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Abstract. As the parallelism in high-performance supercomputers con-
tinues to grow, new programming models become necessary to maintain
programmer productivity at today’s levels. Dataflow is a promising exe-
cution model because it can represent parallelism at different granularity
levels and to dynamically adapt for efficient execution. The downside is
the low-level programming interface inherent to dataflow. We present
a strategy to translate programs written in Hierarchically Tiled Arrays
(HTA) to the dataflow API of Open Community Runtime (OCR) sys-
tem. The goal is to enable program development in a convenient notation
and at the same time take advantage of the benefits of a dataflow run-
time system. Using HTA produces more comprehensive codes than those
written using the dataflow runtime programming interface. Moreover,
the experiments show that, for applications with high asynchrony and
sparse data dependences, our implementation delivers superior perfor-
mance than OpenMP using parallel for loops.

Keywords: Parallel programming · Dataflow · High-level programming
abstraction · Parallel algorithm.

1 Introduction

Over the last decade, the pursuit of system performance has moved from in-
creasing processor frequency to increasing the number of processing cores so
that today’s supercomputers can contain millions of cores [24]. This number is
likely to increase significantly as we move to exascale systems. New notations will
be necessary for these future systems to keep the complexity of parallel program-
ming at a manageable level. Such notations will rely on runtime systems [10] that
create a simplified machine model and can better deal with applications whose
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performances depend on various dynamic decisions, such as scheduling and data
movements.

Dataflow is a promising model for runtime systems. In a conceptually simple
notation, it captures multiple levels of parallelism needed for efficient execution
on exascale systems. It uses task graphs where tasks (i.e. sequential code seg-
ments) are represented by nodes and can be scheduled to execute as soon as
their incoming data dependences (represented by the graph edges) are satisfied.
Compared with conventional models which rely on programmers use of control
dependences, a dataflow model utilizes inherent parallelism in programs natu-
rally. Although implementations of such model [20, 4, 17, 16, 15, 6, 2] have shown
great potential for exploiting parallelism, many of them lack high-level program-
ming abstractions to attract programmers. To program using a native dataflow
notation is a daunting task, because its programming style is unfamiliar and the
learning curve is steep. Moreover, even when one learns to program in this way,
the resulting codes could contain numerous dependence edges and lack structure,
making these codes difficult to debug and maintain.

In this paper, we propose using Hierarchically Tiled Arrays (HTA) [1, 5, 11,
12] as high-level abstractions to exploit the benefits provided by dataflow run-
time systems, while helping productivity with a familiar programming interface
for those trained to program in conventional notations. We implemented a fully
functional HTA library on top of the dataflow-based Open Community Run-
time (OCR) [8, 17], and show through experiments that our design preserves the
benefits of OCR while removing the need to program in the task graph notation.

The remainder is organized as follows. Section 2 gives an overview of the
programming model HTA and OCR, the dataflow runtime system of our choice.
Section 3 describes the design and implementation of HTA as a library on top of
OCR (HTA-OCR). Section 4 presents the performance evaluation of our HTA
implementation using various benchmark applications. The related work is de-
scribed in Section 5. Finally, the conclusions are presented in Section 6.

2 Background

2.1 Overview of Hierarchically Tiled Arrays

An HTA program can be conceived as a sequential program containing oper-
ations on tiled arrays or sub-arrays. With HTA, programmers express parallel
computations as tiled array operations. Because tiles are a first class object, the
HTA notation facilitates the control of locality, which is of great importance
today and will be even more so for future exascale systems.

By expressing computations in terms of high-level tiled array operations, pro-
grammers can focus on designing algorithms for maximal parallelism and better
data locality and leave the mapping to the target machine and runtime system,
including synchronization operations, to the HTA implementation which, for the
one reported here, took the form of a library.

