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Abstract—Perl is one of the most important programming
languages in many research areas. However, the most relevant Big
Data frameworks, Apache Hadoop, Apache Spark and Apache
Storm, do not support natively this language. To take advantage
of these Big Data engines Perl programmers should port their
applications to Java or Scala, which requires a huge effort,
or use utilities as Hadoop Streaming with the corresponding
degradation in the performance. For this reason we introduce
PERLDOOP2, a Big Data-oriented Perl-Java source-to-source
compiler. The compiler is able to generate Java code from Perl
applications for sequential execution, but also for running on
clusters taking advantage of Hadoop, Spark and Storm engines.
Perl programmers only need to tag the source code in order to
use the compiler. Experimental results demonstrate the benefits of
PERLDOOP2 in terms of ease of use, performance and scalability.

I. INTRODUCTION

We are living in the Big Data era. This data come from
all type of sources: sensors used to obtain information on the
climate, publications in social networks, blogs, digital images
and video, etc. One of the main characteristics of this amount
of information is the fact that, in many cases, is not struc-
tured. In order to process this information several frameworks
have been proposed. Nowadays the de-facto standards for
parallel processing of Big Data are Apache Hadoop [1] and
Apache Spark [2] engines. Hadoop follows the MapReduce
programming model [3], and it was implemented in Java. Even
though code developing in Hadoop is largely simplified with
its characteristics as the automatic input splitting, task schedul-
ing or fault tolerance mechanism, to write a Java MapRe-
duce program is not straightforward. Spark was designed to
overcome some of the Hadoop limitations, especially when
considering iterative jobs. It supports both in-memory and on-
disk computations in a fault tolerant manner by introducing
the idea of Resilient Distributed Datasets (RDDs). Apart from
running interactively using Python and Scala, Spark can also
be linked into applications in either Java, Scala, or Python.
Another important framework is Apache Storm [4], which is
focused on processing streaming data in real time. In this case,
Java is the only natively supported language.

On the other hand, users in several research areas are
not familiar with the languages supported by Hadoop, Spark
and Storm, especially Java and Scala. In Bioinformatics and
Natural Language Processing (NLP), for example, many appli-

cations were developed using the scripting language Perl. In-
terpreters are generally slow, which makes scripting languages
prohibitive for implementing large, data and CPU-intensive
applications. As a consequence, Big Data technologies fit in
a natural way as solution for processing huge amounts of
data in reasonable time. Nevertheless, porting Perl applications
to Java or Scala is a really difficult task as the differences
between both languages are huge. Hadoop gives an oppor-
tunity to Perl programmers in order to take advantage of
parallel systems providing an utility called Hadoop Streaming.
This tool allows to execute in parallel codes written in any
programming language. However, the ease of use provided
by Hadoop Streaming comes at the expense of important
degradations in the performance with respect to Java codes [5].
To overcome those problems we introduce PERLDOOP2, a Big
Data-oriented Perl-Java source-to-source compiler. The main
contributions of PERLDOOP2 are the following:

• To the best of our knowledge, it is the first working
source-to-source Perl-Java compiler. In addition, PERL-
DOOP2 is also the first effort towards a compiler that
automatically generates Big Data codes. In particular, it
is capable of producing Java code for Hadoop, Spark and
Storm frameworks.

• It is open-source (source code available at a public
repository1).

• No knowledge about Java is necessary. Users only need
to tag the Perl source code to assign a datatype when a
variable is declared.

• The supported Perl syntax is comprehensive enough to
compile applications from many scientific areas. Note
that the important differences between Perl and Java
make a direct and effective translation of the source code
impossible. In this way, the syntax of Perl is limited
to make the translation possible. If unsupported syntax
appears in the source code, PERLDOOP2 raises an error
including debugging information.

• PERLDOOP2 allows to use Java classes to replace non-
translatable Perl module dependencies.

• We must highlight that PERLDOOP2 Java codes obtain
similar performance results with respect to hand-coded
Java applications. In addition, we demonstrate the use-

1https://github.com/citiususc/perldoop2



fulness of our tool integrating into Hadoop and Spark
frameworks several natural language processing applica-
tions translated by PERLDOOP2. Good results in terms of
performance and scalability on a cluster were obtained.

