorp. Nomad: workload orchestration made easy. https:
//www.nomadproject.io. Accessed 28 February 2023.

Yoo AB, Jette MA, Grondona M. Slurm: simple linux utility
for resource management. In: Workshop on Job Scheduling
Strategies for Parallel Processing. Seattle, USA: Springer; 2003:
44-60.

White T. Hadoop: The Definitive Guide. 4th ed. O'Reilly Media,
Inc.; 2015.

Pifieiro C, Pichel JC. IgnisHPC API. 2022. https://ignishpc.readthe
docs.io/en/latest/api.html. Accessed 28 February 2023.

Sanders P, Lamm S, Hiibschle-Schneider L, et al. Efficient par-
allel random sampling—vectorized, cache-efficient, and online.
ACM Trans Math Softw 2018;44(3):1-14.

Li X, Lu P, Schaeffer J, et al. On the versatility of parallel sorting
by regular sampling. Parallel Comput 1993;19:1079-1103.
Kurtzer GM, Sochat V, Bauer MW. Singularity: scientific contain-
ers for mobility of compute. PLoS ONE 2017;12(5):1-20.

CESGA (Galician Supercomputing Center)—Computing Infras-
tructures. https://www.cesga.es/en/infrastructures/computin
g/. Accessed 28 February 2023.

Fairley S, Lowy-Gallego E, Perry E, et al. The International
Genome Sample Resource (IGSR) collection of open human
genomic variation resources. Nucleic Acids Res 2019;48(D1):
D941-7.

Cunningham F, Allen JE, Allen J, et al. Ensembl 2022. Nucleic
Acids Res 2021;50(D1):D988-95.

Pifleiro C, Pichel JC. Supporting data for “BigSeqKit: A Parallel Big
Data Toolkit to Process FASTA and FASTQ Files at Scale.” Giga-
Science Database. 2023. http://dx.doi.org/10.5524/102409.

Received: March 7, 2023. Revised: May 25, 2023. Accepted: July 10, 2023
© The Author(s) 2023. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

£20z Jaquiaydag o uo 1sanb Aq 88655z //z290peIB/aousiosebib/ca0 L 0L /10p/a]o1ue/aoualosebib/woo dnoolwapeoe//:sdyy woly papeojumoq

http://hannonlab.cshl.edu/fastx_toolkit
https://github.com/lh3/seqtk
https://github.com/mdshw5/pyfaidx/
https://github.com/lmdu/pyfastx
https://spark.apache.org
https://bioinf.shenwei.me/seqkit/usage/
https://www.nomadproject.io
https://ignishpc.readthedocs.io/en/latest/api.html
https://www.cesga.es/en/infrastructures/computing/
http://dx.doi.org/10.5524/102409
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Background
	Methods
	How to Use BigSeqKit
	Experimental Results
	Conclusions
	Availability of Source Code and Requirements
	Data Availability
	Abbreviations
	Competing Interests
	Funding
	Authors Contributions
	Acknowledgments
	References