In HTA, programmers explicitly express parallelism by choosing the tiling
(i.e. partitioning a flat array into tiles) of arrays. Multilevel tiling can be used,
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1 HTA A(2, /* dimension */
2 2, /* levels */
3 Tuple(N, N), /*flat array size*/
4 Tuple(X, X)); /* tiling */
5 HTA B(A.shape()), C(A.shape());
6 A.init(RANDOM); B.init(RANDOM); C.init(RANDOM);
7 for(k = 0; k < X; k++) {
8 for(i = 0; i < X; i++) {
9 C(i,{0:X-1}) += A(i,k) * B(k,{0:X-1}); }}

Listing 1: Example of tiled matrix-matrix multiplication in HTA.

and each level can be tiled for different purposes. For example, there can be
a top-level tiling for coarse-grain parallelism, a second-level tiling for fine-grain
parallelism, and a third level for data locality in the cache.

An example of an HTA program in C++-like syntax is given in Listing 1.
The code first constructs three HTAs, A, B and C. Each of them is an N×N array
partitioned into X×X tiles. A, B and C are initialized, and then a two-level nested
for loop performs tiled matrix-matrix multiplication. The parenthesis operator
represent tile accesses and the curly braces represent array range selections.
For instance, C(i,{0:X-1}) selects the ith row of tiles in C. The operator *
performs a matrix multiplication of two tiles. In this code segment, the creation,
initialization, multiplication and addition assignment are HTA operations, and
the control loops are sequential statements. There are plenty of parallelization
opportunities, but the exact way is hidden from the user in the HTA library
implementation of operations and memory access.

It has been shown [5] that HTA programs are expressive and concise. It is
particularly convenient to parallelize an existing sequential program by replacing
parallelizable computations such as for loops with operations on tiled arrays.
Even without existing sequential code, using HTA facilitates building parallel
applications from scratch. HTA programs are also more portable, since they are
written in high-level abstractions without machine dependent details.

2.2 Overview of Open Community Runtime

Open Community Runtime (OCR) is a product of the X-Stack Traleika Glacier
project [18] funded by Department of Energy of the US government. Its goal is
to provide a task-based execution model for future exascale machines through
software and hardware co-design.

In OCR, computations are represented as directed acyclic graphs where nodes
are event driven tasks (EDTs, called simply tasks hereafter) that operate on relo-
catable data. The OCR API provides functions to create objects including tasks,
events, and data blocks. Tasks represent computation, data blocks represent data
used or produced in the computation, and events are used to describe either data
or control dependences between tasks.

The execution of OCR tasks is dictated by events. Tasks are not scheduled
for execution immediately after their creation. Instead, at creation, an OCR
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task is placed in a queue, and the runtime system keeps track of its incoming
dependences. When all the incoming dependences of an OCR task are satisfied,
the task becomes ready and the runtime system can schedule it for execution.
Tasks run to completion without ever being blocked, since all the data needed
for the computation is available when they are scheduled.

Since task execution depends only on data blocks passed to tasks and not
on data in the call stack or global heap objects, OCR runtime system can freely
relocate tasks, as long as the data blocks needed can be accessed at the place of
execution. The fact that both tasks and data blocks are relocatable makes it pos-
sible for the runtime system to make dynamic scheduling decisions for workload
distribution, energy saving, and various other optimizations. This saves applica-
tion programmers from having to optimize application code with machine specific
details. However, to program directly using the OCR programming interface, one
has to formulate computations as a dataflow task graph. It is a verbose way of
programming since every task and dependence have to be explicitly specified. It
is also difficult to maintain and debug code written in such fashion. In the next
section, we explain how this weakness can be overcome by bridging the gap with
HTA.

3 Design and Implementation of HTA-OCR

In this section, we describe the main ideas behind our HTA library implemented
on top of OCR. We call this library HTA-OCR. Our goal is to take advantage
of both the programmability of HTA and the performance benefits of OCR’s
dependence-driven execution. Interested readers can find more details in [26].