The paper is structured as follows: Section II explains the
main difficulties to translate Perl code to Java, presents some
related work and discusses about the limitations of the first
version of PERLDOOP. Section III describes the PERLDOOP2
compiler in detail. In Section IV the tagging process is
described. Section V details the particularities of generating
Java code for Hadoop, Spark and Storm using PERLDOOP2.
Section VI shows the experimental results. Finally, the main
conclusions derived from this work are summarized.

II. BACKGROUND & RELATED WORK

A. Translating Perl to Java

In general, the automatic translation of a Perl script to
an equivalent Java source code is an almost impossible task
since differences between both languages are too large. Perl is
an interpreted programming language with a very permissive
syntax and with weakly typed variables. On the other hand,
Java is a pseudo-compiled language with a very strict syntax
and strongly typed variables.

Perl has a Turing-complete grammar [6], [7] which allows
almost total customization of its syntax through directives
and libraries. These customizations are carried out at runtime
which makes it impossible to predict the behavior of a Perl
script until it is executed. In this way, in order to make
the translation process possible, the Perl syntax has been
reduced to a context-free language recognizable by a Look-
Ahead LR (LALR) parser, which allows us to recognize the
procedural syntax of Perl (objects are not supported) without
any kind of personalization directive. PERLDOOP2 uses a Java
implementation of Lex and Yacc [8] to analyze the Java source
code and produce a Java compatible code.

Our approach to deal with the translation from a weakly
typed language (Perl) to a strong typed one (Java) requires to
tag the Perl source code including information about the type
of each declared variable. Note that the validation of types is
similar to the one used in Flow and TypeScript2 but the goal is
completely different. Flow and TypeScript include static type
annotations to increase the readability of JavaScript codes and
avoid type errors, while in our case types are necessary to
translate from Perl to Java. Other weakly typed languages like
PHP have been compiled to static languages (C++) [9], but
C++ is not type secure as Java which facilitates the translation.

There are a number of differences between Perl and Java
that must be taken into account when writing a compatible
Perl code with a Java translation:

• Variable declaration: It is mandatory to declare a variable
before using it for the first time.

• Variable type: Each variable has only one type and it
can not be changed. That is, if you declare a variable as

2https://flow.org, http://www.typescriptlang.org

Integer, it cannot store a String. Of course it is possible
to redeclare the variable in order to use a new type.

• Collection initialization: Collections must be initialized
before they can be used. In particular, collections can be
initialized as an empty collection, copying an existing
collection or with the return value from a function.

• Array Access: When accessing arrays, indexes should be
positive numbers with a value smaller than the size of
the collection. In the case of lists this restriction does not
apply.

• Boolean values: Perl does not have boolean values, which
can be assigned to variables. Values are converted into
boolean during the translation process instead. Constants
are replaced by ’true’ or ’false’ whereas the expressions
are evaluated by functions at runtime.

B. Language migration

As an approximation we can consider that our work deals
with the migration from Perl to Java API. In that field we
can find a related tool that automatically mines API mapping
(MAM) relations from Java to C# [10]. We must highlight
that translating Java to C# is much easier than translating Perl
to Java because in the first case both languages have similar
characteristics and only differ in their syntax. MAM does not
need any modification of the source code like PERLDOOP2
because Java and C# have similar datatypes and they can be
directly mapped.

In other work the author shows an example of the translation
of COBOL source code to Java using an automatic transla-
tor [11]. This tool was focused on modernizing a particular
system written in COBOL using a programming language
more modern and maintainable, so the tool is not for general
purpose as PERLDOOP2. In this case the source code is
known and fixed. However, both tools focus on adapting a
non-object-oriented source code to Java. It is worth noting
that a complete translation from COBOL to Java is possible
although due to the syntax it is a big challenge. However, the
complete translation from Perl to Java is impossible. Unlike
PERLDOOP2, this tool does not require modifying the source
code because COBOL is a low-level language and it has more
information than Java source code. For example, Java hides
and manages automatically several aspects such as memory
that in COBOL depend on the user. In our case Perl handles
the type of variables while Java does not, so it is impossible
to predict the types without including additional information.

