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NANOSHEET FETs are currently considered one of the
preferred architectures for the next technology nodes [1].

Due to the expensive manufacture of new devices, other
solutions, such as technology-aided computer design (TCAD),
are needed to evaluate the impact of variability on future
transistors. However, the realistic simulation of these devices
is computationally demanding. Therefore, exploring new tech-
niques such as the Pelgrom-based predictive model [2] or
the application of machine learning techniques [3], [4], [5]
is essential.

We present a multi-layer perceptron (MLP) neural network
(NN) to estimate the impact of metal grain granularity (MGG),
one of the most harmful sources of variability [6], on the
threshold voltage (VTh) of a 12 nm gate length nanosheet (NS)
FET. The Si NSFET was previously calibrated in [7] against
the experimental device reported in [8]. The simulations were
carried out using VENDES [9] with the density-gradient
quantum-corrected drift-diffusion methodology, and the linear
extrapolation method [10] is used to extract the VTh.

MGG consists of the appearance of different metallic grain
orientations with different work functions (WF) during the gate
deposition process. To implement this source of variability,
we have generated random MGG profiles where the grains
are created with Poisson-Voronoi diagrams depending on the
average grain size (GS) [11]. The TiN metal gate has two grain
orientations with WF of 4.4/4.6 eV, and occurrence probabil-
ities of 40/60%, respectively. To have statistical significance
we generate around 900 profiles for each GS studied in this
work (3, 5, 7, 10 nm). Fig. 1 shows an scheme of a NSFET
affected by MGG, including its main design parameters. The
implementation of these realistic MGG profiles in the NN
training is the main novelty of this research, as previous works
generate synthetic profiles with fixed-size rectangular (3.92×3
nm2 [4]) or square grains (2 × 2 nm2 [5]). Note that, since
the GS depends on the annealing temperature and duration of
the gate deposition process [12], it is important to evaluate a
variety of GSs.

The MLP-NN was developed using Python 3.9, the Scikit-
learn 1.0.2 [13], and the PyTorch Lightning 1.9.0 library. Sev-
eral hyperparameters, such as the batch size (bs = 64), the ini-
tial learning rate (lr = 0.1), the number of neurons and hidden
layers, were calibrated to optimize the MLP performance using
the Ray Tune 2.2.0 library [14]. Fig. 2 shows the structure of
the MLP-NN, with an input layer corresponding to the number

of features of the MGG profile (Nxi
), two hidden layers with

234 and 44 neurons, and an output layer corresponding to
the VTh. ReLU is used as the activation function, the mean
square error (MSE) as the loss function, and an adaptative
lr scheduler to avoid divergence in the MSE minimization.
The stochastic gradient descent (SGD) optimization algorithm
with a momentum = 0.9 is implemented. The main issue of
using a realistic MGG profile (368 × 41 maps) is the huge
amount of features (Nxi

= 15088), a value much larger than
the sample size (Nsample = 3604), which causes problems in
training, since for a regression Nxi < Nsample. The sample
is split into three subsets (train, validation, test), being the
train size Ntrain = 2306. The principal component analysis
technique (PCA) is applied with a 95% threshold cut-off of
the cumulative variance, to determine the representative Nxi

value. With this methodology (see Fig. 3) the train dataset
features are reduced from Nxi

= 15088 to Nxi
= 700 making

Nxi
< Ntrain. The metrics used to evaluate the training

process are the coefficient of determination (R2) and the mean
absolute percentage error (MAPE), obtaining for the test
values a R2 = 0.977 and a MAPE = 1.36%. Fig. 4 shows the
comparison between predicted and simulated VTh test results.

The computational time (tcomp) to reduce the features
with PCA and train the MLP network is 14 min, with the
advantage of being usable for future predictions without any
extra computational cost. Considering that in an Intel Core
i9-10850K CPU 3.60 GHz processor each quantum corrected
drift-diffusion simulation takes 7.5 hours, decreasing Ntrain

will lead to a huge reduction in tcomp. Therefore, Fig. 5 shows
the effect, after PCA features reduction, of decreasing the
fraction of the training dataset from 1 (Ntrain = 2306) to
0.2 (Ntrain = 462). The performance metrics for a fraction
of 0.6 (Ntrain = 1384) are R2 = 0.972, MAPE = 1.56%,
very similar values to those of the complete dataset. Note that,
even for a fraction of 0.2, we still obtain a good accuracy
(R2 = 0.937, MAPE = 2.73%).

In conclusion, we presented an MLP-NN to estimate the
MGG-induced VTh variability on a 12 nm NSFET, with an
accuracy of R2 = 0.977. We demonstrated that this NN could
obtain an accuracy of R2 = 0.937/0.972 by using only the
20/60% of the training dataset, reducing the computational
time 5.0×/1.6× with respect to the total train dataset. Also,
once the NN is trained, it can accurately predict the impact of
realistic MGG variability on VTh with no further simulations.
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Figure 1: 12 nm gate length (Lg) nanosheet FET with MGG.
Regions: source (S), gate (G), and drain (D). Lsd and Nsd are
the length and doping of S and D. w and h are the channel
width and height. tox is the effective oxide thickness. The TiN
work functions (WF) are 4.4 eV (40%) and 4.6 eV (60%).
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Figure 2: Cumulative variance against the number of features
(Nxi ), with the data reduction process explained in the box.
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Figure 3: A multi-layer perceptron neural network with an
input layer, two hidden layers and an output layer. x1 to xn

(input) are the MGG features. VTh (output) is the threshold
voltage.
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Figure 4: Comparison between simulated TCAD threshold
voltage (VTh) and MLP predictions.
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Figure 5: The coefficient of determination (R2) and the mean
square percentage error (MAPE) as a function of the training
data size.
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