3.1 Program Execution

An HTA-OCR program starts with a master task which executes the program se-
quentially except for HTA operations that are typically executed in parallel. The
library routine implementing an HTA operation analyzes the operands (HTA
tiles) and determines the data dependences (if any) of the subtasks performing
operation. Then, the routine invokes OCR routines to create the subtasks and
specifies their dependences in the form of OCR events. If it does not depend on
the results of the subtasks, the master task then continues executing subsequent
statements of the HTA program without waiting for the subtasks to complete,
possibly overlapping execution with the subtasks.

Figure 1 shows a two-statement code segment and its dataflow task execu-
tion. The program operates on three 1-D HTAs, each containing tiles. The first
statement assigns the content of B tiles to the corresponding tiles of A. The sec-
ond performs another assignment from the tiles of A to those of C. Obviously,
there are flow dependences between the two statements. The right-hand side
of the figure, shows the dynamically constructed task graph. The master task
is represented as a thick blue arrow to show that its execution typically spans
longer than other subtasks, represented as circles. The dotted blue thin arrows
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Fig. 1: HTA-OCR task graphs of assignment operations. The thick blue arrow
represents the master task execution; The blue circles represent subtasks; The
dotted blue thin arrows represent subtask creations; The orange thin arrows
represent the data dependences between tasks.

represent subtask creations, and the orange thin arrows represent the data de-
pendences between tasks. When the master task executes the first statement,
three subtasks are spawned and each copies one tile of B to the correspond-
ing tile of A. Next, three more subtasks are spawned for the second statement.
The second group of subtasks have incoming data dependences (the continuous
arrows) from the first group due to the flow dependences on the tiles of A.

OCR shared memory implementation manages multiple worker threads upon
which tasks can be scheduled. As soon as the incoming dependences of a subtask
are satisfied, it is ready and can be scheduled for execution. The worker threads
use a work-stealing scheduling algorithm so that tasks can be stolen by other
threads for load balancing. To best utilize computing resources, the program
should generate abundant subtasks that have sparse dependence edges among
them, so that there is a higher probability of having numerous ready tasks to be
scheduled at any given time.

3.2 Data Dependences

In the execution style described above, parallel tasks spawn dynamically with
their dependences discovered by the master task examining and updating access
record of HTA tiles. Non-HTA variables of global scope are always assigned
in the master task. On the other hand, HTAs are only assigned in subtasks.
Considering the two types of variables, data dependences exist whenever, in
program order, a location is first written and then read or written, or is first
read and then written. Four different cases exist:
1. The assignment to an HTA tile depends on some non-HTA variable accessed

previously by the master task.
2. The assignment to a non-HTA variable depends on some non-HTA variable

accessed previously by the master task.
3. The assignment to a non-HTA variable depends on some HTA accessed by

a previous HTA operation.
4. The assignment to an HTA tile depends on some HTA accessed by a previous

HTA operation.
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In Case 1, the data dependence is resolved automatically, since the master
task would have evaluated the non-HTA variable at the spawning point of the
subtask to compute the HTA. Thus, the variable can be passed by value into the
subtask. Similarly, in Case 2, the data dependence is guaranteed to be resolved
because non-HTA variables are always evaluated by the master task in program
order. In Case 3, the non-HTA variable assignment has data dependence on the
completion of subtasks. Since in OCR, block-waiting for tasks is not supported,
we implemented a split-phase continuation mechanism, explained in 3.3. In Case
4, the new subtasks must wait for the results of previous subtasks, and therefore
data dependence arcs must be created. For this case, we developed a tile-based
dependence tracking mechanism which utilizes access record of HTA tiles to
ensure that tasks using the same HTAs always access them in the correct order
respecting the data dependences.

3.3 Split-phase Continuation

During program execution, the master task sometimes must wait for the results
of a subtask. When it discovers incoming dependences from subtasks, it creates a
new continuation task which is a clone of itself, and passes the original program
context (including the program stack, the register file, and the program counter)
to the clone, along with a list of new dependence events. As a result, the runtime
system will only schedule the continuation task after both the original master
task completes and the new incoming data dependences are satisfied. When it
starts, it restores the program context and then continues the execution with
new inputs.