C. Limitations of PERLDOOP1

PERLDOOP [12] (from now on PERLDOOP1) was proposed
by the authors in a previous work. This tool automatically
translates NLP Perl scripts prepared to be executed using
Hadoop Streaming into Hadoop-ready Java codes. NLP scripts
consist of many regular expressions. In this way, the tool
required a well defined structure and very little syntax of Perl
was supported. Although the usefulness of PERLDOOP1 was
demonstrated, it has important limitations.



First, PERLDOOP1 is not a compiler, it is just a transla-
tor. In addition, the tool only translates the section of the
source code which contains the regular expressions, while the
remainder code such as class and constructor declarations,
imports of libraries, auxiliary functions, among others, should
be implemented by a programmer as a Java template. As
a consequence, knowledge about Java is required to use
PERLDOOP1. Second, the Perl source code should be tagged in
order to facilitate the translation to Java. The tagging process
is sometimes confusing for the users as the number of labels
is high. And finally, there are strict rules of programming in
PERLDOOP1 that oblige to change certain aspects of the Perl
source code. For example:

• Ordered conditional blocks: it means that the conditional
expression should appear before the sentences to be
executed if the condition is fulfilled.

• Perform string concatenations always with the “.” opera-
tor.

• Restrict the access to array positions not previously
allocated.

• Users must use a different name for each variable.
• Expressions in control block must be a boolean, an integer

when accessing an array, and a string when considering
a hash.

All those limitations have been removed since PERLDOOP2
has been completely redesigned using compiler construction
techniques, which include the creation of a lexical and a
syntactic analyzer. Next we summarize the most important
differences and optimizations of PERLDOOP2 with respect to
PERLDOOP1:

1) Templates are not required anymore, all the code and
dependencies are generated by the PERLDOOP2 compiler.
Knowledge about programming in Java is not necessary.

2) Simplified and improved tagging process. The labels
needed has been reduced to the minimal.

3) All programming rules listed above are no longer re-
quired.

4) Automatic casting between defined data types without
labels.

5) Modular support allowing the translation of custom li-
braries and auxiliary functions.

6) Advanced error management that sorts and reports the
position and source of errors to the users.

7) Strict formatting of the output Java code, preserving the
comments of the original Perl source code.

III. THE PERLDOOP2 COMPILER

Compilation is the process of transforming a source code
into a binary program that can be executed by a computer.
During the process, optimizations are performed and the final
result may change depending on the architecture of the target
machine. The advantage of source-to-source compilation is
that the process is easier and the responsibility of making
binary code and apply optimizations rests with the target
source compiler. PERLDOOP2 is a Perl-Java source-to-source

Fig. 1. Phases of the compilation process in PERLDOOP2.

compiler, which has been implemented in Java. The compila-
tion process can be divided into the stages depicted in Figure
1. Next we describe them in more detail.

A. Lexer

The lexical analysis consists in converting a sequence of
characters into a sequence of tokens. PERLDOOP2 has two
types of tokens: Perl tokens and tag tokens. Perl tokens are all
tokens that can be found in a normal Perl script or application
(variables, functions, reserved words, etc.), while tag tokens
only exists in the PERLDOOP2 syntax. Tag tokens are written
within comments in the source code between < and > such
as <string> or <array>. A special case are comments.
Perl interpreter ignore them when a source code is analyzed
but we want to keep them in the destination Java code, so all
comments will be interpreted as tags to separate them from
Perl tokens.

Note that the lexical analyzer in PERLDOOP2 was imple-
mented using Jflex3, a Lex implementation for Java.

B. Tag Preprocessor

The goal of this stage is to convert a series of Perl tokens
into terminals. In this process tag tokens are stored in existing
terminals according to the following rules:

1) If tags are at the beginning of the line, tags will be stored
in all compatible terminals listed below until the end of
the sentence. For instance,

#<integer>
my $=2;

2) If tags are at the end of the line, tags will be stored in
all compatible terminals in the same line.

my ($x, #<integer>
$y); #<string>

3) If a tag is a comment, it will be stored in the last terminal
to preserve the position in the translated code. If there
is not a previous terminal, an empty terminal will be
created.

As a result of this process, the syntactic analysis is not
affected by the position of the tags and the parser grammar
reduces significantly its complexity.

3http://www.jflex.de



C. Parser

A parser or syntax analyzer is a software component that
takes terminals and builds a syntax tree. The parser is respon-
sible for validating the tokens in order to check if the syntax
is correct. There are various types of analyzers, ascending
and descending, as well as different types of grammars for
each of them. The parser in PERLDOOP2 was implemented
using BYACC/J4, a Yacc implementation for Java. In partic-
ular, PERLDOOP2 uses an ascending parser with a LALR(1)
grammar. This grammar allows to define fast analyzers and do
not consume as much memory as the LR counterpart. Perl has
an incredibly large syntax and, according to its documentation,
cannot be recognized by a parser. However, if we limit the
syntax in some cases, an LALR(1) grammar is more than
enough to accomplish this task.

A complete syntax tree is constructed to provide the maxi-
mum information as possible about the source code. In the
translation stage the syntax tree will be traversed to infer
the use of expressions and thus be able to address some of
Perl’s ambiguities. For example, when using the Perl function
print{}:
print {STDERR} "error"; # Case A (Pipe)
print {"key","value"}; # Case B (Hash)

In both cases the behavior of print{} is totally different.
In case A Perl interprets that it should print ”error” using the
standard error output, while in case B prints the reference to
a hash.

D. Translator

The translation stage is responsible for validating and gen-
erating Java source code for each node in the syntax tree
following a post-order path. The translation phase is divided
into two parts: semantic checking and code generation.

1) Semantic checking is responsible for assigning a type to
each node and validating if it meets the requirements to
generate Java code. For example, if the node is a variable,
it must check that the variable exists and then assign its
type to the node.

2) The code generator is responsible for generating Java
code. The code is created using the direct children of
the node and the type assigned in the semantic checking
phase. If the node to be analyzed is a terminal, the
generated code corresponds to the value of the stored Perl
token. In addition, if the terminal contains a comment, it
will be copied using the Java comment syntax.

E. Formatter

Finally, the formatter is responsible for making code human
readable. To deal with this PERLDOOP2 reformats the Java
source code to comply with Google Java Style. This process is
optional and can be omitted if the final code will be compiled
directly without user modification.

4http://byaccj.sourceforge.net

IV. TAGGING THE PERL SOURCE CODE

Perl codes must be tagged to be compatible with PERL-
DOOP2. As we have mentioned previously the tagging process
has been simplified and improved with respect to PERLDOOP1,
reducing the required labels to the minimal. Next we explain
the different types of existent tags and how they work.

A. Datatype tags

Perl variables do not have datatypes. For this reason it is
necessary to tag the source code in order to define their type.
There are three ways to declare the type of a variable:

1) In the line before the statement: datatype tags will affect
all variable declarations of the statement, that is, up to
the semicolon.

2) At the end of variable declaration: datatype tags only
affect variable declarations of this line.

3) Assigning a type before declaring: preceding a tag with
the name of a variable, it is possible to assign a type
before its declaration.

The basic datatypes supported by PERLDOOP2 are the
following: <boolean>, <integer>, <long>, <float>,
<double>, <number> (generic type to store any of the four
previous types), <string>, <file> and <box> (generic
type to store any type of scalar context ’$’).

Collection datatypes are <array>, <list> (used instead
of an array when the size is unknown), <hash> and <map>
(both define a collection accessed by a key). Collections must
be initialized assigning an empty collection and specifying a
size using a tag with a number or a variable after the collection
tag. For instance:

my @a=(); #<array><3><string>
my $x=3; #<integer>
@a = (); #<$x>

In addition, nested collections are allowed but they should
always end with a basic datatype. Unlike hash and list
datatypes, array allows to define all the dimensions in a single
initialization:

my @a=(); #<array><10><array><10><string>
my %h=(); #<hash><hash><string>
${"key"}={};

Finally, references are a special case. In Java there is no
access to memory so a programmer can reference the value
of a variable but if its value changes the reference will not
be updated. For that reason, scalar references are not allowed
because they do not work. References are defined by <ref>
tag before the first collection tag.

B. Block tags

Block tags are used by PERLDOOP2 to perform in a different
way the translation of a particular block of code. The tag must
be placed immediately before or after the opening brace of the
block. In the current implementation PERLDOOP2 has four
types of block tags:

• Main tag: By default in Java all the code outside of the
functions (global code) is translated as a block of static



code. However, a program needs to specify a starting
execution point (main function in most programming
languages). For this reason a block of code tagged with
<main> will generate the main Java function instead of
a static block.