Fig. 2: Split-phase continuation. The thick blue arrow representing the master
task execution which splits into two phases due to the new dependences on the
reduction results. The continuation resumes executing the main program when
it receives the reduction results.

Consider a reduction on a 1-D HTA of three tiles, illustrated in Figure 2.
The master task (Phase 1) spawns three subtasks and each sequentially performs
reduction on its assigned tile to get a single scalar value. Since the number of
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subtasks is small, the three scalar values are sent directly to the continuation
task (Phase 2) to be reduced to the final result. If the number of leaf tiles are
large, a parallel tree reduction can be used.

4 Experiments

Source Benchmark

Hand-coded Cholesky

Teraflux [9] Sparse LU

NAS Parallel Benchmarks [3] EP, IS, LU, FT, MG, CG

Table 1: List of benchmarks.

We evaluate our HTA-OCR shared memory implementation using several
benchmarks listed in Table 1. The baseline are OpenMP versions of these pro-
grams that use parallel loops as the only parallel construct. We use this baseline in
two ways. First, for the first two benchmarks in Table 1, the baseline implemen-
tation helps us assess the benefit of overlapping subtasks from different vector
assignments which are implemented as separate parallel loops in the OpenMP
versions. Since OpenMP parallel loops execute a barrier at the end, this overlap
is not possible in OpenMP and therefore the overlap is the reason for perfor-
mance advantage of the HTA version. Second, for the NAS Parallel Benchmarks,
the OpenMP implementation helps us evaluate the efficiency of our implemen-
tation. Because in the NAS Parallel Benchmarks the overlapping of subtasks
from different array operations is very limited, and therefore differences in per-
formance between the HTA-OCR and the OpenMP versions is efficiency of the
implementation. The experiments are on a single-node with four Intel Xeon E7-
4860 processors, each has ten cores. We use up to forty worker threads so that
each thread binds to a dedicated core without hyperthreading. Our purpose is
to compare the execution models, so we timed major computation and excluded
initial setup.

4.1 Tiled Dense Cholesky Factorization

Cholesky factorization takes as input a Hermitian positive-definite matrix and
decomposes it into a lower triangular matrix and its conjugate transpose. We
use a tiled Cholesky fan-out algorithm. Intel MKL sequential kernels are used
for tile-by-tile multiplication and tile triangular decomposition. The OpenMP
version (Listing 2) factorizes a diagonal tile (Line 3), and uses the result to
update the tiles of the same column in the lower triangular matrix (Line 5-
6). The submatrix tiles in the lower triangular matrix are then updated using
the results of the column tiles as input (Line 9-12). The updates in different
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1 for(int k = 0; k < n; k++) {
2 int numGEMMS = (n-k)*(n-k-1)/2;
3 POTRF(&A[k*n+k]);
4 #pragma omp parallel for schedule(dynamic , 1)
5 for(int i = k+1; i < n; i++)
6 TRSM(&A[i*n+k], &A[k*n+k]);
7 #pragma omp parallel for schedule(dynamic , 1)
8 for(int x = 0; x < numGEMMS; x++) {
9 int i, j;

10 GET_I_J(x, k+1, n, &i, &j);
11 if(i == j) SYRK(&A[j*n+j], &A[j*n+k]);
12 else GEMM(&A[i*n+j], &A[i*n+k], &A[j*n+k]);}}

Listing 2: Tiled dense Cholesky factorization in OpenMP.

1 for(int k = 0; k < n; k++) {
2 map(POTRF , A(k, k));
3 map(TRSM , A({k+1:n-1}, k), A(k, k));
4 for(int j = k+1; j < n; j++) {
5 map(SYRK , A(j, j), A(j, k));
6 map(GEMM , A({j+1:n-1},j),A({j+1:n-1},k),A(j,k));}}

Listing 3: Tiled dense Cholesky factorization in HTA-OCR.
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Fig. 3: Tiled dense Cholesky factorization results.

parallel for loops have an implicit barrier in-between, and a k loop iteration
blocks before all updates of the previous loop iteration complete. The HTA-
OCR version (Listing 3) has a similar program structure, but it replaces the
parallel for loops with the map() operations and array range selection, resulting in
more concise code. During execution, the master task discovers dependences and
constructs task graphs dynamically. No implicit global synchronization barriers
are necessary.