• Function tag: In some cases it may be useful to replace
a block of code with a function that contains it. For
example, with the aim of overcoming the limit of 64KB
code size per Java function. The <function> tag
generates a function that takes as argument all the local
variables used by the block and uses the return to update
them if any were changed.

• Hadoop tags: Preceding a tag with the name of a variable,
it is possible to assign a type before its declaration. These
are a set of tags used to generate Hadoop code from
sequential Perl code.

• Storm tag: storm should be written before a function in
order to generate a Bolt template. The following section
explains how Hadoop and Storm tags work in more detail.

V. GENERATING CODE FOR HADOOP, SPARK AND STORM

Apache Hadoop is the most relevant open-source imple-
mentation of the MapReduce programming model. In this
model, the input and output of a MapReduce computation
is a list of (key, value) pairs. Users only need to implement
Map and Reduce functions. Each map produce zero or more
intermediate (key, value) pairs by consuming one (key, value)
pair. After this, the runtime groups automatically these in-
termediate (key, value) pairs into buckets representing reduce
tasks. Reduce functions take an intermediate key and a list of
values as input and produce zero or more output results.

Hadoop provides a tool, known as Hadoop Streaming, that
allows to use as Map and Reduce functions code written in
other languages than Java. However, the ease of use provided
by Hadoop Streaming comes at the expense of important
degradations in the performance [5]. For this reason, it is of
great importance using the Java language to implement the
Map and Reduce functions in Hadoop.

Next, we illustrate how Perldoop2 automatically generates
a Hadoop Java mapper and reducer from Perl code using the
well-known WordCount application as example. The Word-
Count mapper (Figure 2) reads a text file. If the Perl code
is executed sequentially, the file is read line by line using a
loop (Perl, line 4). But if it is executed in parallel as a map
function, each mapper receives a group of lines, one at a time.
As a consequence, the PERLDOOP2 translation removes the
loop and replaces it with the received value (Java, line 11).
In this case the mapper key does not have an equivalent in
the Perl code so simply it is ignored. Regarding the output,
Perl uses the print function and two separators to store the
(key, value) pairs (Perl, line 8). In the case of Hadoop,
it is not necessary to use separators since the context has a
write function that takes two arguments. So the Java translation
takes first (’$word’) and third (’1’) arguments for the write
function (Java, line 15). Note that ’\t’ and ’\n’ are ignored.
The Mapper class in Java requires four datatypes: two for the

1 #!/usr/bin/perl -w
2

3 #<mapper><string><string>
4 while (my $line = <STDIN>) { #<string>
5 chomp ($line);
6 my @words = split (" ",$line); #<array><string>
7 foreach my $word (@words) {
8 print ($word,"\t", 1,"\n");
9 }

10 }

1 import org.apache.hadoop.mapreduce.Mapper;
2 import perldoop.lib.*;
3 import org.apache.hadoop.io.Text;
4 import java.io.IOException;
5

6 public class WordCountMapper extends Mapper<Object,
Text, Text, Text> {

7 @Override
8 public void map(Object pd_key, Text pd_value, Context

pd_context)
9 throws IOException, InterruptedException {

10 String line;
11 line = pd_value.toString();
12 line = Perl.chomp(line);
13 String[] words = Perl.split(" ", line);
14 for (String word : words) {
15 pd_context.write(new Text(word), new

Text(Casting.toString(1)));
16 }
17 }
18 }

Fig. 2. WordCount mapper example using Perl (top) and its equivalent
Hadoop-ready Java code generated using PERLDOOP2 (bottom).

input (key, value) pair and two for the output (key,
value) pair. Since the input is always a text file, it is not
necessary to specify the input types in the Perl code. Output
types are specified next to the <mapper> tag (Perl, line 3).
Nevertheless, this is not mandatory. In case output types are
not specified, strings will be used as default type.

The automatic translation of the WordCount reducer is more
complex than the translation of the mapper (see Figure 3). It
is not possible to apply a direct translation and it is necessary
to specify a translation by sections. Just as the mapper, the
reducer reads from the standard input (Perl, line 2). The
translated code of this section includes the definition and
initialization of all the variables (Perl, lines 3-6 - Java, lines
12-15). Nested blocks inside this code section are ignored.
The only blocks not ignored are those marked as combina-
tion (<combine>) or reduction (<reduction>) sections.
The first section defines the block containing the reduction
operation (Perl, line 13 - Java, line 18) that is performed
on all values with the same intermediate key. The reduction
section (Perl, line 17 - Java, line 21) is executed after the
last execution of the combine block. This section includes the
final calculations and stores the result. Both sections can use
the variables defined in the main block.

On the other hand, note that next to the <reducer>
tag it is necessary to specify two variables that store the
(key, value) pair (Perl, line 1). The value will be updated
every execution of the combine section. Like the Mapper, the
Reducer class in Java requires four datatypes but in this case
input and output should be defined by tags. If types are not



1 #<reducer><$key><$value><string><string><string><string>
2 while (my $line = <STDIN>) { #<string>
3 my $oldkey; #<string>
4 my $count; #<integer>
5 my $key; #<string>
6 my $value; #<integer>
7

8 ($key, $value) = split ("\t",$line);
9

10 if (!(defined($oldkey))) {
11 $oldkey = $key;
12 $count = $value;
13 }elsif ($oldkey eq $key){ #<combine>
14 $count += $value;
15 }else{
16 ($oldkey, $key, $count) = ($key, $oldkey, $value);
17 { #<reduction>
18 print ($key,’\t’,$count,’\n’);
19 }
20 }
21 }

1 import org.apache.hadoop.mapreduce.Reducer;
2 import java.util.Iterator;
3 import perldoop.lib.*;
4 import org.apache.hadoop.io.Text;
5 import java.io.IOException;
6

7 public class WordCountReducer extends Reducer<Text,
Text, Text, Text> {

8 @Override
9 public void reduce(Text pd_key, Iterator<Text>

pd_values, Context pd_context)
10 throws IOException, InterruptedException {
11 String line;
12 String oldkey = null;
13 Integer count = null;
14 String key = null;
15 Integer value = null;
16 key = pd_key;
17 while (pd_values.hashNext()) {
18 value = pd_values.next();
19 count = count + value;
20 }
21 pd_context.write(new Text(key), new

Text(Casting.toString(count)));
22 }
23 }

Fig. 3. WordCount reducer example using Perl (top) and its equivalent
Hadoop-ready Java code generated using PERLDOOP2 (bottom).

specified, strings will be also used as default type.
In addition to Hadoop codes, PERLDOOP2 is able to gen-

erate Java functions that can be used inside Apache Spark
applications. Spark is a framework with its own Mapper and
Reducer classes, but it has more natural and simple ways of
distributing the work thanks to RDDs. RDDs can be created
by distributing a collection of objects (e.g., a list or set) or by
loading an external dataset from any storage source supported
by Hadoop, including the local file system, HDFS, HBase,
etc. On created RDDs, Spark supports two types of parallel
operations: transformations and actions. Transformations are
operations on RDDs that return a new RDD, such as map,
flatMap, filter, join, groupByKey, etc. On the other
hand, actions are operations that kick off a computation,
returning a result to the Driver program or writing it to storage.
Examples of actions are collect, count, take, etc. Note
that transformations on RDDs are lazily evaluated, meaning
that Spark will not begin to execute until it sees an action.

1 public static void main(String[] args) throws
Exception {

2 String inputFile = args[0];
3 String outputFile = args[1];
4 SparkConf conf = new

SparkConf().setAppName("projectName");
5 JavaSparkContext sc = new JavaSparkContext(conf);
6 JavaRDD<String> input = sc.textFile(inputFile);
7 JavaRDD<String> mapped = input.flatMap((String

t) -> ((List)ClassName.functionName(new
Box[]{Casting.box(t)})[0].refValue().get()));

8

9 JavaRDD<String> output = mapped;
10 output.saveAsTextFile(outputFile);
11 }

Fig. 4. Example of Spark Main Java code that applies a custom function
generated by PERLDOOP2 to an RDD using the flatMap transformation.

As example we will focus on flatMap transformation
(see Figure 4). We must highlight that the process detailed
next can be applied to any supported Spark transformation.
The first step should be the creation of an RDD from the
input data (lines 5-6). flatMap applies a custom function
to all the elements of the RDD, so it has a single input
argument. This function can be generated by PERLDOOP2
without using special tags like in the case of Hadoop. Note
that the invocation of the function generated by PERLDOOP2 is
different from a typical Java function (line 7), so it is necessary
to explain how the PERLDOOP2 API works.