In Figure 3, we use two different problem sizes with the same partition of
16× 16 tiles and plot the speedup over sequential execution under various num-
ber of worker threads. In both settings, the task granularity is large, and the
curves are similar. The HTA-OCR version has better speedup overall and scales
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better. It is about 1.5× faster at higher thread counts. As mentioned above, its
advantage comes from eliminating the barriers which allows not only the tasks
in the two different inner loops but also in the different outermost loop iterations
to overlap. In contrast, implicit global synchronization barriers in the OpenMP
version prevent task executions from overlapping even when required input data
is ready, resulting in lower compute resource utilization.

4.2 Tiled Sparse LU Factorization

LU factorization converts a matrix A into the product of a lower triangular
matrix L and an upper triangular matrix U. Adapted from the sparse LU code
in Teraflux project [9], Listing 4 shows the HTA-OCR implementation. An outer
k loop contains four steps:

1. At Line 2, DIAG factors the diagonal tile A(k,k) into the lower triangular
part A(k,k).lt and the upper triangular part A(k,k).ut.

2. At Line 3, ROW_UPDATE solves X for the equation A(k,j)=A(k,k).lt*X for
j = k+1 to n-1.

3. At Line 4, COL_UPDATE solves X for for the equation A(i,k)=X*A(k,k).ut for
i = k+1 to n-1.

4. At Line 5-8, SM_UPDATE updates each tile in the submatrix
A(i,j)-=A(i,k)*A(k,j) if neither of A(i,k) and A(k,j) is all-zero.

1 for (k=0; k<n; k++) {
2 map(DIAG ,A(k,k));
3 map(ROW_UPDATE ,A(k,{k+1:n-1}),A(k,k));
4 map(COL_UPDATE ,A({k+1:n-1},k),A(k,k));
5 for(i=k+1; i<n; i++)
6 if (A(i,k) != NULL)
7 for (j=k+1; j<n; j++)
8 if (A(k,j)!= NULL) map(SM_UPDATE ,A(i,j),A(i,k),A(k,j));}

Listing 4: Parallel tiled sparse LU factorization in HTA-OCR.

The operations within a step are fully independent, but data dependences
exist between different steps. There are also dependences across iterations of the
k loop. The HTA-OCR library can dynamically construct a dataflow task graph
by discovering the data dependences without user explicitly stating the depen-
dences. Compared with Cholesky factorization in Section 4.1, the computation
graph of LU factorization can be more complex, but the sparseness eliminates
some nodes and dependence edges that would exist for the dense case. The
OpenMP version uses a parallel for loop for each step and relies on implicit
global barriers for the correctness.

The results of two problem sizes are shown in Figure 4, both with 16×16 tiles
and tile sizes are 100 × 100 and 200 × 200 respectively. Similar to the results of
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Fig. 4: Tiled sparse LU factorization results.

tiled Cholesky factorization in Section 4.1, the HTA-OCR version shows greater
scalability. It is close to 2× faster under forty threads. The advantages come
from having no global barriers that may over-restrict task overlapping, just as
in Cholesky factorization.

4.3 NAS Parallel Benchmarks

NAS (Numerical Aerodynamic Simulation) Parallel Benchmarks [3] are created
by NASA for evaluating the performance of parallel supercomputers. We im-
plemented six of them in HTA-OCR and observed the strong scaling results of
class C as shown in Figure 5. We plot the ratio of the HTA-OCR execution
time over the OpenMP counterpart under the same number of threads. Most
of them have a workload consists of regular computations that can be evenly
divided easily and use global synchronizations. Because there is little opportu-
nity for overlapping the execution of subtasks from different HTA statements,
the main difference in performance between the HTA-OCR implementations and
their OpenMP counterparts is overhead of execution. As can be seen in Figure 5,
in practically all cases there is less than 20% difference in performance and in
some cases the HTA-OCR version is faster. We conclude that the performance
of our experimental HTA-OCR implementation is competitive with that of the
mature (an likely highly optimized) OpenMP library [13].