All functions take as argument an array of Box, which is
an abstract datatype that allows casting a datatype without
knowing the source type (see Section IV-A). For example, it
is possible to store ”1” as string and read the Box as an integer.
If you need to pass a collection to a function, the <array>,
<list> and <hash> tags are equivalent to classes [],
PerlList and PerlMap, respectively. The easiest way to
pass the collections to a function is by reference following the
Perl style. So we store the collection within the class Ref,
Ref is a scalar and can be converted into a Box.

Ref ref = new Ref(new PerlList());
class.function(new Box[]{new RefBox(ref)});

The return of the function follows the same principle and it
is only necessary to read the Box to get the type of Java data
from the Box[] return.

Integer n =
class.functA(..)[0].intValue();

PerlMap m = (PerlMap)
class.functionB(..)[0].refValue().get();

Finally, Storm requires the definition of topologies, which
are computational graphs where every node represents indi-
vidual processing tasks. In the Storm terminology, spouts are
the sources of a stream within a topology, which usually read
data from an external source. Bolts are the consumers of the
streams and they perform calculus and transformation tasks on
the received data. PERLDOOP2 generates a generic Storm Bolt
template when the <storm> tag is written above a function.
If the user wants to create a more complex Bolt, the generated
code can be invoked using the procedure explained for Spark.
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Fig. 5. Execution time of the applications considering different imple-
mentations: Prime numbers (top left), WordCount (top right) and Sentences
(bottom).

VI. EXPERIMENTAL EVALUATION

In this section we show the experimental results in order
to validate our proposal in terms of performance considering
sequential and parallel executions.

A. Sequential applications

Next we compare the performance of several Perl scripts,
their automatic translation generated by PERLDOOP2 and also
their corresponding hand-coded Java implementation. The goal
of the tests is to demonstrate that the impact on performance
of the PERLDOOP2 codes with respect to the hand-coded
applications is low. In addition, PERLDOOP2 only requires
tagging the Perl source code, so the effort demanded to the
users is very reasonable in comparison with the amount of
work required to implement the applications from scratch.

The experiments conducted in this subsection were per-
formed on a server with one Intel Core i7-4720HQ at 2.6GHz
and 16GB of RAM memory. Java and Perl versions were
1.8.0-111 and 5.20.2, respectively. Performance results were
obtained using the average of 50 executions for each applica-
tion. We have considered three small applications (due to space
limitations the source codes are not displayed). The first Perl
script considered in the experimental evaluation calculates a
set of prime numbers and stores them in a file. The second and
third applications process text. In particular, the second script
is a simple WordCount: a loop reads from standard input and
count the number of repetitions of a word in a hash table,
the table is sorted by value and printed. The last algorithm
is a NLP module called Sentences [13]. This script performs
sentence segmentation, which is the problem of dividing a
string of written language into its component sentences.

Figure 5 shows the performance of the different source
codes in terms of the execution time for the calculation of
prime numbers, WordCount and Sentences, respectively. In the
last two applications we have used as input text the English

Wikipedia (file size 2.1 GB). For all the considered cases Java
outperforms Perl, reaching speedups higher than 2×. On the
other hand, as it was expected, the Java code generated by
PERLDOOP2 obtains less performance than the hand-coded
versions of the applications since the PERLDOOP2 API adds
a level of abstraction over the native Java classes. This is the
case, for example, of file handling. However, computations
such as assignments and arithmetic operations are done di-
rectly without the overhead caused by the abstraction layer.
In this way, the performance of applications which mostly
contains those kind of operations is similar when comparing
PERLDOOP2 and hand-coded Java codes. Sentences script is
a purely regular expression NLP module, so as Perl and Java
have different regular expression engines, the performance
may vary depending on the type of expressions used.