4.4 Summary of Experiments

For dense Cholesky factorization and sparse LU factorization, HTA-OCR shows
superior performance than OpenMP. While HTA-OCR program complexity is
similar to OpenMP, the dataflow runtime system can utilize CPUs effectively for
the abundant asynchronous subtasks and their sparse data dependences. In con-
trast, OpenMP implicit barriers restrict task overlapping and this results in bad
performance. Note that, if OpenMP Tasking is used instead of parallel loops, it
is possible to express the dataflow graph and execute in a data driven fashion. It
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Fig. 5: NAS Parallel Benchmark results (Class C).

would have comparable performance as HTA-OCR, but its code would be more
cumbersome, since explicit data dependence annotations are needed. For the
NAS Parallel Benchmarks, HTA-OCR shows decent results close to OpenMP.
In most cases, the performance difference is within 20%. The HTA-OCR perfor-
mance does not always surpass OpenMP, because the benchmarks mostly have
easily-balanced workloads and bulk-synchronous execution which are ideal for
OpenMP.

In all of our experiments, we present strong scaling results. The task man-
agement overhead (spawning, event satisfaction, scheduling, . . . , etc) in OCR is
significantly larger than the that of parallel loops in OpenMP. This makes HTA-
OCR performance more sensitive to task granularity. To achieve good parallel
efficiency, the task granularity has to be large enough to amortize the overhead.
However, in strong scaling, as we use more threads, we partition a fixed-sized
problem into more tiles and thus increasing task management overhead while
decreasing task granularity. Devoting more future efforts into improving task
overhead is crucial for the success of the dataflow runtime systems.

5 Related Work

OCR is based on the codelet model [14, 27]. This model incorporates some of the
ideas and advantages of the macro-dataflow models [23], where the granularity is
defined not at the instruction level but a coarser grain one, and also of the hybrid
dataflow/Von Neumman EARTH system [25]. Similarly, PaRSEC [6] is another
runtime system that adopts dataflow model for coarse-grain task executions.

The Concurrent Collection (CnC) model [7] is a high-level programming
model implemented upon both Habanero [21] and Intel Threading Building
Blocks [22], and it is inspired by dynamic dataflow.

Charm++ [15] is a programming paradigm that also adapts the dataflow
execution model for its runtime system design. Charm++ provides an object
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oriented programming interface, thus it might be more suitable for application
programmers to develop large parallel applications than OCR.

Based on the encouraging results of SMPSs [19], OpenMP Tasking was ex-
tended to support data dependent tasks. The expressible data dependences are
limited to tasks within the same parallel section. In comparison, HTA-OCR tasks
are not confined within parallel sections.

Legion [4] lets user write programs by decomposing application data into
logical regions and explicitly spawning asynchronous tasks that operate on the
regions. A software out-of-order processor dynamically infer data dependences.
In terms of programming abstraction, Legion is lower-level than HTA, as parallel
tasks are implicitly created in HTA.

6 Conclusions

This paper presents the design and implementation of the HTA programming
model for execution on top of a dataflow runtime. Our work is among the first
attempts to provide high-level programming abstractions upon dataflow run-
time systems. We propose a strategy to map HTA programs onto dataflow task
graphs, and we implemented the design as a fully functional HTA-OCR library
whose important mechanisms were also discussed in detail. While our work de-
scribes data dependences in parallel programs among array tiles, we believe that
our strategy can be extended to support other data structures, such as paral-
lel sets, to provide a general-purpose programming paradigm. For performance
evaluation, a variety of benchmarks were implemented using the HTA-OCR API
and the experiments were conducted. The results show great promises of using
HTA as programming abstractions upon dataflow runtime systems for its pro-
grammability and its ability to preserve the benefits from dataflow execution.
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