B. Big Data frameworks: Hadoop and Spark

Next we will show the benefits of using PERLDOOP2 in
order to automatically generate Java codes ready to take
advantage of the Big Data frameworks Hadoop and Spark.
We have included a comparison with respect to combining
Perl codes and Hadoop Streaming. The experiments shown in
this section were performed on a Big Data cluster installed at
the Galicia Supercomputing Center (CESGA), which consists
of 64 nodes. Each node has an Intel Xeon E5520 processor
and 1 GB of RAM memory. The Hadoop version is the 1.1.2,
while Java and Perl versions are 1.8.0 and 5.10.1 respectively.

We have selected as representative application for the tests
a Part-Of-Speech (PoS) Tagger. This NLP application process
text and is composed of several chained modules. That is, the
output of one module is used as input of the following one.
In particular, the ordered NLP modules in the PoS tagger are:

• Sentences: it splits the input text in sentences.
• Normalizer: swaps some elements like abbreviations or

emoticons, among others, for semantic tags.
• Tokenizer: every sentence is transformed in a token se-

quence.
• Splitter: transforms the composed words in contractions.

E.g. don’t = do + not, we’ll = we + will.
• NER (Named Entity Recognition): it recognizes named

entities which can contain several words. For instance:
Santiago de Compostela.

• PoS Tagger: the Part-of-Speech Tagger performs a mor-
phosyntactic tagging. E.g. Proper noun, singular (NNP);
Verb, 3rd person singular present (VBZ).

We must highlight that the Perl source code of the PoS
tagger and the other NLP modules contain thousands of lines
and regular expressions. The tagged Perl codes are available
at Liguakit5 repository. We have used the English Wikipedia
as input.

Figure 6 shows the performance in terms of execution time
and speedup of the PoS Tagger on the cluster using different
number of nodes. In this test the application only processes
the first million lines of the Wikipedia. It can be observed that

5https://github.com/citiususc/Linguakit
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there is an important degradation in the performance when
considering Perl codes and Hadoop Streaming with respect
to using Java both in Hadoop and Spark. This observation
agrees with the experiments detailed in [5] where an in-depth
analysis of Hadoop Streaming was performed. This confirms
the usefulness and good behavior of PERLDOOP2 compiling
a large application for Hadoop and Spark. We must highlight
that users only need to tag the Perl source code using the
labels detailed previously. In this case Hadoop and Spark Java
codes run on average 1.6× and 1.7× faster than using Hadoop
Streaming. Note the good scalability achieved in both cases
as the number of nodes increases. On the other hand, Spark is
slightly faster than Hadoop. This is because the output of each
module is stored in memory (using RDDs) instead of writing
intermediate results to disk.

As a final test to validate the performance and scalability
of the Java codes generated by PERLDOOP2 we show the
experimental results of using the PoS tagger to process the
complete Wikipedia (Figure 7). In this case we have used all
the available nodes in the cluster, 64 nodes. Both Java codes
outperform again Hadoop Streaming, 1.3× faster on average.
In fact, the scalability with respect to sequential Perl are close
to the ideal values, 62.2× and 63.1× for Hadoop and Spark
respectively.

VII. CONCLUSIONS

In several research areas many applications were imple-
mented using the Perl programming language. However, the
most important Big Data engines (Hadoop, Spark and Storm)
do not support natively that language. In the particular case
of Hadoop, Perl applications could run on clusters using

Hadoop Streaming but the performance obtained is far from
optimal. On the other hand, porting the applications from
Perl to languages natively supported by Big Data frameworks
as Java or Scala requires a huge effort. For this reason, we
introduce PERLDOOP2, a Big Data-oriented Perl-Java source-
to-source compiler. The main goal is to generate quality Java
applications from Perl codes with the minimum effort on
the part of the users. Note that the unique task required
by the PERLDOOP2 users is tagging the Perl source code
using a reduced number of labels in such a way that no
knowledge about Java is necessary. The translated applications
can be directly integrated into the most important Big Data
frameworks.

An experimental evaluation was carried out in order to
demonstrate the benefits of using PERLDOOP2. First, we
have observed that Java codes generated by PERLDOOP2
achieved similar performance than hand-coded applications for
sequential execution. In addition, we have generated Java code
for Hadoop and Spark engines from several natural language
processing applications which consist of thousands of lines
of code. Experiments were conducted on a Big Data cluster.
Performance results demonstrate the improvements of using
Java in Hadoop and Spark with respect to using Perl and
Hadoop Streaming in terms of execution time and scalability.
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